Tidying
[users/jgh/exim.git] / src / src / dns.c
1 /*************************************************
2 *     Exim - an Internet mail transport agent    *
3 *************************************************/
4
5 /* Copyright (c) University of Cambridge 1995 - 2014 */
6 /* See the file NOTICE for conditions of use and distribution. */
7
8 /* Functions for interfacing with the DNS. */
9
10 #include "exim.h"
11
12
13 /* Function declaration needed for mutual recursion when A6 records
14 are supported. */
15
16 #if HAVE_IPV6
17 #ifdef SUPPORT_A6
18 static void dns_complete_a6(dns_address ***, dns_answer *, dns_record *,
19   int, uschar *);
20 #endif
21 #endif
22
23
24 /*************************************************
25 *               Fake DNS resolver                *
26 *************************************************/
27
28 /* This function is called instead of res_search() when Exim is running in its
29 test harness. It recognizes some special domain names, and uses them to force
30 failure and retry responses (optionally with a delay). Otherwise, it calls an
31 external utility that mocks-up a nameserver, if it can find the utility.
32 If not, it passes its arguments on to res_search(). The fake nameserver may
33 also return a code specifying that the name should be passed on.
34
35 Background: the original test suite required a real nameserver to carry the
36 test zones, whereas the new test suit has the fake server for portability. This
37 code supports both.
38
39 Arguments:
40   domain      the domain name
41   type        the DNS record type
42   answerptr   where to put the answer
43   size        size of the answer area
44
45 Returns:      length of returned data, or -1 on error (h_errno set)
46 */
47
48 static int
49 fakens_search(uschar *domain, int type, uschar *answerptr, int size)
50 {
51 int len = Ustrlen(domain);
52 int asize = size;                  /* Locally modified */
53 uschar *endname;
54 uschar name[256];
55 uschar utilname[256];
56 uschar *aptr = answerptr;          /* Locally modified */
57 struct stat statbuf;
58
59 /* Remove terminating dot. */
60
61 if (domain[len - 1] == '.') len--;
62 Ustrncpy(name, domain, len);
63 name[len] = 0;
64 endname = name + len;
65
66 /* This code, for forcing TRY_AGAIN and NO_RECOVERY, is here so that it works
67 for the old test suite that uses a real nameserver. When the old test suite is
68 eventually abandoned, this code could be moved into the fakens utility. */
69
70 if (len >= 14 && Ustrcmp(endname - 14, "test.again.dns") == 0)
71   {
72   int delay = Uatoi(name);  /* digits at the start of the name */
73   DEBUG(D_dns) debug_printf("Return from DNS lookup of %s (%s) faked for testing\n",
74     name, dns_text_type(type));
75   if (delay > 0)
76     {
77     DEBUG(D_dns) debug_printf("delaying %d seconds\n", delay);
78     sleep(delay);
79     }
80   h_errno = TRY_AGAIN;
81   return -1;
82   }
83
84 if (len >= 13 && Ustrcmp(endname - 13, "test.fail.dns") == 0)
85   {
86   DEBUG(D_dns) debug_printf("Return from DNS lookup of %s (%s) faked for testing\n",
87     name, dns_text_type(type));
88   h_errno = NO_RECOVERY;
89   return -1;
90   }
91
92 /* Look for the fakens utility, and if it exists, call it. */
93
94 (void)string_format(utilname, sizeof(utilname), "%s/../bin/fakens",
95   spool_directory);
96
97 if (stat(CS utilname, &statbuf) >= 0)
98   {
99   pid_t pid;
100   int infd, outfd, rc;
101   uschar *argv[5];
102
103   DEBUG(D_dns) debug_printf("DNS lookup of %s (%s) using fakens\n",
104     name, dns_text_type(type));
105
106   argv[0] = utilname;
107   argv[1] = spool_directory;
108   argv[2] = name;
109   argv[3] = dns_text_type(type);
110   argv[4] = NULL;
111
112   pid = child_open(argv, NULL, 0000, &infd, &outfd, FALSE);
113   if (pid < 0)
114     log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to run fakens: %s",
115       strerror(errno));
116
117   len = 0;
118   rc = -1;
119   while (asize > 0 && (rc = read(outfd, aptr, asize)) > 0)
120     {
121     len += rc;
122     aptr += rc;       /* Don't modify the actual arguments, because they */
123     asize -= rc;      /* may need to be passed on to res_search(). */
124     }
125
126   if (rc < 0)
127     log_write(0, LOG_MAIN|LOG_PANIC_DIE, "read from fakens failed: %s",
128       strerror(errno));
129
130   switch(child_close(pid, 0))
131     {
132     case 0: return len;
133     case 1: h_errno = HOST_NOT_FOUND; return -1;
134     case 2: h_errno = TRY_AGAIN; return -1;
135     default:
136     case 3: h_errno = NO_RECOVERY; return -1;
137     case 4: h_errno = NO_DATA; return -1;
138     case 5: /* Pass on to res_search() */
139     DEBUG(D_dns) debug_printf("fakens returned PASS_ON\n");
140     }
141   }
142
143 /* fakens utility not found, or it returned "pass on" */
144
145 DEBUG(D_dns) debug_printf("passing %s on to res_search()\n", domain);
146
147 return res_search(CS domain, C_IN, type, answerptr, size);
148 }
149
150
151
152 /*************************************************
153 *        Initialize and configure resolver       *
154 *************************************************/
155
156 /* Initialize the resolver and the storage for holding DNS answers if this is
157 the first time we have been here, and set the resolver options.
158
159 Arguments:
160   qualify_single    TRUE to set the RES_DEFNAMES option
161   search_parents    TRUE to set the RES_DNSRCH option
162   use_dnssec        TRUE to set the RES_USE_DNSSEC option
163
164 Returns:            nothing
165 */
166
167 void
168 dns_init(BOOL qualify_single, BOOL search_parents, BOOL use_dnssec)
169 {
170 res_state resp = os_get_dns_resolver_res();
171
172 if ((resp->options & RES_INIT) == 0)
173   {
174   DEBUG(D_resolver) resp->options |= RES_DEBUG;     /* For Cygwin */
175   os_put_dns_resolver_res(resp);
176   res_init();
177   DEBUG(D_resolver) resp->options |= RES_DEBUG;
178   os_put_dns_resolver_res(resp);
179   }
180
181 resp->options &= ~(RES_DNSRCH | RES_DEFNAMES);
182 resp->options |= (qualify_single? RES_DEFNAMES : 0) |
183                 (search_parents? RES_DNSRCH : 0);
184 if (dns_retrans > 0) resp->retrans = dns_retrans;
185 if (dns_retry > 0) resp->retry = dns_retry;
186
187 #ifdef RES_USE_EDNS0
188 if (dns_use_edns0 >= 0)
189   {
190   if (dns_use_edns0)
191     resp->options |= RES_USE_EDNS0;
192   else
193     resp->options &= ~RES_USE_EDNS0;
194   DEBUG(D_resolver)
195     debug_printf("Coerced resolver EDNS0 support %s.\n",
196         dns_use_edns0 ? "on" : "off");
197   }
198 #else
199 if (dns_use_edns0 >= 0)
200   DEBUG(D_resolver)
201     debug_printf("Unable to %sset EDNS0 without resolver support.\n",
202         dns_use_edns0 ? "" : "un");
203 #endif
204
205 #ifndef DISABLE_DNSSEC
206 # ifdef RES_USE_DNSSEC
207 #  ifndef RES_USE_EDNS0
208 #   error Have RES_USE_DNSSEC but not RES_USE_EDNS0?  Something hinky ...
209 #  endif
210 if (use_dnssec)
211   resp->options |= RES_USE_DNSSEC;
212 if (dns_dnssec_ok >= 0)
213   {
214   if (dns_use_edns0 == 0 && dns_dnssec_ok != 0)
215     {
216     DEBUG(D_resolver)
217       debug_printf("CONFLICT: dns_use_edns0 forced false, dns_dnssec_ok forced true, ignoring latter!\n");
218     }
219   else
220     {
221     if (dns_dnssec_ok)
222       resp->options |= RES_USE_DNSSEC;
223     else
224       resp->options &= ~RES_USE_DNSSEC;
225     DEBUG(D_resolver) debug_printf("Coerced resolver DNSSEC support %s.\n",
226         dns_dnssec_ok ? "on" : "off");
227     }
228   }
229 # else
230 if (dns_dnssec_ok >= 0)
231   DEBUG(D_resolver)
232     debug_printf("Unable to %sset DNSSEC without resolver support.\n",
233         dns_dnssec_ok ? "" : "un");
234 if (use_dnssec)
235   DEBUG(D_resolver)
236     debug_printf("Unable to set DNSSEC without resolver support.\n");
237 # endif
238 #endif /* DISABLE_DNSSEC */
239
240 os_put_dns_resolver_res(resp);
241 }
242
243
244
245 /*************************************************
246 *       Build key name for PTR records           *
247 *************************************************/
248
249 /* This function inverts an IP address and adds the relevant domain, to produce
250 a name that can be used to look up PTR records.
251
252 Arguments:
253   string     the IP address as a string
254   buffer     a suitable buffer, long enough to hold the result
255
256 Returns:     nothing
257 */
258
259 void
260 dns_build_reverse(uschar *string, uschar *buffer)
261 {
262 uschar *p = string + Ustrlen(string);
263 uschar *pp = buffer;
264
265 /* Handle IPv4 address */
266
267 #if HAVE_IPV6
268 if (Ustrchr(string, ':') == NULL)
269 #endif
270   {
271   int i;
272   for (i = 0; i < 4; i++)
273     {
274     uschar *ppp = p;
275     while (ppp > string && ppp[-1] != '.') ppp--;
276     Ustrncpy(pp, ppp, p - ppp);
277     pp += p - ppp;
278     *pp++ = '.';
279     p = ppp - 1;
280     }
281   Ustrcpy(pp, "in-addr.arpa");
282   }
283
284 /* Handle IPv6 address; convert to binary so as to fill out any
285 abbreviation in the textual form. */
286
287 #if HAVE_IPV6
288 else
289   {
290   int i;
291   int v6[4];
292   (void)host_aton(string, v6);
293
294   /* The original specification for IPv6 reverse lookup was to invert each
295   nibble, and look in the ip6.int domain. The domain was subsequently
296   changed to ip6.arpa. */
297
298   for (i = 3; i >= 0; i--)
299     {
300     int j;
301     for (j = 0; j < 32; j += 4)
302       {
303       sprintf(CS pp, "%x.", (v6[i] >> j) & 15);
304       pp += 2;
305       }
306     }
307   Ustrcpy(pp, "ip6.arpa.");
308
309   /* Another way of doing IPv6 reverse lookups was proposed in conjunction
310   with A6 records. However, it fell out of favour when they did. The
311   alternative was to construct a binary key, and look in ip6.arpa. I tried
312   to make this code do that, but I could not make it work on Solaris 8. The
313   resolver seems to lose the initial backslash somehow. However, now that
314   this style of reverse lookup has been dropped, it doesn't matter. These
315   lines are left here purely for historical interest. */
316
317   /**************************************************
318   Ustrcpy(pp, "\\[x");
319   pp += 3;
320
321   for (i = 0; i < 4; i++)
322     {
323     sprintf(pp, "%08X", v6[i]);
324     pp += 8;
325     }
326   Ustrcpy(pp, "].ip6.arpa.");
327   **************************************************/
328
329   }
330 #endif
331 }
332
333
334
335
336 /*************************************************
337 *       Get next DNS record from answer block    *
338 *************************************************/
339
340 /* Call this with reset == RESET_ANSWERS to scan the answer block, reset ==
341 RESET_AUTHORITY to scan the authority records, reset == RESET_ADDITIONAL to
342 scan the additional records, and reset == RESET_NEXT to get the next record.
343 The result is in static storage which must be copied if it is to be preserved.
344
345 Arguments:
346   dnsa      pointer to dns answer block
347   dnss      pointer to dns scan block
348   reset     option specifing what portion to scan, as described above
349
350 Returns:    next dns record, or NULL when no more
351 */
352
353 dns_record *
354 dns_next_rr(dns_answer *dnsa, dns_scan *dnss, int reset)
355 {
356 HEADER *h = (HEADER *)dnsa->answer;
357 int namelen;
358
359 /* Reset the saved data when requested to, and skip to the first required RR */
360
361 if (reset != RESET_NEXT)
362   {
363   dnss->rrcount = ntohs(h->qdcount);
364   dnss->aptr = dnsa->answer + sizeof(HEADER);
365
366   /* Skip over questions; failure to expand the name just gives up */
367
368   while (dnss->rrcount-- > 0)
369     {
370     namelen = dn_expand(dnsa->answer, dnsa->answer + dnsa->answerlen,
371       dnss->aptr, (DN_EXPAND_ARG4_TYPE) &(dnss->srr.name), DNS_MAXNAME);
372     if (namelen < 0) { dnss->rrcount = 0; return NULL; }
373     dnss->aptr += namelen + 4;    /* skip name & type & class */
374     }
375
376   /* Get the number of answer records. */
377
378   dnss->rrcount = ntohs(h->ancount);
379
380   /* Skip over answers if we want to look at the authority section. Also skip
381   the NS records (i.e. authority section) if wanting to look at the additional
382   records. */
383
384   if (reset == RESET_ADDITIONAL) dnss->rrcount += ntohs(h->nscount);
385
386   if (reset == RESET_AUTHORITY || reset == RESET_ADDITIONAL)
387     {
388     while (dnss->rrcount-- > 0)
389       {
390       namelen = dn_expand(dnsa->answer, dnsa->answer + dnsa->answerlen,
391         dnss->aptr, (DN_EXPAND_ARG4_TYPE) &(dnss->srr.name), DNS_MAXNAME);
392       if (namelen < 0) { dnss->rrcount = 0; return NULL; }
393       dnss->aptr += namelen + 8;            /* skip name, type, class & TTL */
394       GETSHORT(dnss->srr.size, dnss->aptr); /* size of data portion */
395       dnss->aptr += dnss->srr.size;         /* skip over it */
396       }
397     dnss->rrcount = (reset == RESET_AUTHORITY)
398       ? ntohs(h->nscount) : ntohs(h->arcount);
399     }
400   }
401
402 /* The variable dnss->aptr is now pointing at the next RR, and dnss->rrcount
403 contains the number of RR records left. */
404
405 if (dnss->rrcount-- <= 0) return NULL;
406
407 /* If expanding the RR domain name fails, behave as if no more records
408 (something safe). */
409
410 namelen = dn_expand(dnsa->answer, dnsa->answer + dnsa->answerlen, dnss->aptr,
411   (DN_EXPAND_ARG4_TYPE) &(dnss->srr.name), DNS_MAXNAME);
412 if (namelen < 0) { dnss->rrcount = 0; return NULL; }
413
414 /* Move the pointer past the name and fill in the rest of the data structure
415 from the following bytes. */
416
417 dnss->aptr += namelen;
418 GETSHORT(dnss->srr.type, dnss->aptr); /* Record type */
419 dnss->aptr += 6;                      /* Don't want class or TTL */
420 GETSHORT(dnss->srr.size, dnss->aptr); /* Size of data portion */
421 dnss->srr.data = dnss->aptr;          /* The record's data follows */
422 dnss->aptr += dnss->srr.size;         /* Advance to next RR */
423
424 /* Return a pointer to the dns_record structure within the dns_answer. This is
425 for convenience so that the scans can use nice-looking for loops. */
426
427 return &(dnss->srr);
428 }
429
430
431
432
433 /*************************************************
434 *    Return whether AD bit set in DNS result     *
435 *************************************************/
436
437 /* We do not perform DNSSEC work ourselves; if the administrator has installed
438 a verifying resolver which sets AD as appropriate, though, we'll use that.
439 (AD = Authentic Data)
440
441 Argument:   pointer to dns answer block
442 Returns:    bool indicating presence of AD bit
443 */
444
445 BOOL
446 dns_is_secure(dns_answer *dnsa)
447 {
448 #ifdef DISABLE_DNSSEC
449 DEBUG(D_dns)
450   debug_printf("DNSSEC support disabled at build-time; dns_is_secure() false\n");
451 return FALSE;
452 #else
453 HEADER *h = (HEADER *)dnsa->answer;
454 return h->ad ? TRUE : FALSE;
455 #endif
456 }
457
458
459
460
461 /*************************************************
462 *            Turn DNS type into text             *
463 *************************************************/
464
465 /* Turn the coded record type into a string for printing. All those that Exim
466 uses should be included here.
467
468 Argument:   record type
469 Returns:    pointer to string
470 */
471
472 uschar *
473 dns_text_type(int t)
474 {
475 switch(t)
476   {
477   case T_A:     return US"A";
478   case T_MX:    return US"MX";
479   case T_AAAA:  return US"AAAA";
480   case T_A6:    return US"A6";
481   case T_TXT:   return US"TXT";
482   case T_SPF:   return US"SPF";
483   case T_PTR:   return US"PTR";
484   case T_SOA:   return US"SOA";
485   case T_SRV:   return US"SRV";
486   case T_NS:    return US"NS";
487   case T_CNAME: return US"CNAME";
488   case T_TLSA:  return US"TLSA";
489   default:      return US"?";
490   }
491 }
492
493
494
495 /*************************************************
496 *        Cache a failed DNS lookup result        *
497 *************************************************/
498
499 /* We cache failed lookup results so as not to experience timeouts many
500 times for the same domain. We need to retain the resolver options because they
501 may change. For successful lookups, we rely on resolver and/or name server
502 caching.
503
504 Arguments:
505   name       the domain name
506   type       the lookup type
507   rc         the return code
508
509 Returns:     the return code
510 */
511
512 static int
513 dns_return(uschar *name, int type, int rc)
514 {
515 res_state resp = os_get_dns_resolver_res();
516 tree_node *node = store_get_perm(sizeof(tree_node) + 290);
517 sprintf(CS node->name, "%.255s-%s-%lx", name, dns_text_type(type),
518   resp->options);
519 node->data.val = rc;
520 (void)tree_insertnode(&tree_dns_fails, node);
521 return rc;
522 }
523
524
525
526 /*************************************************
527 *              Do basic DNS lookup               *
528 *************************************************/
529
530 /* Call the resolver to look up the given domain name, using the given type,
531 and check the result. The error code TRY_AGAIN is documented as meaning "non-
532 Authoritive Host not found, or SERVERFAIL". Sometimes there are badly set
533 up nameservers that produce this error continually, so there is the option of
534 providing a list of domains for which this is treated as a non-existent
535 host.
536
537 Arguments:
538   dnsa      pointer to dns_answer structure
539   name      name to look up
540   type      type of DNS record required (T_A, T_MX, etc)
541
542 Returns:    DNS_SUCCEED   successful lookup
543             DNS_NOMATCH   name not found (NXDOMAIN)
544                           or name contains illegal characters (if checking)
545                           or name is an IP address (for IP address lookup)
546             DNS_NODATA    domain exists, but no data for this type (NODATA)
547             DNS_AGAIN     soft failure, try again later
548             DNS_FAIL      DNS failure
549 */
550
551 int
552 dns_basic_lookup(dns_answer *dnsa, uschar *name, int type)
553 {
554 #ifndef STAND_ALONE
555 int rc = -1;
556 uschar *save;
557 #endif
558 res_state resp = os_get_dns_resolver_res();
559
560 tree_node *previous;
561 uschar node_name[290];
562
563 /* DNS lookup failures of any kind are cached in a tree. This is mainly so that
564 a timeout on one domain doesn't happen time and time again for messages that
565 have many addresses in the same domain. We rely on the resolver and name server
566 caching for successful lookups. */
567
568 sprintf(CS node_name, "%.255s-%s-%lx", name, dns_text_type(type),
569   resp->options);
570 previous = tree_search(tree_dns_fails, node_name);
571 if (previous != NULL)
572   {
573   DEBUG(D_dns) debug_printf("DNS lookup of %.255s-%s: using cached value %s\n",
574     name, dns_text_type(type),
575       (previous->data.val == DNS_NOMATCH)? "DNS_NOMATCH" :
576       (previous->data.val == DNS_NODATA)? "DNS_NODATA" :
577       (previous->data.val == DNS_AGAIN)? "DNS_AGAIN" :
578       (previous->data.val == DNS_FAIL)? "DNS_FAIL" : "??");
579   return previous->data.val;
580   }
581
582 /* If configured, check the hygene of the name passed to lookup. Otherwise,
583 although DNS lookups may give REFUSED at the lower level, some resolvers
584 turn this into TRY_AGAIN, which is silly. Give a NOMATCH return, since such
585 domains cannot be in the DNS. The check is now done by a regular expression;
586 give it space for substring storage to save it having to get its own if the
587 regex has substrings that are used - the default uses a conditional.
588
589 This test is omitted for PTR records. These occur only in calls from the dnsdb
590 lookup, which constructs the names itself, so they should be OK. Besides,
591 bitstring labels don't conform to normal name syntax. (But the aren't used any
592 more.)
593
594 For SRV records, we omit the initial _smtp._tcp. components at the start. */
595
596 #ifndef STAND_ALONE   /* Omit this for stand-alone tests */
597
598 if (check_dns_names_pattern[0] != 0 && type != T_PTR && type != T_TXT)
599   {
600   uschar *checkname = name;
601   int ovector[3*(EXPAND_MAXN+1)];
602
603   if (regex_check_dns_names == NULL)
604     regex_check_dns_names =
605       regex_must_compile(check_dns_names_pattern, FALSE, TRUE);
606
607   /* For an SRV lookup, skip over the first two components (the service and
608   protocol names, which both start with an underscore). */
609
610   if (type == T_SRV || type == T_TLSA)
611     {
612     while (*checkname++ != '.');
613     while (*checkname++ != '.');
614     }
615
616   if (pcre_exec(regex_check_dns_names, NULL, CS checkname, Ustrlen(checkname),
617       0, PCRE_EOPT, ovector, sizeof(ovector)/sizeof(int)) < 0)
618     {
619     DEBUG(D_dns)
620       debug_printf("DNS name syntax check failed: %s (%s)\n", name,
621         dns_text_type(type));
622     host_find_failed_syntax = TRUE;
623     return DNS_NOMATCH;
624     }
625   }
626
627 #endif /* STAND_ALONE */
628
629 /* Call the resolver; for an overlong response, res_search() will return the
630 number of bytes the message would need, so we need to check for this case. The
631 effect is to truncate overlong data.
632
633 On some systems, res_search() will recognize "A-for-A" queries and return
634 the IP address instead of returning -1 with h_error=HOST_NOT_FOUND. Some
635 nameservers are also believed to do this. It is, of course, contrary to the
636 specification of the DNS, so we lock it out. */
637
638 if ((
639     #ifdef SUPPORT_A6
640     type == T_A6 ||
641     #endif
642     type == T_A || type == T_AAAA) &&
643     string_is_ip_address(name, NULL) != 0)
644   return DNS_NOMATCH;
645
646 /* If we are running in the test harness, instead of calling the normal resolver
647 (res_search), we call fakens_search(), which recognizes certain special
648 domains, and interfaces to a fake nameserver for certain special zones. */
649
650 if (running_in_test_harness)
651   dnsa->answerlen = fakens_search(name, type, dnsa->answer, MAXPACKET);
652 else
653   dnsa->answerlen = res_search(CS name, C_IN, type, dnsa->answer, MAXPACKET);
654
655 if (dnsa->answerlen > MAXPACKET)
656   {
657   DEBUG(D_dns) debug_printf("DNS lookup of %s (%s) resulted in overlong packet (size %d), truncating to %d.\n",
658     name, dns_text_type(type), dnsa->answerlen, MAXPACKET);
659   dnsa->answerlen = MAXPACKET;
660   }
661
662 if (dnsa->answerlen < 0) switch (h_errno)
663   {
664   case HOST_NOT_FOUND:
665   DEBUG(D_dns) debug_printf("DNS lookup of %s (%s) gave HOST_NOT_FOUND\n"
666     "returning DNS_NOMATCH\n", name, dns_text_type(type));
667   return dns_return(name, type, DNS_NOMATCH);
668
669   case TRY_AGAIN:
670   DEBUG(D_dns) debug_printf("DNS lookup of %s (%s) gave TRY_AGAIN\n",
671     name, dns_text_type(type));
672
673   /* Cut this out for various test programs */
674   #ifndef STAND_ALONE
675   save = deliver_domain;
676   deliver_domain = name;  /* set $domain */
677   rc = match_isinlist(name, &dns_again_means_nonexist, 0, NULL, NULL,
678     MCL_DOMAIN, TRUE, NULL);
679   deliver_domain = save;
680   if (rc != OK)
681     {
682     DEBUG(D_dns) debug_printf("returning DNS_AGAIN\n");
683     return dns_return(name, type, DNS_AGAIN);
684     }
685   DEBUG(D_dns) debug_printf("%s is in dns_again_means_nonexist: returning "
686     "DNS_NOMATCH\n", name);
687   return dns_return(name, type, DNS_NOMATCH);
688
689   #else   /* For stand-alone tests */
690   return dns_return(name, type, DNS_AGAIN);
691   #endif
692
693   case NO_RECOVERY:
694   DEBUG(D_dns) debug_printf("DNS lookup of %s (%s) gave NO_RECOVERY\n"
695     "returning DNS_FAIL\n", name, dns_text_type(type));
696   return dns_return(name, type, DNS_FAIL);
697
698   case NO_DATA:
699   DEBUG(D_dns) debug_printf("DNS lookup of %s (%s) gave NO_DATA\n"
700     "returning DNS_NODATA\n", name, dns_text_type(type));
701   return dns_return(name, type, DNS_NODATA);
702
703   default:
704   DEBUG(D_dns) debug_printf("DNS lookup of %s (%s) gave unknown DNS error %d\n"
705     "returning DNS_FAIL\n", name, dns_text_type(type), h_errno);
706   return dns_return(name, type, DNS_FAIL);
707   }
708
709 DEBUG(D_dns) debug_printf("DNS lookup of %s (%s) succeeded\n",
710   name, dns_text_type(type));
711
712 return DNS_SUCCEED;
713 }
714
715
716
717
718 /************************************************
719 *        Do a DNS lookup and handle CNAMES      *
720 ************************************************/
721
722 /* Look up the given domain name, using the given type. Follow CNAMEs if
723 necessary, but only so many times. There aren't supposed to be CNAME chains in
724 the DNS, but you are supposed to cope with them if you find them.
725
726 The assumption is made that if the resolver gives back records of the
727 requested type *and* a CNAME, we don't need to make another call to look up
728 the CNAME. I can't see how it could return only some of the right records. If
729 it's done a CNAME lookup in the past, it will have all of them; if not, it
730 won't return any.
731
732 If fully_qualified_name is not NULL, set it to point to the full name
733 returned by the resolver, if this is different to what it is given, unless
734 the returned name starts with "*" as some nameservers seem to be returning
735 wildcards in this form.
736
737 Arguments:
738   dnsa                  pointer to dns_answer structure
739   name                  domain name to look up
740   type                  DNS record type (T_A, T_MX, etc)
741   fully_qualified_name  if not NULL, return the returned name here if its
742                           contents are different (i.e. it must be preset)
743
744 Returns:                DNS_SUCCEED   successful lookup
745                         DNS_NOMATCH   name not found
746                         DNS_NODATA    no data found
747                         DNS_AGAIN     soft failure, try again later
748                         DNS_FAIL      DNS failure
749 */
750
751 int
752 dns_lookup(dns_answer *dnsa, uschar *name, int type, uschar **fully_qualified_name)
753 {
754 int i;
755 uschar *orig_name = name;
756
757 /* Loop to follow CNAME chains so far, but no further... */
758
759 for (i = 0; i < 10; i++)
760   {
761   uschar data[256];
762   dns_record *rr, cname_rr, type_rr;
763   dns_scan dnss;
764   int datalen, rc;
765
766   /* DNS lookup failures get passed straight back. */
767
768   if ((rc = dns_basic_lookup(dnsa, name, type)) != DNS_SUCCEED) return rc;
769
770   /* We should have either records of the required type, or a CNAME record,
771   or both. We need to know whether both exist for getting the fully qualified
772   name, but avoid scanning more than necessary. Note that we must copy the
773   contents of any rr blocks returned by dns_next_rr() as they use the same
774   area in the dnsa block. */
775
776   cname_rr.data = type_rr.data = NULL;
777   for (rr = dns_next_rr(dnsa, &dnss, RESET_ANSWERS);
778        rr != NULL;
779        rr = dns_next_rr(dnsa, &dnss, RESET_NEXT))
780     {
781     if (rr->type == type)
782       {
783       if (type_rr.data == NULL) type_rr = *rr;
784       if (cname_rr.data != NULL) break;
785       }
786     else if (rr->type == T_CNAME) cname_rr = *rr;
787     }
788
789   /* For the first time round this loop, if a CNAME was found, take the fully
790   qualified name from it; otherwise from the first data record, if present. */
791
792   if (i == 0 && fully_qualified_name != NULL)
793     {
794     if (cname_rr.data != NULL)
795       {
796       if (Ustrcmp(cname_rr.name, *fully_qualified_name) != 0 &&
797           cname_rr.name[0] != '*')
798         *fully_qualified_name = string_copy_dnsdomain(cname_rr.name);
799       }
800     else if (type_rr.data != NULL)
801       {
802       if (Ustrcmp(type_rr.name, *fully_qualified_name) != 0 &&
803           type_rr.name[0] != '*')
804         *fully_qualified_name = string_copy_dnsdomain(type_rr.name);
805       }
806     }
807
808   /* If any data records of the correct type were found, we are done. */
809
810   if (type_rr.data != NULL)
811     {
812     if (!secure_so_far) /* mark insecure if any element of CNAME chain was */
813       dns_set_insecure(dnsa);
814     return DNS_SUCCEED;
815     }
816
817   /* If there are no data records, we need to re-scan the DNS using the
818   domain given in the CNAME record, which should exist (otherwise we should
819   have had a failure from dns_lookup). However code against the possibility of
820   its not existing. */
821
822   if (cname_rr.data == NULL) return DNS_FAIL;
823   datalen = dn_expand(dnsa->answer, dnsa->answer + dnsa->answerlen,
824     cname_rr.data, (DN_EXPAND_ARG4_TYPE)data, 256);
825   if (datalen < 0) return DNS_FAIL;
826   name = data;
827
828   DEBUG(D_dns) debug_printf("CNAME found: change to %s\n", name);
829   }       /* Loop back to do another lookup */
830
831 /*Control reaches here after 10 times round the CNAME loop. Something isn't
832 right... */
833
834 log_write(0, LOG_MAIN, "CNAME loop for %s encountered", orig_name);
835 return DNS_FAIL;
836 }
837
838
839
840
841
842
843 /************************************************
844 *    Do a DNS lookup and handle virtual types   *
845 ************************************************/
846
847 /* This function handles some invented "lookup types" that synthesize feature
848 not available in the basic types. The special types all have negative values.
849 Positive type values are passed straight on to dns_lookup().
850
851 Arguments:
852   dnsa                  pointer to dns_answer structure
853   name                  domain name to look up
854   type                  DNS record type (T_A, T_MX, etc or a "special")
855   fully_qualified_name  if not NULL, return the returned name here if its
856                           contents are different (i.e. it must be preset)
857
858 Returns:                DNS_SUCCEED   successful lookup
859                         DNS_NOMATCH   name not found
860                         DNS_NODATA    no data found
861                         DNS_AGAIN     soft failure, try again later
862                         DNS_FAIL      DNS failure
863 */
864
865 int
866 dns_special_lookup(dns_answer *dnsa, uschar *name, int type,
867   uschar **fully_qualified_name)
868 {
869 if (type >= 0) return dns_lookup(dnsa, name, type, fully_qualified_name);
870
871 /* The "mx hosts only" type doesn't require any special action here */
872
873 if (type == T_MXH) return dns_lookup(dnsa, name, T_MX, fully_qualified_name);
874
875 /* Find nameservers for the domain or the nearest enclosing zone, excluding the
876 root servers. */
877
878 if (type == T_ZNS)
879   {
880   uschar *d = name;
881   while (d != 0)
882     {
883     int rc = dns_lookup(dnsa, d, T_NS, fully_qualified_name);
884     if (rc != DNS_NOMATCH && rc != DNS_NODATA) return rc;
885     while (*d != 0 && *d != '.') d++;
886     if (*d++ == 0) break;
887     }
888   return DNS_NOMATCH;
889   }
890
891 /* Try to look up the Client SMTP Authorization SRV record for the name. If
892 there isn't one, search from the top downwards for a CSA record in a parent
893 domain, which might be making assertions about subdomains. If we find a record
894 we set fully_qualified_name to whichever lookup succeeded, so that the caller
895 can tell whether to look at the explicit authorization field or the subdomain
896 assertion field. */
897
898 if (type == T_CSA)
899   {
900   uschar *srvname, *namesuff, *tld, *p;
901   int priority, weight, port;
902   int limit, rc, i;
903   BOOL ipv6;
904   dns_record *rr;
905   dns_scan dnss;
906
907   DEBUG(D_dns) debug_printf("CSA lookup of %s\n", name);
908
909   srvname = string_sprintf("_client._smtp.%s", name);
910   rc = dns_lookup(dnsa, srvname, T_SRV, NULL);
911   if (rc == DNS_SUCCEED || rc == DNS_AGAIN)
912     {
913     if (rc == DNS_SUCCEED) *fully_qualified_name = name;
914     return rc;
915     }
916
917   /* Search for CSA subdomain assertion SRV records from the top downwards,
918   starting with the 2nd level domain. This order maximizes cache-friendliness.
919   We skip the top level domains to avoid loading their nameservers and because
920   we know they'll never have CSA SRV records. */
921
922   namesuff = Ustrrchr(name, '.');
923   if (namesuff == NULL) return DNS_NOMATCH;
924   tld = namesuff + 1;
925   ipv6 = FALSE;
926   limit = dns_csa_search_limit;
927
928   /* Use more appropriate search parameters if we are in the reverse DNS. */
929
930   if (strcmpic(namesuff, US".arpa") == 0)
931     {
932     if (namesuff - 8 > name && strcmpic(namesuff - 8, US".in-addr.arpa") == 0)
933       {
934       namesuff -= 8;
935       tld = namesuff + 1;
936       limit = 3;
937       }
938     else if (namesuff - 4 > name && strcmpic(namesuff - 4, US".ip6.arpa") == 0)
939       {
940       namesuff -= 4;
941       tld = namesuff + 1;
942       ipv6 = TRUE;
943       limit = 3;
944       }
945     }
946
947   DEBUG(D_dns) debug_printf("CSA TLD %s\n", tld);
948
949   /* Do not perform the search if the top level or 2nd level domains do not
950   exist. This is quite common, and when it occurs all the search queries would
951   go to the root or TLD name servers, which is not friendly. So we check the
952   AUTHORITY section; if it contains the root's SOA record or the TLD's SOA then
953   the TLD or the 2LD (respectively) doesn't exist and we can skip the search.
954   If the TLD and the 2LD exist but the explicit CSA record lookup failed, then
955   the AUTHORITY SOA will be the 2LD's or a subdomain thereof. */
956
957   if (rc == DNS_NOMATCH)
958     {
959     /* This is really gross. The successful return value from res_search() is
960     the packet length, which is stored in dnsa->answerlen. If we get a
961     negative DNS reply then res_search() returns -1, which causes the bounds
962     checks for name decompression to fail when it is treated as a packet
963     length, which in turn causes the authority search to fail. The correct
964     packet length has been lost inside libresolv, so we have to guess a
965     replacement value. (The only way to fix this properly would be to
966     re-implement res_search() and res_query() so that they don't muddle their
967     success and packet length return values.) For added safety we only reset
968     the packet length if the packet header looks plausible. */
969
970     HEADER *h = (HEADER *)dnsa->answer;
971     if (h->qr == 1 && h->opcode == QUERY && h->tc == 0
972         && (h->rcode == NOERROR || h->rcode == NXDOMAIN)
973         && ntohs(h->qdcount) == 1 && ntohs(h->ancount) == 0
974         && ntohs(h->nscount) >= 1)
975       dnsa->answerlen = MAXPACKET;
976
977     for (rr = dns_next_rr(dnsa, &dnss, RESET_AUTHORITY);
978          rr != NULL;
979          rr = dns_next_rr(dnsa, &dnss, RESET_NEXT))
980       if (rr->type != T_SOA) continue;
981       else if (strcmpic(rr->name, US"") == 0 ||
982                strcmpic(rr->name, tld) == 0) return DNS_NOMATCH;
983       else break;
984     }
985
986   for (i = 0; i < limit; i++)
987     {
988     if (ipv6)
989       {
990       /* Scan through the IPv6 reverse DNS in chunks of 16 bits worth of IP
991       address, i.e. 4 hex chars and 4 dots, i.e. 8 chars. */
992       namesuff -= 8;
993       if (namesuff <= name) return DNS_NOMATCH;
994       }
995     else
996       /* Find the start of the preceding domain name label. */
997       do
998         if (--namesuff <= name) return DNS_NOMATCH;
999       while (*namesuff != '.');
1000
1001     DEBUG(D_dns) debug_printf("CSA parent search at %s\n", namesuff + 1);
1002
1003     srvname = string_sprintf("_client._smtp.%s", namesuff + 1);
1004     rc = dns_lookup(dnsa, srvname, T_SRV, NULL);
1005     if (rc == DNS_AGAIN) return rc;
1006     if (rc != DNS_SUCCEED) continue;
1007
1008     /* Check that the SRV record we have found is worth returning. We don't
1009     just return the first one we find, because some lower level SRV record
1010     might make stricter assertions than its parent domain. */
1011
1012     for (rr = dns_next_rr(dnsa, &dnss, RESET_ANSWERS);
1013          rr != NULL;
1014          rr = dns_next_rr(dnsa, &dnss, RESET_NEXT))
1015       {
1016       if (rr->type != T_SRV) continue;
1017
1018       /* Extract the numerical SRV fields (p is incremented) */
1019       p = rr->data;
1020       GETSHORT(priority, p);
1021       GETSHORT(weight, p);
1022       GETSHORT(port, p);
1023
1024       /* Check the CSA version number */
1025       if (priority != 1) continue;
1026
1027       /* If it's making an interesting assertion, return this response. */
1028       if (port & 1)
1029         {
1030         *fully_qualified_name = namesuff + 1;
1031         return DNS_SUCCEED;
1032         }
1033       }
1034     }
1035   return DNS_NOMATCH;
1036   }
1037
1038 /* Control should never reach here */
1039
1040 return DNS_FAIL;
1041 }
1042
1043
1044
1045 /* Support for A6 records has been commented out since they were demoted to
1046 experimental status at IETF 51. */
1047
1048 #if HAVE_IPV6 && defined(SUPPORT_A6)
1049
1050 /*************************************************
1051 *        Search DNS block for prefix RRs         *
1052 *************************************************/
1053
1054 /* Called from dns_complete_a6() to search an additional section or a main
1055 answer section for required prefix records to complete an IPv6 address obtained
1056 from an A6 record. For each prefix record, a recursive call to dns_complete_a6
1057 is made, with a new copy of the address so far.
1058
1059 Arguments:
1060   dnsa       the DNS answer block
1061   which      RESET_ADDITIONAL or RESET_ANSWERS
1062   name       name of prefix record
1063   yptrptr    pointer to the pointer that points to where to hang the next
1064                dns_address structure
1065   bits       number of bits we have already got
1066   bitvec     the bits we have already got
1067
1068 Returns:     TRUE if any records were found
1069 */
1070
1071 static BOOL
1072 dns_find_prefix(dns_answer *dnsa, int which, uschar *name, dns_address
1073   ***yptrptr, int bits, uschar *bitvec)
1074 {
1075 BOOL yield = FALSE;
1076 dns_record *rr;
1077 dns_scan dnss;
1078
1079 for (rr = dns_next_rr(dnsa, &dnss, which);
1080      rr != NULL;
1081      rr = dns_next_rr(dnsa, &dnss, RESET_NEXT))
1082   {
1083   uschar cbitvec[16];
1084   if (rr->type != T_A6 || strcmpic(rr->name, name) != 0) continue;
1085   yield = TRUE;
1086   memcpy(cbitvec, bitvec, sizeof(cbitvec));
1087   dns_complete_a6(yptrptr, dnsa, rr, bits, cbitvec);
1088   }
1089
1090 return yield;
1091 }
1092
1093
1094
1095 /*************************************************
1096 *            Follow chains of A6 records         *
1097 *************************************************/
1098
1099 /* A6 records may be incomplete, with pointers to other records containing more
1100 bits of the address. There can be a tree structure, leading to a number of
1101 addresses originating from a single initial A6 record.
1102
1103 Arguments:
1104   yptrptr    pointer to the pointer that points to where to hang the next
1105                dns_address structure
1106   dnsa       the current DNS answer block
1107   rr         the RR we have at present
1108   bits       number of bits we have already got
1109   bitvec     the bits we have already got
1110
1111 Returns:     nothing
1112 */
1113
1114 static void
1115 dns_complete_a6(dns_address ***yptrptr, dns_answer *dnsa, dns_record *rr,
1116   int bits, uschar *bitvec)
1117 {
1118 static uschar bitmask[] = { 0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80 };
1119 uschar *p = (uschar *)(rr->data);
1120 int prefix_len, suffix_len;
1121 int i, j, k;
1122 uschar *chainptr;
1123 uschar chain[264];
1124 dns_answer cdnsa;
1125
1126 /* The prefix length is the first byte. It defines the prefix which is missing
1127 from the data in this record as a number of bits. Zero means this is the end of
1128 a chain. The suffix is the data in this record; only sufficient bytes to hold
1129 it are supplied. There may be zero bytes. We have to ignore trailing bits that
1130 we have already obtained from earlier RRs in the chain. */
1131
1132 prefix_len = *p++;                      /* bits */
1133 suffix_len = (128 - prefix_len + 7)/8;  /* bytes */
1134
1135 /* If the prefix in this record is greater than the prefix in the previous
1136 record in the chain, we have to ignore the record (RFC 2874). */
1137
1138 if (prefix_len > 128 - bits) return;
1139
1140 /* In this little loop, the number of bits up to and including the current byte
1141 is held in k. If we have none of the bits in this byte, we can just or it into
1142 the current data. If we have all of the bits in this byte, we skip it.
1143 Otherwise, some masking has to be done. */
1144
1145 for (i = suffix_len - 1, j = 15, k = 8; i >= 0; i--)
1146   {
1147   int required = k - bits;
1148   if (required >= 8) bitvec[j] |= p[i];
1149     else if (required > 0) bitvec[j] |= p[i] & bitmask[required];
1150   j--;     /* I tried putting these in the "for" statement, but gcc muttered */
1151   k += 8;  /* about computed values not being used. */
1152   }
1153
1154 /* If the prefix_length is zero, we are at the end of a chain. Build a
1155 dns_address item with the current data, hang it onto the end of the chain,
1156 adjust the hanging pointer, and we are done. */
1157
1158 if (prefix_len == 0)
1159   {
1160   dns_address *new = store_get(sizeof(dns_address) + 50);
1161   inet_ntop(AF_INET6, bitvec, CS new->address, 50);
1162   new->next = NULL;
1163   **yptrptr = new;
1164   *yptrptr = &(new->next);
1165   return;
1166   }
1167
1168 /* Prefix length is not zero. Reset the number of bits that we have collected
1169 so far, and extract the chain name. */
1170
1171 bits = 128 - prefix_len;
1172 p += suffix_len;
1173
1174 chainptr = chain;
1175 while ((i = *p++) != 0)
1176   {
1177   if (chainptr != chain) *chainptr++ = '.';
1178   memcpy(chainptr, p, i);
1179   chainptr += i;
1180   p += i;
1181   }
1182 *chainptr = 0;
1183 chainptr = chain;
1184
1185 /* Now scan the current DNS response record to see if the additional section
1186 contains the records we want. This processing can be cut out for testing
1187 purposes. */
1188
1189 if (dns_find_prefix(dnsa, RESET_ADDITIONAL, chainptr, yptrptr, bits, bitvec))
1190   return;
1191
1192 /* No chain records were found in the current DNS response block. Do a new DNS
1193 lookup to try to find these records. This opens up the possibility of DNS
1194 failures. We ignore them at this point; if all branches of the tree fail, there
1195 will be no addresses at the end. */
1196
1197 if (dns_lookup(&cdnsa, chainptr, T_A6, NULL) == DNS_SUCCEED)
1198   (void)dns_find_prefix(&cdnsa, RESET_ANSWERS, chainptr, yptrptr, bits, bitvec);
1199 }
1200 #endif  /* HAVE_IPV6 && defined(SUPPORT_A6) */
1201
1202
1203
1204
1205 /*************************************************
1206 *          Get address(es) from DNS record       *
1207 *************************************************/
1208
1209 /* The record type is either T_A for an IPv4 address or T_AAAA (or T_A6 when
1210 supported) for an IPv6 address. In the A6 case, there may be several addresses,
1211 generated by following chains. A recursive function does all the hard work. A6
1212 records now look like passing into history, so the code is only included when
1213 explicitly asked for.
1214
1215 Argument:
1216   dnsa       the DNS answer block
1217   rr         the RR
1218
1219 Returns:     pointer a chain of dns_address items
1220 */
1221
1222 dns_address *
1223 dns_address_from_rr(dns_answer *dnsa, dns_record *rr)
1224 {
1225 dns_address *yield = NULL;
1226
1227 #if HAVE_IPV6 && defined(SUPPORT_A6)
1228 dns_address **yieldptr = &yield;
1229 uschar bitvec[16];
1230 #else
1231 dnsa = dnsa;    /* Stop picky compilers warning */
1232 #endif
1233
1234 if (rr->type == T_A)
1235   {
1236   uschar *p = (uschar *)(rr->data);
1237   yield = store_get(sizeof(dns_address) + 20);
1238   (void)sprintf(CS yield->address, "%d.%d.%d.%d", p[0], p[1], p[2], p[3]);
1239   yield->next = NULL;
1240   }
1241
1242 #if HAVE_IPV6
1243
1244 #ifdef SUPPORT_A6
1245 else if (rr->type == T_A6)
1246   {
1247   memset(bitvec, 0, sizeof(bitvec));
1248   dns_complete_a6(&yieldptr, dnsa, rr, 0, bitvec);
1249   }
1250 #endif  /* SUPPORT_A6 */
1251
1252 else
1253   {
1254   yield = store_get(sizeof(dns_address) + 50);
1255   inet_ntop(AF_INET6, (uschar *)(rr->data), CS yield->address, 50);
1256   yield->next = NULL;
1257   }
1258 #endif  /* HAVE_IPV6 */
1259
1260 return yield;
1261 }
1262
1263 /* vi: aw ai sw=2
1264 */
1265 /* End of dns.c */