1 From time to time, experimental features may be added to Exim.
2 While a feature is experimental, there will be a build-time
3 option whose name starts "EXPERIMENTAL_" that must be set in
4 order to include the feature. This file contains information
5 about experimental features, all of which are unstable and
6 liable to incompatible change.
9 Brightmail AntiSpam (BMI) suppport
10 --------------------------------------------------------------
12 Brightmail AntiSpam is a commercial package. Please see
13 http://www.brightmail.com for more information on
14 the product. For the sake of clarity, we'll refer to it as
18 0) BMI concept and implementation overview
20 In contrast to how spam-scanning with SpamAssassin is
21 implemented in exiscan-acl, BMI is more suited for per
22 -recipient scanning of messages. However, each messages is
23 scanned only once, but multiple "verdicts" for multiple
24 recipients can be returned from the BMI server. The exiscan
25 implementation passes the message to the BMI server just
26 before accepting it. It then adds the retrieved verdicts to
27 the messages header file in the spool. These verdicts can then
28 be queried in routers, where operation is per-recipient
29 instead of per-message. To use BMI, you need to take the
32 1) Compile Exim with BMI support
33 2) Set up main BMI options (top section of Exim config file)
34 3) Set up ACL control statement (ACL section of the config
36 4) Set up your routers to use BMI verdicts (routers section
38 5) (Optional) Set up per-recipient opt-in information.
40 These four steps are explained in more details below.
42 1) Adding support for BMI at compile time
44 To compile with BMI support, you need to link Exim against
45 the Brighmail client SDK, consisting of a library
46 (libbmiclient_single.so) and a header file (bmi_api.h).
47 You'll also need to explicitly set a flag in the Makefile to
48 include BMI support in the Exim binary. Both can be achieved
49 with these lines in Local/Makefile:
51 EXPERIMENTAL_BRIGHTMAIL=yes
52 CFLAGS=-I/path/to/the/dir/with/the/includefile
53 EXTRALIBS_EXIM=-L/path/to/the/dir/with/the/library -lbmiclient_single
55 If you use other CFLAGS or EXTRALIBS_EXIM settings then
56 merge the content of these lines with them.
58 Note for BMI6.x users: You'll also have to add -lxml2_single
59 to the EXTRALIBS_EXIM line. Users of 5.5x do not need to do
62 You should also include the location of
63 libbmiclient_single.so in your dynamic linker configuration
64 file (usually /etc/ld.so.conf) and run "ldconfig"
65 afterwards, or else the produced Exim binary will not be
66 able to find the library file.
69 2) Setting up BMI support in the Exim main configuration
71 To enable BMI support in the main Exim configuration, you
72 should set the path to the main BMI configuration file with
73 the "bmi_config_file" option, like this:
75 bmi_config_file = /opt/brightmail/etc/brightmail.cfg
77 This must go into section 1 of Exim's configuration file (You
78 can put it right on top). If you omit this option, it
79 defaults to /opt/brightmail/etc/brightmail.cfg.
81 Note for BMI6.x users: This file is in XML format in V6.xx
82 and its name is /opt/brightmail/etc/bmiconfig.xml. So BMI
83 6.x users MUST set the bmi_config_file option.
86 3) Set up ACL control statement
88 To optimize performance, it makes sense only to process
89 messages coming from remote, untrusted sources with the BMI
90 server. To set up a messages for processing by the BMI
91 server, you MUST set the "bmi_run" control statement in any
92 ACL for an incoming message. You will typically do this in
93 an "accept" block in the "acl_check_rcpt" ACL. You should
94 use the "accept" block(s) that accept messages from remote
95 servers for your own domain(s). Here is an example that uses
96 the "accept" blocks from Exim's default configuration file:
99 accept domains = +local_domains
104 accept domains = +relay_to_domains
109 If bmi_run is not set in any ACL during reception of the
110 message, it will NOT be passed to the BMI server.
113 4) Setting up routers to use BMI verdicts
115 When a message has been run through the BMI server, one or
116 more "verdicts" are present. Different recipients can have
117 different verdicts. Each recipient is treated individually
118 during routing, so you can query the verdicts by recipient
119 at that stage. From Exim's view, a verdict can have the
122 o deliver the message normally
123 o deliver the message to an alternate location
124 o do not deliver the message
126 To query the verdict for a recipient, the implementation
127 offers the following tools:
130 - Boolean router preconditions. These can be used in any
131 router. For a simple implementation of BMI, these may be
132 all that you need. The following preconditions are
135 o bmi_deliver_default
137 This precondition is TRUE if the verdict for the
138 recipient is to deliver the message normally. If the
139 message has not been processed by the BMI server, this
140 variable defaults to TRUE.
142 o bmi_deliver_alternate
144 This precondition is TRUE if the verdict for the
145 recipient is to deliver the message to an alternate
146 location. You can get the location string from the
147 $bmi_alt_location expansion variable if you need it. See
148 further below. If the message has not been processed by
149 the BMI server, this variable defaults to FALSE.
153 This precondition is TRUE if the verdict for the
154 recipient is NOT to deliver the message to the
155 recipient. You will typically use this precondition in a
156 top-level blackhole router, like this:
158 # don't deliver messages handled by the BMI server
164 This router should be on top of all others, so messages
165 that should not be delivered do not reach other routers
166 at all. If the message has not been processed by
167 the BMI server, this variable defaults to FALSE.
170 - A list router precondition to query if rules "fired" on
171 the message for the recipient. Its name is "bmi_rule". You
172 use it by passing it a colon-separated list of rule
173 numbers. You can use this condition to route messages that
174 matched specific rules. Here is an example:
176 # special router for BMI rule #5, #8 and #11
180 data = postmaster@mydomain.com
183 - Expansion variables. Several expansion variables are set
184 during routing. You can use them in custom router
185 conditions, for example. The following variables are
188 o $bmi_base64_verdict
190 This variable will contain the BASE64 encoded verdict
191 for the recipient being routed. You can use it to add a
192 header to messages for tracking purposes, for example:
197 headers_add = X-Brightmail-Verdict: $bmi_base64_verdict
198 transport = local_delivery
200 If there is no verdict available for the recipient being
201 routed, this variable contains the empty string.
203 o $bmi_base64_tracker_verdict
205 This variable will contain a BASE64 encoded subset of
206 the verdict information concerning the "rules" that
207 fired on the message. You can add this string to a
208 header, commonly named "X-Brightmail-Tracker". Example:
213 headers_add = X-Brightmail-Tracker: $bmi_base64_tracker_verdict
214 transport = local_delivery
216 If there is no verdict available for the recipient being
217 routed, this variable contains the empty string.
221 If the verdict is to redirect the message to an
222 alternate location, this variable will contain the
223 alternate location string returned by the BMI server. In
224 its default configuration, this is a header-like string
225 that can be added to the message with "headers_add". If
226 there is no verdict available for the recipient being
227 routed, or if the message is to be delivered normally,
228 this variable contains the empty string.
232 This is an additional integer variable that can be used
233 to query if the message should be delivered at all. You
234 should use router preconditions instead if possible.
236 $bmi_deliver is '0': the message should NOT be delivered.
237 $bmi_deliver is '1': the message should be delivered.
240 IMPORTANT NOTE: Verdict inheritance.
241 The message is passed to the BMI server during message
242 reception, using the target addresses from the RCPT TO:
243 commands in the SMTP transaction. If recipients get expanded
244 or re-written (for example by aliasing), the new address(es)
245 inherit the verdict from the original address. This means
246 that verdicts also apply to all "child" addresses generated
247 from top-level addresses that were sent to the BMI server.
250 5) Using per-recipient opt-in information (Optional)
252 The BMI server features multiple scanning "profiles" for
253 individual recipients. These are usually stored in a LDAP
254 server and are queried by the BMI server itself. However,
255 you can also pass opt-in data for each recipient from the
256 MTA to the BMI server. This is particularly useful if you
257 already look up recipient data in Exim anyway (which can
258 also be stored in a SQL database or other source). This
259 implementation enables you to pass opt-in data to the BMI
260 server in the RCPT ACL. This works by setting the
261 'bmi_optin' modifier in a block of that ACL. If should be
262 set to a list of comma-separated strings that identify the
263 features which the BMI server should use for that particular
264 recipient. Ideally, you would use the 'bmi_optin' modifier
265 in the same ACL block where you set the 'bmi_run' control
266 flag. Here is an example that will pull opt-in data for each
267 recipient from a flat file called
268 '/etc/exim/bmi_optin_data'.
272 user1@mydomain.com: <OPTIN STRING1>:<OPTIN STRING2>
273 user2@thatdomain.com: <OPTIN STRING3>
278 accept domains = +relay_to_domains
281 bmi_optin = ${lookup{$local_part@$domain}lsearch{/etc/exim/bmi_optin_data}}
284 Of course, you can also use any other lookup method that
285 Exim supports, including LDAP, Postgres, MySQL, Oracle etc.,
286 as long as the result is a list of colon-separated opt-in
289 For a list of available opt-in strings, please contact your
290 Brightmail representative.
295 Sender Policy Framework (SPF) support
296 --------------------------------------------------------------
298 To learn more about SPF, visit http://www.openspf.org. This
299 document does not explain the SPF fundamentals, you should
300 read and understand the implications of deploying SPF on your
301 system before doing so.
303 SPF support is added via the libspf2 library. Visit
305 http://www.libspf2.org/
307 to obtain a copy, then compile and install it. By default,
308 this will put headers in /usr/local/include and the static
309 library in /usr/local/lib.
311 To compile Exim with SPF support, set these additional flags in
315 CFLAGS=-DSPF -I/usr/local/include
316 EXTRALIBS_EXIM=-L/usr/local/lib -lspf2
318 This assumes that the libspf2 files are installed in
319 their default locations.
321 You can now run SPF checks in incoming SMTP by using the "spf"
322 ACL condition in either the MAIL, RCPT or DATA ACLs. When
323 using it in the RCPT ACL, you can make the checks dependent on
324 the RCPT address (or domain), so you can check SPF records
325 only for certain target domains. This gives you the
326 possibility to opt-out certain customers that do not want
327 their mail to be subject to SPF checking.
329 The spf condition takes a list of strings on its right-hand
330 side. These strings describe the outcome of the SPF check for
331 which the spf condition should succeed. Valid strings are:
333 o pass The SPF check passed, the sending host
334 is positively verified by SPF.
335 o fail The SPF check failed, the sending host
336 is NOT allowed to send mail for the domain
337 in the envelope-from address.
338 o softfail The SPF check failed, but the queried
339 domain can't absolutely confirm that this
341 o none The queried domain does not publish SPF
343 o neutral The SPF check returned a "neutral" state.
344 This means the queried domain has published
345 a SPF record, but wants to allow outside
346 servers to send mail under its domain as well.
347 This should be treated like "none".
348 o permerror This indicates a syntax error in the SPF
349 record of the queried domain. You may deny
350 messages when this occurs. (Changed in 4.83)
351 o temperror This indicates a temporary error during all
352 processing, including Exim's SPF processing.
353 You may defer messages when this occurs.
355 o err_temp Same as permerror, deprecated in 4.83, will be
356 removed in a future release.
357 o err_perm Same as temperror, deprecated in 4.83, will be
358 removed in a future release.
360 You can prefix each string with an exclamation mark to invert
361 its meaning, for example "!fail" will match all results but
362 "fail". The string list is evaluated left-to-right, in a
363 short-circuit fashion. When a string matches the outcome of
364 the SPF check, the condition succeeds. If none of the listed
365 strings matches the outcome of the SPF check, the condition
368 Here is an example to fail forgery attempts from domains that
372 deny message = $sender_host_address is not allowed to send mail from ${if def:sender_address_domain {$sender_address_domain}{$sender_helo_name}}. \
373 Please see http://www.openspf.org/Why?scope=${if def:sender_address_domain {mfrom}{helo}};identity=${if def:sender_address_domain {$sender_address}{$sender_helo_name}};ip=$sender_host_address
375 --------------------- */
377 You can also give special treatment to specific domains:
380 deny message = AOL sender, but not from AOL-approved relay.
381 sender_domains = aol.com
383 --------------------- */
385 Explanation: AOL publishes SPF records, but is liberal and
386 still allows non-approved relays to send mail from aol.com.
387 This will result in a "neutral" state, while mail from genuine
388 AOL servers will result in "pass". The example above takes
389 this into account and treats "neutral" like "fail", but only
390 for aol.com. Please note that this violates the SPF draft.
392 When the spf condition has run, it sets up several expansion
396 This contains a human-readable string describing the outcome
397 of the SPF check. You can add it to a custom header or use
398 it for logging purposes.
401 This contains a complete Received-SPF: header that can be
402 added to the message. Please note that according to the SPF
403 draft, this header must be added at the top of the header
404 list. Please see section 10 on how you can do this.
406 Note: in case of "Best-guess" (see below), the convention is
407 to put this string in a header called X-SPF-Guess: instead.
410 This contains the outcome of the SPF check in string form,
411 one of pass, fail, softfail, none, neutral, permerror or
415 This contains a string that can be used in a SMTP response
416 to the calling party. Useful for "fail".
418 In addition to SPF, you can also perform checks for so-called
419 "Best-guess". Strictly speaking, "Best-guess" is not standard
420 SPF, but it is supported by the same framework that enables SPF
421 capability. Refer to http://www.openspf.org/FAQ/Best_guess_record
422 for a description of what it means.
424 To access this feature, simply use the spf_guess condition in place
425 of the spf one. For example:
428 deny message = $sender_host_address doesn't look trustworthy to me
430 --------------------- */
432 In case you decide to reject messages based on this check, you
433 should note that although it uses the same framework, "Best-guess"
434 is NOT SPF, and therefore you should not mention SPF at all in your
437 When the spf_guess condition has run, it sets up the same expansion
438 variables as when spf condition is run, described above.
440 Additionally, since Best-guess is not standardized, you may redefine
441 what "Best-guess" means to you by redefining spf_guess variable in
442 global config. For example, the following:
445 spf_guess = v=spf1 a/16 mx/16 ptr ?all
446 --------------------- */
448 would relax host matching rules to a broader network range.
451 SRS (Sender Rewriting Scheme) Support
452 --------------------------------------------------------------
454 Exiscan currently includes SRS support via Miles Wilton's
455 libsrs_alt library. The current version of the supported
458 In order to use SRS, you must get a copy of libsrs_alt from
460 http://srs.mirtol.com/
462 Unpack the tarball, then refer to MTAs/README.EXIM
463 to proceed. You need to set
467 in your Local/Makefile.
471 --------------------------------------------------------------
475 In order to build exim with DCC support add
479 to your Makefile. (Re-)build/install exim. exim -d should show
480 EXPERIMENTAL_DCC under "Support for".
485 In the main section of exim.cf add at least
486 dccifd_address = /usr/local/dcc/var/dccifd
488 dccifd_address = <ip> <port>
490 In the DATA ACL you can use the new condition
493 After that "$dcc_header" contains the X-DCC-Header.
496 fail for overall "R", "G" from dccifd
497 defer for overall "T" from dccifd
498 accept for overall "A", "S" from dccifd
500 dcc = */defer_ok works as for spamd.
502 The "$dcc_result" variable contains the overall result from DCC
503 answer. There will an X-DCC: header added to the mail.
507 to greylist with DCC.
509 If you set, in the main section,
510 dcc_direct_add_header = true
511 then the dcc header will be added "in deep" and if the spool
512 file was already written it gets removed. This forces Exim to
513 write it again if needed. This helps to get the DCC Header
514 through to eg. SpamAssassin.
516 If you want to pass even more headers in the middle of the
517 DATA stage you can set
518 $acl_m_dcc_add_header
519 to tell the DCC routines to add more information; eg, you might set
520 this to some results from ClamAV. Be careful. Header syntax is
521 not checked and is added "as is".
523 In case you've troubles with sites sending the same queue items from several
524 hosts and fail to get through greylisting you can use
525 $acl_m_dcc_override_client_ip
527 Setting $acl_m_dcc_override_client_ip to an IP address overrides the default
528 of $sender_host_address. eg. use the following ACL in DATA stage:
530 warn set acl_m_dcc_override_client_ip = \
531 ${lookup{$sender_helo_name}nwildlsearch{/etc/mail/multipleip_sites}{$value}{}}
532 condition = ${if def:acl_m_dcc_override_client_ip}
533 log_message = dbg: acl_m_dcc_override_client_ip set to \
534 $acl_m_dcc_override_client_ip
536 Then set something like
537 # cat /etc/mail/multipleip_sites
538 mout-xforward.gmx.net 82.165.159.12
539 mout.gmx.net 212.227.15.16
541 Use a reasonable IP. eg. one the sending cluster acutally uses.
544 --------------------------------------------------------------
546 DMARC combines feedback from SPF, DKIM, and header From: in order
547 to attempt to provide better indicators of the authenticity of an
548 email. This document does not explain the fundamentals, you
549 should read and understand how it works by visiting the website at
550 http://www.dmarc.org/.
552 DMARC support is added via the libopendmarc library. Visit:
554 http://sourceforge.net/projects/opendmarc/
556 to obtain a copy, or find it in your favorite rpm package
557 repository. If building from source, this description assumes
558 that headers will be in /usr/local/include, and that the libraries
559 are in /usr/local/lib.
561 1. To compile Exim with DMARC support, you must first enable SPF.
562 Please read the above section on enabling the EXPERIMENTAL_SPF
563 feature. You must also have DKIM support, so you cannot set the
564 DISABLE_DKIM feature. Once both of those conditions have been met
565 you can enable DMARC in Local/Makefile:
567 EXPERIMENTAL_DMARC=yes
568 LDFLAGS += -lopendmarc
569 # CFLAGS += -I/usr/local/include
570 # LDFLAGS += -L/usr/local/lib
572 The first line sets the feature to include the correct code, and
573 the second line says to link the libopendmarc libraries into the
574 exim binary. The commented out lines should be uncommented if you
575 built opendmarc from source and installed in the default location.
576 Adjust the paths if you installed them elsewhere, but you do not
577 need to uncomment them if an rpm (or you) installed them in the
578 package controlled locations (/usr/include and /usr/lib).
581 2. Use the following global settings to configure DMARC:
584 dmarc_tld_file Defines the location of a text file of valid
585 top level domains the opendmarc library uses
586 during domain parsing. Maintained by Mozilla,
587 the most current version can be downloaded
588 from a link at http://publicsuffix.org/list/.
591 dmarc_history_file Defines the location of a file to log results
592 of dmarc verification on inbound emails. The
593 contents are importable by the opendmarc tools
594 which will manage the data, send out DMARC
595 reports, and expire the data. Make sure the
596 directory of this file is writable by the user
599 dmarc_forensic_sender The email address to use when sending a
600 forensic report detailing alignment failures
601 if a sender domain's dmarc record specifies it
602 and you have configured Exim to send them.
603 Default: do-not-reply@$default_hostname
606 3. By default, the DMARC processing will run for any remote,
607 non-authenticated user. It makes sense to only verify DMARC
608 status of messages coming from remote, untrusted sources. You can
609 use standard conditions such as hosts, senders, etc, to decide that
610 DMARC verification should *not* be performed for them and disable
611 DMARC with a control setting:
613 control = dmarc_disable_verify
615 A DMARC record can also specify a "forensic address", which gives
616 exim an email address to submit reports about failed alignment.
617 Exim does not do this by default because in certain conditions it
618 results in unintended information leakage (what lists a user might
619 be subscribed to, etc). You must configure exim to submit forensic
620 reports to the owner of the domain. If the DMARC record contains a
621 forensic address and you specify the control statement below, then
622 exim will send these forensic emails. It's also advised that you
623 configure a dmarc_forensic_sender because the default sender address
624 construction might be inadequate.
626 control = dmarc_forensic_enable
628 (AGAIN: You can choose not to send these forensic reports by simply
629 not putting the dmarc_forensic_enable control line at any point in
630 your exim config. If you don't tell it to send them, it will not
633 There are no options to either control. Both must appear before
637 4. You can now run DMARC checks in incoming SMTP by using the
638 "dmarc_status" ACL condition in the DATA ACL. You are required to
639 call the spf condition first in the ACLs, then the "dmarc_status"
640 condition. Putting this condition in the ACLs is required in order
641 for a DMARC check to actually occur. All of the variables are set
642 up before the DATA ACL, but there is no actual DMARC check that
643 occurs until a "dmarc_status" condition is encountered in the ACLs.
645 The dmarc_status condition takes a list of strings on its
646 right-hand side. These strings describe recommended action based
647 on the DMARC check. To understand what the policy recommendations
648 mean, refer to the DMARC website above. Valid strings are:
650 o accept The DMARC check passed and the library recommends
652 o reject The DMARC check failed and the library recommends
654 o quarantine The DMARC check failed and the library recommends
655 keeping it for further inspection.
656 o none The DMARC check passed and the library recommends
657 no specific action, neutral.
658 o norecord No policy section in the DMARC record for this
660 o nofrom Unable to determine the domain of the sender.
661 o temperror Library error or dns error.
662 o off The DMARC check was disabled for this email.
664 You can prefix each string with an exclamation mark to invert its
665 meaning, for example "!accept" will match all results but
666 "accept". The string list is evaluated left-to-right in a
667 short-circuit fashion. When a string matches the outcome of the
668 DMARC check, the condition succeeds. If none of the listed
669 strings matches the outcome of the DMARC check, the condition
672 Of course, you can also use any other lookup method that Exim
673 supports, including LDAP, Postgres, MySQL, etc, as long as the
674 result is a list of colon-separated strings.
676 Several expansion variables are set before the DATA ACL is
677 processed, and you can use them in this ACL. The following
678 expansion variables are available:
681 This is a one word status indicating what the DMARC library
682 thinks of the email. It is a combination of the results of
683 DMARC record lookup and the SPF/DKIM/DMARC processing results
684 (if a DMARC record was found). The actual policy declared
685 in the DMARC record is in a separate expansion variable.
688 This is a slightly longer, human readable status.
691 This is the domain which DMARC used to look up the DMARC
694 o $dmarc_domain_policy
695 This is the policy declared in the DMARC record. Valid values
696 are "none", "reject" and "quarantine". It is blank when there
697 is any error, including no DMARC record.
700 This is the entire Authentication-Results header which you can
701 add using an add_header modifier.
704 5. How to enable DMARC advanced operation:
705 By default, Exim's DMARC configuration is intended to be
706 non-intrusive and conservative. To facilitate this, Exim will not
707 create any type of logging files without explicit configuration by
708 you, the admin. Nor will Exim send out any emails/reports about
709 DMARC issues without explicit configuration by you, the admin (other
710 than typical bounce messages that may come about due to ACL
711 processing or failure delivery issues).
713 In order to log statistics suitable to be imported by the opendmarc
715 a. Configure the global setting dmarc_history_file.
716 b. Configure cron jobs to call the appropriate opendmarc history
717 import scripts and truncating the dmarc_history_file.
719 In order to send forensic reports, you need to:
720 a. Configure the global setting dmarc_forensic_sender.
721 b. Configure, somewhere before the DATA ACL, the control option to
722 enable sending DMARC forensic reports.
727 warn domains = +local_domains
729 control = dmarc_disable_verify
731 warn !domains = +screwed_up_dmarc_records
732 control = dmarc_enable_forensic
734 warn condition = (lookup if destined to mailing list)
735 set acl_m_mailing_list = 1
738 warn dmarc_status = accept : none : off
740 log_message = DMARC DEBUG: $dmarc_status $dmarc_used_domain
741 add_header = $dmarc_ar_header
743 warn dmarc_status = !accept
745 log_message = DMARC DEBUG: '$dmarc_status' for $dmarc_used_domain
747 warn dmarc_status = quarantine
749 set $acl_m_quarantine = 1
750 # Do something in a transport with this flag variable
752 deny condition = ${if eq{$dmarc_domain_policy}{reject}}
753 condition = ${if eq{$acl_m_mailing_list}{1}}
754 message = Messages from $dmarc_used_domain break mailing lists
756 deny dmarc_status = reject
758 message = Message from $domain_used_domain failed sender's DMARC policy, REJECT
763 --------------------------------------------------------------
765 (Renamed from TPDA, Transport post-delivery actions)
767 An arbitrary per-transport string can be expanded upon various transport events.
768 Additionally a main-section configuration option can be expanded on some
770 This feature may be used, for example, to write exim internal log information
771 (not available otherwise) into a database.
773 In order to use the feature, you must compile with
775 EXPERIMENTAL_EVENT=yes
777 in your Local/Makefile
779 and define one or both of
780 - the event_action option in the transport
781 - the event_action main option
782 to be expanded when the event fires.
784 A new variable, $event_name, is set to the event type when the
785 expansion is done. The current list of events is:
787 msg:complete after main per message
788 msg:delivery after transport per recipient
789 msg:host:defer after transport per attempt
790 msg:fail:delivery after main per recipient
791 msg:fail:internal after main per recipient
792 tcp:connect before transport per connection
793 tcp:close after transport per connection
794 tls:cert before both per certificate in verification chain
795 smtp:connect after transport per connection
797 The expansion is called for all event types, and should use the $event_name
798 value to decide when to act. The variable data is a colon-separated
799 list, describing an event tree.
801 There is an auxilary variable, $event_data, for which the
802 content is event_dependent:
804 msg:delivery smtp confirmation mssage
805 msg:host:defer error string
806 tls:cert verification chain depth
807 smtp:connect smtp banner
809 The msg:host:defer event populates one extra variable, $event_defer_errno.
811 The following variables are likely to be useful depending on the event type:
813 router_name, transport_name
815 host, host_address, host_port
817 lookup_dnssec_authenticated, tls_out_dane
818 sending_ip_address, sending_port
819 message_exim_id, verify_mode
822 An example might look like:
824 event_action = ${if eq {msg:delivery}{$event_name} \
825 {${lookup pgsql {SELECT * FROM record_Delivery( \
826 '${quote_pgsql:$sender_address_domain}',\
827 '${quote_pgsql:${lc:$sender_address_local_part}}', \
828 '${quote_pgsql:$domain}', \
829 '${quote_pgsql:${lc:$local_part}}', \
830 '${quote_pgsql:$host_address}', \
831 '${quote_pgsql:${lc:$host}}', \
832 '${quote_pgsql:$message_exim_id}')}} \
835 The string is expanded when each of the supported events occur
836 and any side-effects of the expansion will happen.
837 Note that for complex operations an ACL expansion can be used.
840 The expansion of the event_action option should normally
841 return an empty string. Should it return anything else the
842 following will be forced:
844 msg:delivery (ignored)
845 msg:host:defer (ignored)
846 msg:fail:delivery (ignored)
847 tcp:connect do not connect
849 tls:cert refuse verification
850 smtp:connect close connection
852 No other use is made of the result string.
856 - the tls:cert event is only called for the cert chain elements
857 received over the wire, with GnuTLS. OpenSSL gives the entire
858 chain including thse loaded locally.
862 --------------------------------------------------------------
864 Redis is open source advanced key-value data store. This document
865 does not explain the fundamentals, you should read and understand how
866 it works by visiting the website at http://www.redis.io/.
868 Redis lookup support is added via the hiredis library. Visit:
870 https://github.com/redis/hiredis
872 to obtain a copy, or find it in your operating systems package repository.
873 If building from source, this description assumes that headers will be in
874 /usr/local/include, and that the libraries are in /usr/local/lib.
876 1. In order to build exim with Redis lookup support add
878 EXPERIMENTAL_REDIS=yes
880 to your Local/Makefile. (Re-)build/install exim. exim -d should show
881 Experimental_Redis in the line "Support for:".
883 EXPERIMENTAL_REDIS=yes
885 # CFLAGS += -I/usr/local/include
886 # LDFLAGS += -L/usr/local/lib
888 The first line sets the feature to include the correct code, and
889 the second line says to link the hiredis libraries into the
890 exim binary. The commented out lines should be uncommented if you
891 built hiredis from source and installed in the default location.
892 Adjust the paths if you installed them elsewhere, but you do not
893 need to uncomment them if an rpm (or you) installed them in the
894 package controlled locations (/usr/include and /usr/lib).
897 2. Use the following global settings to configure Redis lookup support:
900 redis_servers This option provides a list of Redis servers
901 and associated connection data, to be used in
902 conjunction with redis lookups. The option is
903 only available if Exim is configured with Redis
908 redis_servers = 127.0.0.1/10/ - using database 10 with no password
909 redis_servers = 127.0.0.1//password - to make use of the default database of 0 with a password
910 redis_servers = 127.0.0.1// - for default database of 0 with no password
912 3. Once you have the Redis servers defined you can then make use of the
913 experimental Redis lookup by specifying ${lookup redis{}} in a lookup query.
918 hostlist relay_from_ips = <\n ${lookup redis{SMEMBERS relay_from_ips}}
920 Where relay_from_ips is a Redis set which contains entries such as "192.168.0.0/24" "10.0.0.0/8" and so on.
921 The result set is returned as
928 domainlist virtual_domains = ${lookup redis {HGET $domain domain}}
930 Where $domain is a hash which includes the key 'domain' and the value '$domain'.
932 (Adding or updating an existing key)
933 set acl_c_spammer = ${if eq{${lookup redis{SPAMMER_SET}}}{OK}}
935 Where SPAMMER_SET is a macro and it is defined as
937 "SET SPAMMER <some_value>"
939 (Getting a value from Redis)
941 set acl_c_spam_host = ${lookup redis{GET...}}
944 Proxy Protocol Support
945 --------------------------------------------------------------
947 Exim now has Experimental "Proxy Protocol" support. It was built on
949 http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt
950 Above URL revised May 2014 to change version 2 spec:
951 http://git.1wt.eu/web?p=haproxy.git;a=commitdiff;h=afb768340c9d7e50d8e
953 The purpose of this function is so that an application load balancer,
954 such as HAProxy, can sit in front of several Exim servers and Exim
955 will log the IP that is connecting to the proxy server instead of
956 the IP of the proxy server when it connects to Exim. It resets the
957 $sender_address_host and $sender_address_port to the IP:port of the
958 connection to the proxy. It also re-queries the DNS information for
959 this new IP address so that the original sender's hostname and IP
960 get logged in the Exim logfile. There is no logging if a host passes or
961 fails Proxy Protocol negotiation, but it can easily be determined and
962 recorded in an ACL (example is below).
964 1. To compile Exim with Proxy Protocol support, put this in
967 EXPERIMENTAL_PROXY=yes
969 2. Global configuration settings:
971 proxy_required_hosts = HOSTLIST
973 The proxy_required_hosts option will require any IP in that hostlist
974 to use Proxy Protocol. The specification of Proxy Protocol is very
975 strict, and if proxy negotiation fails, Exim will not allow any SMTP
976 command other than QUIT. (See end of this section for an example.)
977 The option is expanded when used, so it can be a hostlist as well as
978 string of IP addresses. Since it is expanded, specifying an alternate
979 separator is supported for ease of use with IPv6 addresses.
981 To log the IP of the proxy in the incoming logline, add:
982 log_selector = +proxy
984 A default incoming logline (wrapped for appearance) will look like this:
986 2013-11-04 09:25:06 1VdNti-0001OY-1V <= me@example.net
987 H=mail.example.net [1.2.3.4] P=esmtp S=433
989 With the log selector enabled, an email that was proxied through a
990 Proxy Protocol server at 192.168.1.2 will look like this:
992 2013-11-04 09:25:06 1VdNti-0001OY-1V <= me@example.net
993 H=mail.example.net [1.2.3.4] P=esmtp PRX=192.168.1.2 S=433
995 3. In the ACL's the following expansion variables are available.
997 proxy_host_address The (internal) src IP of the proxy server
998 making the connection to the Exim server.
999 proxy_host_port The (internal) src port the proxy server is
1000 using to connect to the Exim server.
1001 proxy_target_address The dest (public) IP of the remote host to
1003 proxy_target_port The dest port the remote host is using to
1004 connect to the proxy server.
1005 proxy_session Boolean, yes/no, the connected host is required
1006 to use Proxy Protocol.
1008 There is no expansion for a failed proxy session, however you can detect
1009 it by checking if $proxy_session is true but $proxy_host is empty. As
1010 an example, in my connect ACL, I have:
1012 warn condition = ${if and{ {bool{$proxy_session}} \
1013 {eq{$proxy_host_address}{}} } }
1014 log_message = Failed required proxy protocol negotiation \
1015 from $sender_host_name [$sender_host_address]
1017 warn condition = ${if and{ {bool{$proxy_session}} \
1018 {!eq{$proxy_host_address}{}} } }
1019 # But don't log health probes from the proxy itself
1020 condition = ${if eq{$proxy_host_address}{$sender_host_address} \
1022 log_message = Successfully proxied from $sender_host_name \
1023 [$sender_host_address] through proxy protocol \
1024 host $proxy_host_address
1026 # Possibly more clear
1027 warn logwrite = Remote Source Address: $sender_host_address:$sender_host_port
1028 logwrite = Proxy Target Address: $proxy_target_address:$proxy_target_port
1029 logwrite = Proxy Internal Address: $proxy_host_address:$proxy_host_port
1030 logwrite = Internal Server Address: $received_ip_address:$received_port
1033 4. Recommended ACL additions:
1034 - Since the real connections are all coming from your proxy, and the
1035 per host connection tracking is done before Proxy Protocol is
1036 evaluated, smtp_accept_max_per_host must be set high enough to
1037 handle all of the parallel volume you expect per inbound proxy.
1038 - With the smtp_accept_max_per_host set so high, you lose the ability
1039 to protect your server from massive numbers of inbound connections
1040 from one IP. In order to prevent your server from being DOS'd, you
1041 need to add a per connection ratelimit to your connect ACL. I
1042 suggest something like this:
1044 # Set max number of connections per host
1046 # Or do some kind of IP lookup in a flat file or database
1047 # LIMIT = ${lookup{$sender_host_address}iplsearch{/etc/exim/proxy_limits}}
1049 defer message = Too many connections from this IP right now
1050 ratelimit = LIMIT / 5s / per_conn / strict
1053 5. Runtime issues to be aware of:
1054 - The proxy has 3 seconds (hard-coded in the source code) to send the
1055 required Proxy Protocol header after it connects. If it does not,
1056 the response to any commands will be:
1057 "503 Command refused, required Proxy negotiation failed"
1058 - If the incoming connection is configured in Exim to be a Proxy
1059 Protocol host, but the proxy is not sending the header, the banner
1060 does not get sent until the timeout occurs. If the sending host
1061 sent any input (before the banner), this causes a standard Exim
1062 synchronization error (i.e. trying to pipeline before PIPELINING
1064 - This is not advised, but is mentioned for completeness if you have
1065 a specific internal configuration that you want this: If the Exim
1066 server only has an internal IP address and no other machines in your
1067 organization will connect to it to try to send email, you may
1068 simply set the hostlist to "*", however, this will prevent local
1069 mail programs from working because that would require mail from
1070 localhost to use Proxy Protocol. Again, not advised!
1072 6. Example of a refused connection because the Proxy Protocol header was
1073 not sent from a host configured to use Proxy Protocol. In the example,
1074 the 3 second timeout occurred (when a Proxy Protocol banner should have
1075 been sent), the banner was displayed to the user, but all commands are
1076 rejected except for QUIT:
1078 # nc mail.example.net 25
1079 220-mail.example.net, ESMTP Exim 4.82+proxy, Mon, 04 Nov 2013 10:45:59
1080 220 -0800 RFC's enforced
1082 503 Command refused, required Proxy negotiation failed
1084 221 mail.example.net closing connection
1090 ------------------------------------------------------------
1091 DNS-based Authentication of Named Entities, as applied
1092 to SMTP over TLS, provides assurance to a client that
1093 it is actually talking to the server it wants to rather
1094 than some attacker operating a Man In The Middle (MITM)
1095 operation. The latter can terminate the TLS connection
1096 you make, and make another one to the server (so both
1097 you and the server still think you have an encrypted
1098 connection) and, if one of the "well known" set of
1099 Certificate Authorities has been suborned - something
1100 which *has* been seen already (2014), a verifiable
1101 certificate (if you're using normal root CAs, eg. the
1102 Mozilla set, as your trust anchors).
1104 What DANE does is replace the CAs with the DNS as the
1105 trust anchor. The assurance is limited to a) the possibility
1106 that the DNS has been suborned, b) mistakes made by the
1107 admins of the target server. The attack surface presented
1108 by (a) is thought to be smaller than that of the set
1111 It also allows the server to declare (implicitly) that
1112 connections to it should use TLS. An MITM could simply
1113 fail to pass on a server's STARTTLS.
1115 DANE scales better than having to maintain (and
1116 side-channel communicate) copies of server certificates
1117 for every possible target server. It also scales
1118 (slightly) better than having to maintain on an SMTP
1119 client a copy of the standard CAs bundle. It also
1120 means not having to pay a CA for certificates.
1122 DANE requires a server operator to do three things:
1123 1) run DNSSEC. This provides assurance to clients
1124 that DNS lookups they do for the server have not
1125 been tampered with. The domain MX record applying
1126 to this server, its A record, its TLSA record and
1127 any associated CNAME records must all be covered by
1129 2) add TLSA DNS records. These say what the server
1130 certificate for a TLS connection should be.
1131 3) offer a server certificate, or certificate chain,
1132 in TLS connections which is traceable to the one
1133 defined by (one of?) the TSLA records
1135 There are no changes to Exim specific to server-side
1138 The TLSA record for the server may have "certificate
1139 usage" of DANE-TA(2) or DANE-EE(3). The latter specifies
1140 the End Entity directly, i.e. the certificate involved
1141 is that of the server (and should be the sole one transmitted
1142 during the TLS handshake); this is appropriate for a
1143 single system, using a self-signed certificate.
1144 DANE-TA usage is effectively declaring a specific CA
1145 to be used; this might be a private CA or a public,
1146 well-known one. A private CA at simplest is just
1147 a self-signed certificate which is used to sign
1148 cerver certificates, but running one securely does
1149 require careful arrangement. If a private CA is used
1150 then either all clients must be primed with it, or
1151 (probably simpler) the server TLS handshake must transmit
1152 the entire certificate chain from CA to server-certificate.
1153 If a public CA is used then all clients must be primed with it
1154 (losing one advantage of DANE) - but the attack surface is
1155 reduced from all public CAs to that single CA.
1156 DANE-TA is commonly used for several services and/or
1157 servers, each having a TLSA query-domain CNAME record,
1158 all of which point to a single TLSA record.
1160 The TLSA record should have a Selector field of SPKI(1)
1161 and a Matching Type field of SHA2-512(2).
1163 At the time of writing, https://www.huque.com/bin/gen_tlsa
1164 is useful for quickly generating TLSA records; and commands like
1166 openssl x509 -in -pubkey -noout <certificate.pem \
1167 | openssl rsa -outform der -pubin 2>/dev/null \
1171 are workable for 4th-field hashes.
1173 For use with the DANE-TA model, server certificates
1174 must have a correct name (SubjectName or SubjectAltName).
1176 The use of OCSP-stapling should be considered, allowing
1177 for fast revocation of certificates (which would otherwise
1178 be limited by the DNS TTL on the TLSA records). However,
1179 this is likely to only be usable with DANE-TA. NOTE: the
1180 default of requesting OCSP for all hosts is modified iff
1183 hosts_request_ocsp = ${if or { {= {0}{$tls_out_tlsa_usage}} \
1184 {= {4}{$tls_out_tlsa_usage}} } \
1187 The (new) variable $tls_out_tlsa_usage is a bitfield with
1188 numbered bits set for TLSA record usage codes.
1189 The zero above means DANE was not in use,
1190 the four means that only DANE-TA usage TLSA records were
1191 found. If the definition of hosts_request_ocsp includes the
1192 string "tls_out_tlsa_usage", they are re-expanded in time to
1193 control the OCSP request.
1195 This modification of hosts_request_ocsp is only done if
1196 it has the default value of "*". Admins who change it, and
1197 those who use hosts_require_ocsp, should consider the interaction
1198 with DANE in their OCSP settings.
1201 For client-side DANE there are two new smtp transport options,
1202 hosts_try_dane and hosts_require_dane. They do the obvious thing.
1203 [ should they be domain-based rather than host-based? ]
1205 DANE will only be usable if the target host has DNSSEC-secured
1206 MX, A and TLSA records.
1208 A TLSA lookup will be done if either of the above options match
1209 and the host-lookup succeded using dnssec.
1210 If a TLSA lookup is done and succeeds, a DANE-verified TLS connection
1211 will be required for the host.
1213 (TODO: specify when fallback happens vs. when the host is not used)
1215 If DANE is requested and useable (see above) the following transport
1216 options are ignored:
1219 tls_try_verify_hosts
1220 tls_verify_certificates
1222 tls_verify_cert_hostnames
1224 If DANE is not usable, whether requested or not, and CA-anchored
1225 verification evaluation is wanted, the above variables should be set
1228 Currently dnssec_request_domains must be active (need to think about that)
1229 and dnssec_require_domains is ignored.
1231 If verification was successful using DANE then the "CV" item
1232 in the delivery log line will show as "CV=dane".
1234 There is a new variable $tls_out_dane which will have "yes" if
1235 verification succeeded using DANE and "no" otherwise (only useful
1236 in combination with EXPERIMENTAL_EVENT), and a new variable
1237 $tls_out_tlsa_usage (detailed above).
1240 --------------------------------------------------------------
1242 --------------------------------------------------------------