1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2016 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* Functions for finding hosts, either by gethostbyname(), gethostbyaddr(), or
9 directly via the DNS. When IPv6 is supported, getipnodebyname() and
10 getipnodebyaddr() may be used instead of gethostbyname() and gethostbyaddr(),
11 if the newer functions are available. This module also contains various other
12 functions concerned with hosts and addresses, and a random number function,
13 used for randomizing hosts with equal MXs but available for use in other parts
20 /* Static variable for preserving the list of interface addresses in case it is
21 used more than once. */
23 static ip_address_item *local_interface_data = NULL;
26 #ifdef USE_INET_NTOA_FIX
27 /*************************************************
28 * Replacement for broken inet_ntoa() *
29 *************************************************/
31 /* On IRIX systems, gcc uses a different structure passing convention to the
32 native libraries. This causes inet_ntoa() to always yield 0.0.0.0 or
33 255.255.255.255. To get round this, we provide a private version of the
34 function here. It is used only if USE_INET_NTOA_FIX is set, which should happen
35 only when gcc is in use on an IRIX system. Code send to me by J.T. Breitner,
39 as seen in comp.sys.sgi.admin
41 August 2005: Apparently this is also needed for AIX systems; USE_INET_NTOA_FIX
42 should now be set for them as well.
44 Arguments: sa an in_addr structure
45 Returns: pointer to static text string
49 inet_ntoa(struct in_addr sa)
51 static uschar addr[20];
52 sprintf(addr, "%d.%d.%d.%d",
63 /*************************************************
64 * Random number generator *
65 *************************************************/
67 /* This is a simple pseudo-random number generator. It does not have to be
68 very good for the uses to which it is put. When running the regression tests,
69 start with a fixed seed.
71 If you need better, see vaguely_random_number() which is potentially stronger,
72 if a crypto library is available, but might end up just calling this instead.
75 limit: one more than the largest number required
77 Returns: a pseudo-random number in the range 0 to limit-1
81 random_number(int limit)
87 if (running_in_test_harness) random_seed = 42; else
89 int p = (int)getpid();
90 random_seed = (int)time(NULL) ^ ((p << 16) | p);
93 random_seed = 1103515245 * random_seed + 12345;
94 return (unsigned int)(random_seed >> 16) % limit;
97 /*************************************************
98 * Wrappers for logging lookup times *
99 *************************************************/
101 /* When the 'slow_lookup_log' variable is enabled, these wrappers will
102 write to the log file all (potential) dns lookups that take more than
103 slow_lookup_log milliseconds
107 log_long_lookup(const uschar * type, const uschar * data, unsigned long msec)
109 log_write(0, LOG_MAIN, "Long %s lookup for '%s': %lu msec",
114 /* returns the current system epoch time in milliseconds. */
118 struct timeval tmp_time;
119 unsigned long seconds, microseconds;
121 gettimeofday(&tmp_time, NULL);
122 seconds = (unsigned long) tmp_time.tv_sec;
123 microseconds = (unsigned long) tmp_time.tv_usec;
124 return seconds*1000 + microseconds/1000;
129 dns_lookup_timerwrap(dns_answer *dnsa, const uschar *name, int type,
130 const uschar **fully_qualified_name)
133 unsigned long time_msec;
135 if (!slow_lookup_log)
136 return dns_lookup(dnsa, name, type, fully_qualified_name);
138 time_msec = get_time_in_ms();
139 retval = dns_lookup(dnsa, name, type, fully_qualified_name);
140 if ((time_msec = get_time_in_ms() - time_msec) > slow_lookup_log)
141 log_long_lookup(US"name", name, time_msec);
146 /*************************************************
147 * Replace gethostbyname() when testing *
148 *************************************************/
150 /* This function is called instead of gethostbyname(), gethostbyname2(), or
151 getipnodebyname() when running in the test harness. . It also
152 recognizes an unqualified "localhost" and forces it to the appropriate loopback
153 address. IP addresses are treated as literals. For other names, it uses the DNS
154 to find the host name. In the test harness, this means it will access only the
158 name the host name or a textual IP address
159 af AF_INET or AF_INET6
160 error_num where to put an error code:
161 HOST_NOT_FOUND/TRY_AGAIN/NO_RECOVERY/NO_DATA
163 Returns: a hostent structure or NULL for an error
166 static struct hostent *
167 host_fake_gethostbyname(const uschar *name, int af, int *error_num)
170 int alen = (af == AF_INET)? sizeof(struct in_addr):sizeof(struct in6_addr);
172 int alen = sizeof(struct in_addr);
176 const uschar *lname = name;
179 struct hostent *yield;
185 debug_printf("using host_fake_gethostbyname for %s (%s)\n", name,
186 (af == AF_INET)? "IPv4" : "IPv6");
188 /* Handle unqualified "localhost" */
190 if (Ustrcmp(name, "localhost") == 0)
191 lname = (af == AF_INET)? US"127.0.0.1" : US"::1";
193 /* Handle a literal IP address */
195 ipa = string_is_ip_address(lname, NULL);
198 if ((ipa == 4 && af == AF_INET) ||
199 (ipa == 6 && af == AF_INET6))
203 yield = store_get(sizeof(struct hostent));
204 alist = store_get(2 * sizeof(char *));
205 adds = store_get(alen);
206 yield->h_name = CS name;
207 yield->h_aliases = NULL;
208 yield->h_addrtype = af;
209 yield->h_length = alen;
210 yield->h_addr_list = CSS alist;
212 n = host_aton(lname, x);
213 for (i = 0; i < n; i++)
216 *adds++ = (y >> 24) & 255;
217 *adds++ = (y >> 16) & 255;
218 *adds++ = (y >> 8) & 255;
224 /* Wrong kind of literal address */
228 *error_num = HOST_NOT_FOUND;
233 /* Handle a host name */
237 int type = (af == AF_INET)? T_A:T_AAAA;
238 int rc = dns_lookup_timerwrap(&dnsa, lname, type, NULL);
241 lookup_dnssec_authenticated = NULL;
245 case DNS_SUCCEED: break;
246 case DNS_NOMATCH: *error_num = HOST_NOT_FOUND; return NULL;
247 case DNS_NODATA: *error_num = NO_DATA; return NULL;
248 case DNS_AGAIN: *error_num = TRY_AGAIN; return NULL;
250 case DNS_FAIL: *error_num = NO_RECOVERY; return NULL;
253 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
255 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
256 if (rr->type == type)
259 yield = store_get(sizeof(struct hostent));
260 alist = store_get((count + 1) * sizeof(char *));
261 adds = store_get(count *alen);
263 yield->h_name = CS name;
264 yield->h_aliases = NULL;
265 yield->h_addrtype = af;
266 yield->h_length = alen;
267 yield->h_addr_list = CSS alist;
269 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
271 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
276 if (rr->type != type) continue;
277 if (!(da = dns_address_from_rr(&dnsa, rr))) break;
279 n = host_aton(da->address, x);
280 for (i = 0; i < n; i++)
283 *adds++ = (y >> 24) & 255;
284 *adds++ = (y >> 16) & 255;
285 *adds++ = (y >> 8) & 255;
297 /*************************************************
298 * Build chain of host items from list *
299 *************************************************/
301 /* This function builds a chain of host items from a textual list of host
302 names. It does not do any lookups. If randomize is true, the chain is build in
303 a randomized order. There may be multiple groups of independently randomized
304 hosts; they are delimited by a host name consisting of just "+".
307 anchor anchor for the chain
309 randomize TRUE for randomizing
315 host_build_hostlist(host_item **anchor, const uschar *list, BOOL randomize)
318 int fake_mx = MX_NONE; /* This value is actually -1 */
321 if (list == NULL) return;
322 if (randomize) fake_mx--; /* Start at -2 for randomizing */
326 while ((name = string_nextinlist(&list, &sep, NULL, 0)) != NULL)
330 if (name[0] == '+' && name[1] == 0) /* "+" delimits a randomized group */
331 { /* ignore if not randomizing */
332 if (randomize) fake_mx--;
336 h = store_get(sizeof(host_item));
341 h->sort_key = randomize? (-fake_mx)*1000 + random_number(1000) : 0;
342 h->status = hstatus_unknown;
343 h->why = hwhy_unknown;
353 host_item *hh = *anchor;
354 if (h->sort_key < hh->sort_key)
361 while (hh->next != NULL && h->sort_key >= (hh->next)->sort_key)
374 /*************************************************
375 * Extract port from address string *
376 *************************************************/
378 /* In the spool file, and in the -oMa and -oMi options, a host plus port is
379 given as an IP address followed by a dot and a port number. This function
382 An alternative format for the -oMa and -oMi options is [ip address]:port which
383 is what Exim 4 uses for output, because it seems to becoming commonly used,
384 whereas the dot form confuses some programs/people. So we recognize that form
388 address points to the string; if there is a port, the '.' in the string
389 is overwritten with zero to terminate the address; if the string
390 is in the [xxx]:ppp format, the address is shifted left and the
393 Returns: 0 if there is no port, else the port number. If there's a syntax
394 error, leave the incoming address alone, and return 0.
398 host_address_extract_port(uschar *address)
403 /* Handle the "bracketed with colon on the end" format */
407 uschar *rb = address + 1;
408 while (*rb != 0 && *rb != ']') rb++;
409 if (*rb++ == 0) return 0; /* Missing ]; leave invalid address */
412 port = Ustrtol(rb + 1, &endptr, 10);
413 if (*endptr != 0) return 0; /* Invalid port; leave invalid address */
415 else if (*rb != 0) return 0; /* Bad syntax; leave invalid address */
416 memmove(address, address + 1, rb - address - 2);
420 /* Handle the "dot on the end" format */
424 int skip = -3; /* Skip 3 dots in IPv4 addresses */
426 while (*(++address) != 0)
429 if (ch == ':') skip = 0; /* Skip 0 dots in IPv6 addresses */
430 else if (ch == '.' && skip++ >= 0) break;
432 if (*address == 0) return 0;
433 port = Ustrtol(address + 1, &endptr, 10);
434 if (*endptr != 0) return 0; /* Invalid port; leave invalid address */
442 /*************************************************
443 * Get port from a host item's name *
444 *************************************************/
446 /* This function is called when finding the IP address for a host that is in a
447 list of hosts explicitly configured, such as in the manualroute router, or in a
448 fallback hosts list. We see if there is a port specification at the end of the
449 host name, and if so, remove it. A minimum length of 3 is required for the
450 original name; nothing shorter is recognized as having a port.
452 We test for a name ending with a sequence of digits; if preceded by colon we
453 have a port if the character before the colon is ] and the name starts with [
454 or if there are no other colons in the name (i.e. it's not an IPv6 address).
456 Arguments: pointer to the host item
457 Returns: a port number or PORT_NONE
461 host_item_get_port(host_item *h)
465 int len = Ustrlen(h->name);
467 if (len < 3 || (p = h->name + len - 1, !isdigit(*p))) return PORT_NONE;
469 /* Extract potential port number */
474 while (p > h->name + 1 && isdigit(*p))
476 port += (*p-- - '0') * x;
480 /* The smallest value of p at this point is h->name + 1. */
482 if (*p != ':') return PORT_NONE;
484 if (p[-1] == ']' && h->name[0] == '[')
485 h->name = string_copyn(h->name + 1, p - h->name - 2);
486 else if (Ustrchr(h->name, ':') == p)
487 h->name = string_copyn(h->name, p - h->name);
488 else return PORT_NONE;
490 DEBUG(D_route|D_host_lookup) debug_printf("host=%s port=%d\n", h->name, port);
496 #ifndef STAND_ALONE /* Omit when standalone testing */
498 /*************************************************
499 * Build sender_fullhost and sender_rcvhost *
500 *************************************************/
502 /* This function is called when sender_host_name and/or sender_helo_name
503 have been set. Or might have been set - for a local message read off the spool
504 they won't be. In that case, do nothing. Otherwise, set up the fullhost string
507 (a) No sender_host_name or sender_helo_name: "[ip address]"
508 (b) Just sender_host_name: "host_name [ip address]"
509 (c) Just sender_helo_name: "(helo_name) [ip address]" unless helo is IP
510 in which case: "[ip address}"
511 (d) The two are identical: "host_name [ip address]" includes helo = IP
512 (e) The two are different: "host_name (helo_name) [ip address]"
514 If log_incoming_port is set, the sending host's port number is added to the IP
517 This function also builds sender_rcvhost for use in Received: lines, whose
518 syntax is a bit different. This value also includes the RFC 1413 identity.
519 There wouldn't be two different variables if I had got all this right in the
522 Because this data may survive over more than one incoming SMTP message, it has
523 to be in permanent store.
530 host_build_sender_fullhost(void)
532 BOOL show_helo = TRUE;
535 int old_pool = store_pool;
537 if (sender_host_address == NULL) return;
539 store_pool = POOL_PERM;
541 /* Set up address, with or without the port. After discussion, it seems that
542 the only format that doesn't cause trouble is [aaaa]:pppp. However, we can't
543 use this directly as the first item for Received: because it ain't an RFC 2822
546 address = string_sprintf("[%s]:%d", sender_host_address, sender_host_port);
547 if (!LOGGING(incoming_port) || sender_host_port <= 0)
548 *(Ustrrchr(address, ':')) = 0;
550 /* If there's no EHLO/HELO data, we can't show it. */
552 if (sender_helo_name == NULL) show_helo = FALSE;
554 /* If HELO/EHLO was followed by an IP literal, it's messy because of two
555 features of IPv6. Firstly, there's the "IPv6:" prefix (Exim is liberal and
556 doesn't require this, for historical reasons). Secondly, IPv6 addresses may not
557 be given in canonical form, so we have to canonicalize them before comparing. As
558 it happens, the code works for both IPv4 and IPv6. */
560 else if (sender_helo_name[0] == '[' &&
561 sender_helo_name[(len=Ustrlen(sender_helo_name))-1] == ']')
566 if (strncmpic(sender_helo_name + 1, US"IPv6:", 5) == 0) offset += 5;
567 if (strncmpic(sender_helo_name + 1, US"IPv4:", 5) == 0) offset += 5;
569 helo_ip = string_copyn(sender_helo_name + offset, len - offset - 1);
571 if (string_is_ip_address(helo_ip, NULL) != 0)
575 uschar ipx[48], ipy[48]; /* large enough for full IPv6 */
577 sizex = host_aton(helo_ip, x);
578 sizey = host_aton(sender_host_address, y);
580 (void)host_nmtoa(sizex, x, -1, ipx, ':');
581 (void)host_nmtoa(sizey, y, -1, ipy, ':');
583 if (strcmpic(ipx, ipy) == 0) show_helo = FALSE;
587 /* Host name is not verified */
589 if (sender_host_name == NULL)
591 uschar *portptr = Ustrstr(address, "]:");
594 int adlen; /* Sun compiler doesn't like ++ in initializers */
596 adlen = (portptr == NULL)? Ustrlen(address) : (++portptr - address);
597 sender_fullhost = (sender_helo_name == NULL)? address :
598 string_sprintf("(%s) %s", sender_helo_name, address);
600 sender_rcvhost = string_catn(NULL, &size, &ptr, address, adlen);
602 if (sender_ident != NULL || show_helo || portptr != NULL)
605 sender_rcvhost = string_catn(sender_rcvhost, &size, &ptr, US" (", 2);
609 sender_rcvhost = string_append(sender_rcvhost, &size, &ptr, 2, US"port=",
613 sender_rcvhost = string_append(sender_rcvhost, &size, &ptr, 2,
614 (firstptr == ptr)? US"helo=" : US" helo=", sender_helo_name);
616 if (sender_ident != NULL)
617 sender_rcvhost = string_append(sender_rcvhost, &size, &ptr, 2,
618 (firstptr == ptr)? US"ident=" : US" ident=", sender_ident);
620 sender_rcvhost = string_catn(sender_rcvhost, &size, &ptr, US")", 1);
623 sender_rcvhost[ptr] = 0; /* string_cat() always leaves room */
625 /* Release store, because string_cat allocated a minimum of 100 bytes that
626 are rarely completely used. */
628 store_reset(sender_rcvhost + ptr + 1);
631 /* Host name is known and verified. Unless we've already found that the HELO
632 data matches the IP address, compare it with the name. */
636 if (show_helo && strcmpic(sender_host_name, sender_helo_name) == 0)
641 sender_fullhost = string_sprintf("%s (%s) %s", sender_host_name,
642 sender_helo_name, address);
643 sender_rcvhost = (sender_ident == NULL)?
644 string_sprintf("%s (%s helo=%s)", sender_host_name,
645 address, sender_helo_name) :
646 string_sprintf("%s\n\t(%s helo=%s ident=%s)", sender_host_name,
647 address, sender_helo_name, sender_ident);
651 sender_fullhost = string_sprintf("%s %s", sender_host_name, address);
652 sender_rcvhost = (sender_ident == NULL)?
653 string_sprintf("%s (%s)", sender_host_name, address) :
654 string_sprintf("%s (%s ident=%s)", sender_host_name, address,
659 store_pool = old_pool;
661 DEBUG(D_host_lookup) debug_printf("sender_fullhost = %s\n", sender_fullhost);
662 DEBUG(D_host_lookup) debug_printf("sender_rcvhost = %s\n", sender_rcvhost);
667 /*************************************************
668 * Build host+ident message *
669 *************************************************/
671 /* Used when logging rejections and various ACL and SMTP incidents. The text
672 return depends on whether sender_fullhost and sender_ident are set or not:
674 no ident, no host => U=unknown
675 no ident, host set => H=sender_fullhost
676 ident set, no host => U=ident
677 ident set, host set => H=sender_fullhost U=ident
680 useflag TRUE if first item to be flagged (H= or U=); if there are two
681 items, the second is always flagged
683 Returns: pointer to a string in big_buffer
687 host_and_ident(BOOL useflag)
689 if (sender_fullhost == NULL)
691 (void)string_format(big_buffer, big_buffer_size, "%s%s", useflag? "U=" : "",
692 (sender_ident == NULL)? US"unknown" : sender_ident);
696 uschar *flag = useflag? US"H=" : US"";
697 uschar *iface = US"";
698 if (LOGGING(incoming_interface) && interface_address != NULL)
699 iface = string_sprintf(" I=[%s]:%d", interface_address, interface_port);
700 if (sender_ident == NULL)
701 (void)string_format(big_buffer, big_buffer_size, "%s%s%s",
702 flag, sender_fullhost, iface);
704 (void)string_format(big_buffer, big_buffer_size, "%s%s%s U=%s",
705 flag, sender_fullhost, iface, sender_ident);
710 #endif /* STAND_ALONE */
715 /*************************************************
716 * Build list of local interfaces *
717 *************************************************/
719 /* This function interprets the contents of the local_interfaces or
720 extra_local_interfaces options, and creates an ip_address_item block for each
721 item on the list. There is no special interpretation of any IP addresses; in
722 particular, 0.0.0.0 and ::0 are returned without modification. If any address
723 includes a port, it is set in the block. Otherwise the port value is set to
728 name the name of the option being expanded
730 Returns: a chain of ip_address_items, each containing to a textual
731 version of an IP address, and a port number (host order) or
732 zero if no port was given with the address
736 host_build_ifacelist(const uschar *list, uschar *name)
740 ip_address_item * yield = NULL, * last = NULL, * next;
742 while ((s = string_nextinlist(&list, &sep, NULL, 0)))
745 int port = host_address_extract_port(s); /* Leaves just the IP address */
747 if (!(ipv = string_is_ip_address(s, NULL)))
748 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Malformed IP address \"%s\" in %s",
751 /* Skip IPv6 addresses if IPv6 is disabled. */
753 if (disable_ipv6 && ipv == 6) continue;
755 /* This use of strcpy() is OK because we have checked that s is a valid IP
756 address above. The field in the ip_address_item is large enough to hold an
759 next = store_get(sizeof(ip_address_item));
761 Ustrcpy(next->address, s);
763 next->v6_include_v4 = FALSE;
781 /*************************************************
782 * Find addresses on local interfaces *
783 *************************************************/
785 /* This function finds the addresses of local IP interfaces. These are used
786 when testing for routing to the local host. As the function may be called more
787 than once, the list is preserved in permanent store, pointed to by a static
788 variable, to save doing the work more than once per process.
790 The generic list of interfaces is obtained by calling host_build_ifacelist()
791 for local_interfaces and extra_local_interfaces. This list scanned to remove
792 duplicates (which may exist with different ports - not relevant here). If
793 either of the wildcard IP addresses (0.0.0.0 and ::0) are encountered, they are
794 replaced by the appropriate (IPv4 or IPv6) list of actual local interfaces,
795 obtained from os_find_running_interfaces().
798 Returns: a chain of ip_address_items, each containing to a textual
799 version of an IP address; the port numbers are not relevant
803 /* First, a local subfunction to add an interface to a list in permanent store,
804 but only if there isn't a previous copy of that address on the list. */
806 static ip_address_item *
807 add_unique_interface(ip_address_item *list, ip_address_item *ipa)
809 ip_address_item *ipa2;
810 for (ipa2 = list; ipa2 != NULL; ipa2 = ipa2->next)
811 if (Ustrcmp(ipa2->address, ipa->address) == 0) return list;
812 ipa2 = store_get_perm(sizeof(ip_address_item));
819 /* This is the globally visible function */
822 host_find_interfaces(void)
824 ip_address_item *running_interfaces = NULL;
826 if (local_interface_data == NULL)
828 void *reset_item = store_get(0);
829 ip_address_item *dlist = host_build_ifacelist(CUS local_interfaces,
830 US"local_interfaces");
831 ip_address_item *xlist = host_build_ifacelist(CUS extra_local_interfaces,
832 US"extra_local_interfaces");
833 ip_address_item *ipa;
835 if (dlist == NULL) dlist = xlist; else
837 for (ipa = dlist; ipa->next != NULL; ipa = ipa->next);
841 for (ipa = dlist; ipa != NULL; ipa = ipa->next)
843 if (Ustrcmp(ipa->address, "0.0.0.0") == 0 ||
844 Ustrcmp(ipa->address, "::0") == 0)
846 ip_address_item *ipa2;
847 BOOL ipv6 = ipa->address[0] == ':';
848 if (running_interfaces == NULL)
849 running_interfaces = os_find_running_interfaces();
850 for (ipa2 = running_interfaces; ipa2 != NULL; ipa2 = ipa2->next)
852 if ((Ustrchr(ipa2->address, ':') != NULL) == ipv6)
853 local_interface_data = add_unique_interface(local_interface_data,
859 local_interface_data = add_unique_interface(local_interface_data, ipa);
862 debug_printf("Configured local interface: address=%s", ipa->address);
863 if (ipa->port != 0) debug_printf(" port=%d", ipa->port);
868 store_reset(reset_item);
871 return local_interface_data;
878 /*************************************************
879 * Convert network IP address to text *
880 *************************************************/
882 /* Given an IPv4 or IPv6 address in binary, convert it to a text
883 string and return the result in a piece of new store. The address can
884 either be given directly, or passed over in a sockaddr structure. Note
885 that this isn't the converse of host_aton() because of byte ordering
886 differences. See host_nmtoa() below.
889 type if < 0 then arg points to a sockaddr, else
890 either AF_INET or AF_INET6
891 arg points to a sockaddr if type is < 0, or
892 points to an IPv4 address (32 bits), or
893 points to an IPv6 address (128 bits),
894 in both cases, in network byte order
895 buffer if NULL, the result is returned in gotten store;
896 else points to a buffer to hold the answer
897 portptr points to where to put the port number, if non NULL; only
900 Returns: pointer to character string
904 host_ntoa(int type, const void *arg, uschar *buffer, int *portptr)
908 /* The new world. It is annoying that we have to fish out the address from
909 different places in the block, depending on what kind of address it is. It
910 is also a pain that inet_ntop() returns a const uschar *, whereas the IPv4
911 function inet_ntoa() returns just uschar *, and some picky compilers insist
912 on warning if one assigns a const uschar * to a uschar *. Hence the casts. */
915 uschar addr_buffer[46];
918 int family = ((struct sockaddr *)arg)->sa_family;
919 if (family == AF_INET6)
921 struct sockaddr_in6 *sk = (struct sockaddr_in6 *)arg;
922 yield = US inet_ntop(family, &(sk->sin6_addr), CS addr_buffer,
923 sizeof(addr_buffer));
924 if (portptr != NULL) *portptr = ntohs(sk->sin6_port);
928 struct sockaddr_in *sk = (struct sockaddr_in *)arg;
929 yield = US inet_ntop(family, &(sk->sin_addr), CS addr_buffer,
930 sizeof(addr_buffer));
931 if (portptr != NULL) *portptr = ntohs(sk->sin_port);
936 yield = US inet_ntop(type, arg, CS addr_buffer, sizeof(addr_buffer));
939 /* If the result is a mapped IPv4 address, show it in V4 format. */
941 if (Ustrncmp(yield, "::ffff:", 7) == 0) yield += 7;
943 #else /* HAVE_IPV6 */
949 yield = US inet_ntoa(((struct sockaddr_in *)arg)->sin_addr);
950 if (portptr != NULL) *portptr = ntohs(((struct sockaddr_in *)arg)->sin_port);
953 yield = US inet_ntoa(*((struct in_addr *)arg));
956 /* If there is no buffer, put the string into some new store. */
958 if (buffer == NULL) return string_copy(yield);
960 /* Callers of this function with a non-NULL buffer must ensure that it is
961 large enough to hold an IPv6 address, namely, at least 46 bytes. That's what
962 makes this use of strcpy() OK. */
964 Ustrcpy(buffer, yield);
971 /*************************************************
972 * Convert address text to binary *
973 *************************************************/
975 /* Given the textual form of an IP address, convert it to binary in an
976 array of ints. IPv4 addresses occupy one int; IPv6 addresses occupy 4 ints.
977 The result has the first byte in the most significant byte of the first int. In
978 other words, the result is not in network byte order, but in host byte order.
979 As a result, this is not the converse of host_ntoa(), which expects network
980 byte order. See host_nmtoa() below.
983 address points to the textual address, checked for syntax
984 bin points to an array of 4 ints
986 Returns: the number of ints used
990 host_aton(const uschar *address, int *bin)
995 /* Handle IPv6 address, which may end with an IPv4 address. It may also end
996 with a "scope", introduced by a percent sign. This code is NOT enclosed in #if
997 HAVE_IPV6 in order that IPv6 addresses are recognized even if IPv6 is not
1000 if (Ustrchr(address, ':') != NULL)
1002 const uschar *p = address;
1003 const uschar *component[8];
1004 BOOL ipv4_ends = FALSE;
1010 /* If the address starts with a colon, it will start with two colons.
1011 Just lose the first one, which will leave a null first component. */
1015 /* Split the address into components separated by colons. The input address
1016 is supposed to be checked for syntax. There was a case where this was
1017 overlooked; to guard against that happening again, check here and crash if
1018 there are too many components. */
1020 while (*p != 0 && *p != '%')
1022 int len = Ustrcspn(p, ":%");
1023 if (len == 0) nulloffset = ci;
1024 if (ci > 7) log_write(0, LOG_MAIN|LOG_PANIC_DIE,
1025 "Internal error: invalid IPv6 address \"%s\" passed to host_aton()",
1027 component[ci++] = p;
1032 /* If the final component contains a dot, it is a trailing v4 address.
1033 As the syntax is known to be checked, just set up for a trailing
1034 v4 address and restrict the v6 part to 6 components. */
1036 if (Ustrchr(component[ci-1], '.') != NULL)
1038 address = component[--ci];
1044 /* If there are fewer than 6 or 8 components, we have to insert some
1045 more empty ones in the middle. */
1049 int insert_count = v6count - ci;
1050 for (i = v6count-1; i > nulloffset + insert_count; i--)
1051 component[i] = component[i - insert_count];
1052 while (i > nulloffset) component[i--] = US"";
1055 /* Now turn the components into binary in pairs and bung them
1056 into the vector of ints. */
1058 for (i = 0; i < v6count; i += 2)
1059 bin[i/2] = (Ustrtol(component[i], NULL, 16) << 16) +
1060 Ustrtol(component[i+1], NULL, 16);
1062 /* If there was no terminating v4 component, we are done. */
1064 if (!ipv4_ends) return 4;
1067 /* Handle IPv4 address */
1069 (void)sscanf(CS address, "%d.%d.%d.%d", x, x+1, x+2, x+3);
1070 bin[v4offset] = ((uint)x[0] << 24) + (x[1] << 16) + (x[2] << 8) + x[3];
1075 /*************************************************
1076 * Apply mask to an IP address *
1077 *************************************************/
1079 /* Mask an address held in 1 or 4 ints, with the ms bit in the ms bit of the
1083 count the number of ints
1084 binary points to the ints to be masked
1085 mask the count of ms bits to leave, or -1 if no masking
1091 host_mask(int count, int *binary, int mask)
1094 if (mask < 0) mask = 99999;
1095 for (i = 0; i < count; i++)
1098 if (mask == 0) wordmask = 0;
1101 wordmask = (uint)(-1) << (32 - mask);
1109 binary[i] &= wordmask;
1116 /*************************************************
1117 * Convert masked IP address in ints to text *
1118 *************************************************/
1120 /* We can't use host_ntoa() because it assumes the binary values are in network
1121 byte order, and these are the result of host_aton(), which puts them in ints in
1122 host byte order. Also, we really want IPv6 addresses to be in a canonical
1123 format, so we output them with no abbreviation. In a number of cases we can't
1124 use the normal colon separator in them because it terminates keys in lsearch
1125 files, so we want to use dot instead. There's an argument that specifies what
1126 to use for IPv6 addresses.
1129 count 1 or 4 (number of ints)
1130 binary points to the ints
1131 mask mask value; if < 0 don't add to result
1132 buffer big enough to hold the result
1133 sep component separator character for IPv6 addresses
1135 Returns: the number of characters placed in buffer, not counting
1140 host_nmtoa(int count, int *binary, int mask, uschar *buffer, int sep)
1143 uschar *tt = buffer;
1148 for (i = 24; i >= 0; i -= 8)
1149 tt += sprintf(CS tt, "%d.", (j >> i) & 255);
1152 for (i = 0; i < 4; i++)
1155 tt += sprintf(CS tt, "%04x%c%04x%c", (j >> 16) & 0xffff, sep, j & 0xffff, sep);
1158 tt--; /* lose final separator */
1163 tt += sprintf(CS tt, "/%d", mask);
1169 /* Like host_nmtoa() but: ipv6-only, canonical output, no mask
1172 binary points to the ints
1173 buffer big enough to hold the result
1175 Returns: the number of characters placed in buffer, not counting
1180 ipv6_nmtoa(int * binary, uschar * buffer)
1183 uschar * c = buffer;
1184 uschar * d = NULL; /* shut insufficiently "clever" compiler up */
1186 for (i = 0; i < 4; i++)
1187 { /* expand to text */
1189 c += sprintf(CS c, "%x:%x:", (j >> 16) & 0xffff, j & 0xffff);
1192 for (c = buffer, k = -1, i = 0; i < 8; i++)
1193 { /* find longest 0-group sequence */
1194 if (*c == '0') /* must be "0:" */
1198 while (c[2] == '0') i++, c += 2;
1201 k = i-j; /* length of sequence */
1202 d = s; /* start of sequence */
1205 while (*++c != ':') ;
1209 c[-1] = '\0'; /* drop trailing colon */
1211 /* debug_printf("%s: D k %d <%s> <%s>\n", __FUNCTION__, k, d, d + 2*(k+1)); */
1215 if (d == buffer) c--; /* need extra colon */
1216 *d++ = ':'; /* 1st 0 */
1217 while ((*d++ = *c++)) ;
1227 /*************************************************
1228 * Check port for tls_on_connect *
1229 *************************************************/
1231 /* This function checks whether a given incoming port is configured for tls-
1232 on-connect. It is called from the daemon and from inetd handling. If the global
1233 option tls_on_connect is already set, all ports operate this way. Otherwise, we
1234 check the tls_on_connect_ports option for a list of ports.
1236 Argument: a port number
1237 Returns: TRUE or FALSE
1241 host_is_tls_on_connect_port(int port)
1245 const uschar *list = tls_in.on_connect_ports;
1249 if (tls_in.on_connect) return TRUE;
1251 while ((s = string_nextinlist(&list, &sep, buffer, sizeof(buffer))))
1252 if (Ustrtol(s, &end, 10) == port)
1260 /*************************************************
1261 * Check whether host is in a network *
1262 *************************************************/
1264 /* This function checks whether a given IP address matches a pattern that
1265 represents either a single host, or a network (using CIDR notation). The caller
1266 of this function must check the syntax of the arguments before calling it.
1269 host string representation of the ip-address to check
1270 net string representation of the network, with optional CIDR mask
1271 maskoffset offset to the / that introduces the mask in the key
1272 zero if there is no mask
1275 TRUE the host is inside the network
1276 FALSE the host is NOT inside the network
1280 host_is_in_net(const uschar *host, const uschar *net, int maskoffset)
1286 int size = host_aton(net, address);
1289 /* No mask => all bits to be checked */
1291 if (maskoffset == 0) mlen = 99999; /* Big number */
1292 else mlen = Uatoi(net + maskoffset + 1);
1294 /* Convert the incoming address to binary. */
1296 insize = host_aton(host, incoming);
1298 /* Convert IPv4 addresses given in IPv6 compatible mode, which represent
1299 connections from IPv4 hosts to IPv6 hosts, that is, addresses of the form
1300 ::ffff:<v4address>, to IPv4 format. */
1302 if (insize == 4 && incoming[0] == 0 && incoming[1] == 0 &&
1303 incoming[2] == 0xffff)
1306 incoming[0] = incoming[3];
1309 /* No match if the sizes don't agree. */
1311 if (insize != size) return FALSE;
1313 /* Else do the masked comparison. */
1315 for (i = 0; i < size; i++)
1318 if (mlen == 0) mask = 0;
1321 mask = (uint)(-1) << (32 - mlen);
1329 if ((incoming[i] & mask) != (address[i] & mask)) return FALSE;
1337 /*************************************************
1338 * Scan host list for local hosts *
1339 *************************************************/
1341 /* Scan through a chain of addresses and check whether any of them is the
1342 address of an interface on the local machine. If so, remove that address and
1343 any previous ones with the same MX value, and all subsequent ones (which will
1344 have greater or equal MX values) from the chain. Note: marking them as unusable
1345 is NOT the right thing to do because it causes the hosts not to be used for
1346 other domains, for which they may well be correct.
1348 The hosts may be part of a longer chain; we only process those between the
1349 initial pointer and the "last" pointer.
1351 There is also a list of "pseudo-local" host names which are checked against the
1352 host names. Any match causes that host item to be treated the same as one which
1353 matches a local IP address.
1355 If the very first host is a local host, then all MX records had a precedence
1356 greater than or equal to that of the local host. Either there's a problem in
1357 the DNS, or an apparently remote name turned out to be an abbreviation for the
1358 local host. Give a specific return code, and let the caller decide what to do.
1359 Otherwise, give a success code if at least one host address has been found.
1362 host pointer to the first host in the chain
1363 lastptr pointer to pointer to the last host in the chain (may be updated)
1364 removed if not NULL, set TRUE if some local addresses were removed
1368 HOST_FOUND if there is at least one host with an IP address on the chain
1369 and an MX value less than any MX value associated with the
1371 HOST_FOUND_LOCAL if a local host is among the lowest-numbered MX hosts; when
1372 the host addresses were obtained from A records or
1373 gethostbyname(), the MX values are set to -1.
1374 HOST_FIND_FAILED if no valid hosts with set IP addresses were found
1378 host_scan_for_local_hosts(host_item *host, host_item **lastptr, BOOL *removed)
1380 int yield = HOST_FIND_FAILED;
1381 host_item *last = *lastptr;
1382 host_item *prev = NULL;
1385 if (removed != NULL) *removed = FALSE;
1387 if (local_interface_data == NULL) local_interface_data = host_find_interfaces();
1389 for (h = host; h != last->next; h = h->next)
1392 if (hosts_treat_as_local != NULL)
1395 const uschar *save = deliver_domain;
1396 deliver_domain = h->name; /* set $domain */
1397 rc = match_isinlist(string_copylc(h->name), CUSS &hosts_treat_as_local, 0,
1398 &domainlist_anchor, NULL, MCL_DOMAIN, TRUE, NULL);
1399 deliver_domain = save;
1400 if (rc == OK) goto FOUND_LOCAL;
1404 /* It seems that on many operating systems, 0.0.0.0 is treated as a synonym
1405 for 127.0.0.1 and refers to the local host. We therefore force it always to
1406 be treated as local. */
1408 if (h->address != NULL)
1410 ip_address_item *ip;
1411 if (Ustrcmp(h->address, "0.0.0.0") == 0) goto FOUND_LOCAL;
1412 for (ip = local_interface_data; ip != NULL; ip = ip->next)
1413 if (Ustrcmp(h->address, ip->address) == 0) goto FOUND_LOCAL;
1414 yield = HOST_FOUND; /* At least one remote address has been found */
1417 /* Update prev to point to the last host item before any that have
1418 the same MX value as the one we have just considered. */
1420 if (h->next == NULL || h->next->mx != h->mx) prev = h;
1423 return yield; /* No local hosts found: return HOST_FOUND or HOST_FIND_FAILED */
1425 /* A host whose IP address matches a local IP address, or whose name matches
1426 something in hosts_treat_as_local has been found. */
1432 HDEBUG(D_host_lookup) debug_printf((h->mx >= 0)?
1433 "local host has lowest MX\n" :
1434 "local host found for non-MX address\n");
1435 return HOST_FOUND_LOCAL;
1438 HDEBUG(D_host_lookup)
1440 debug_printf("local host in host list - removed hosts:\n");
1441 for (h = prev->next; h != last->next; h = h->next)
1442 debug_printf(" %s %s %d\n", h->name, h->address, h->mx);
1445 if (removed != NULL) *removed = TRUE;
1446 prev->next = last->next;
1454 /*************************************************
1455 * Remove duplicate IPs in host list *
1456 *************************************************/
1458 /* You would think that administrators could set up their DNS records so that
1459 one ended up with a list of unique IP addresses after looking up A or MX
1460 records, but apparently duplication is common. So we scan such lists and
1461 remove the later duplicates. Note that we may get lists in which some host
1462 addresses are not set.
1465 host pointer to the first host in the chain
1466 lastptr pointer to pointer to the last host in the chain (may be updated)
1472 host_remove_duplicates(host_item *host, host_item **lastptr)
1474 while (host != *lastptr)
1476 if (host->address != NULL)
1478 host_item *h = host;
1479 while (h != *lastptr)
1481 if (h->next->address != NULL &&
1482 Ustrcmp(h->next->address, host->address) == 0)
1484 DEBUG(D_host_lookup) debug_printf("duplicate IP address %s (MX=%d) "
1485 "removed\n", host->address, h->next->mx);
1486 if (h->next == *lastptr) *lastptr = h;
1487 h->next = h->next->next;
1492 /* If the last item was removed, host may have become == *lastptr */
1493 if (host != *lastptr) host = host->next;
1500 /*************************************************
1501 * Find sender host name by gethostbyaddr() *
1502 *************************************************/
1504 /* This used to be the only way it was done, but it turns out that not all
1505 systems give aliases for calls to gethostbyaddr() - or one of the modern
1506 equivalents like getipnodebyaddr(). Fortunately, multiple PTR records are rare,
1507 but they can still exist. This function is now used only when a DNS lookup of
1508 the IP address fails, in order to give access to /etc/hosts.
1511 Returns: OK, DEFER, FAIL
1515 host_name_lookup_byaddr(void)
1519 struct hostent *hosts;
1520 struct in_addr addr;
1521 unsigned long time_msec = 0; /* init to quieten dumb static analysis */
1523 if (slow_lookup_log) time_msec = get_time_in_ms();
1525 /* Lookup on IPv6 system */
1528 if (Ustrchr(sender_host_address, ':') != NULL)
1530 struct in6_addr addr6;
1531 if (inet_pton(AF_INET6, CS sender_host_address, &addr6) != 1)
1532 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "unable to parse \"%s\" as an "
1533 "IPv6 address", sender_host_address);
1534 #if HAVE_GETIPNODEBYADDR
1535 hosts = getipnodebyaddr(CS &addr6, sizeof(addr6), AF_INET6, &h_errno);
1537 hosts = gethostbyaddr(CS &addr6, sizeof(addr6), AF_INET6);
1542 if (inet_pton(AF_INET, CS sender_host_address, &addr) != 1)
1543 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "unable to parse \"%s\" as an "
1544 "IPv4 address", sender_host_address);
1545 #if HAVE_GETIPNODEBYADDR
1546 hosts = getipnodebyaddr(CS &addr, sizeof(addr), AF_INET, &h_errno);
1548 hosts = gethostbyaddr(CS &addr, sizeof(addr), AF_INET);
1552 /* Do lookup on IPv4 system */
1555 addr.s_addr = (S_ADDR_TYPE)inet_addr(CS sender_host_address);
1556 hosts = gethostbyaddr(CS(&addr), sizeof(addr), AF_INET);
1559 if ( slow_lookup_log
1560 && (time_msec = get_time_in_ms() - time_msec) > slow_lookup_log
1562 log_long_lookup(US"name", sender_host_address, time_msec);
1564 /* Failed to look up the host. */
1568 HDEBUG(D_host_lookup) debug_printf("IP address lookup failed: h_errno=%d\n",
1570 return (h_errno == TRY_AGAIN || h_errno == NO_RECOVERY) ? DEFER : FAIL;
1573 /* It seems there are some records in the DNS that yield an empty name. We
1574 treat this as non-existent. In some operating systems, this is returned as an
1575 empty string; in others as a single dot. */
1577 if (hosts->h_name == NULL || hosts->h_name[0] == 0 || hosts->h_name[0] == '.')
1579 HDEBUG(D_host_lookup) debug_printf("IP address lookup yielded an empty name: "
1580 "treated as non-existent host name\n");
1584 /* Copy and lowercase the name, which is in static storage in many systems.
1585 Put it in permanent memory. */
1587 s = US hosts->h_name;
1588 len = Ustrlen(s) + 1;
1589 t = sender_host_name = store_get_perm(len);
1590 while (*s != 0) *t++ = tolower(*s++);
1593 /* If the host has aliases, build a copy of the alias list */
1595 if (hosts->h_aliases != NULL)
1598 uschar **aliases, **ptr;
1599 for (aliases = USS hosts->h_aliases; *aliases != NULL; aliases++) count++;
1600 ptr = sender_host_aliases = store_get_perm(count * sizeof(uschar *));
1601 for (aliases = USS hosts->h_aliases; *aliases != NULL; aliases++)
1603 uschar *s = *aliases;
1604 int len = Ustrlen(s) + 1;
1605 uschar *t = *ptr++ = store_get_perm(len);
1606 while (*s != 0) *t++ = tolower(*s++);
1617 /*************************************************
1618 * Find host name for incoming call *
1619 *************************************************/
1621 /* Put the name in permanent store, pointed to by sender_host_name. We also set
1622 up a list of alias names, pointed to by sender_host_alias. The list is
1623 NULL-terminated. The incoming address is in sender_host_address, either in
1624 dotted-quad form for IPv4 or in colon-separated form for IPv6.
1626 This function does a thorough check that the names it finds point back to the
1627 incoming IP address. Any that do not are discarded. Note that this is relied on
1628 by the ACL reverse_host_lookup check.
1630 On some systems, get{host,ipnode}byaddr() appears to do this internally, but
1631 this it not universally true. Also, for release 4.30, this function was changed
1632 to do a direct DNS lookup first, by default[1], because it turns out that that
1633 is the only guaranteed way to find all the aliases on some systems. My
1634 experiments indicate that Solaris gethostbyaddr() gives the aliases for but
1637 [1] The actual order is controlled by the host_lookup_order option.
1640 Returns: OK on success, the answer being placed in the global variable
1641 sender_host_name, with any aliases in a list hung off
1643 FAIL if no host name can be found
1644 DEFER if a temporary error was encountered
1646 The variable host_lookup_msg is set to an empty string on success, or to a
1647 reason for the failure otherwise, in a form suitable for tagging onto an error
1648 message, and also host_lookup_failed is set TRUE if the lookup failed. If there
1649 was a defer, host_lookup_deferred is set TRUE.
1651 Any dynamically constructed string for host_lookup_msg must be in permanent
1652 store, because it might be used for several incoming messages on the same SMTP
1656 host_name_lookup(void)
1660 uschar *hname, *save_hostname;
1664 const uschar *list = host_lookup_order;
1669 sender_host_dnssec = host_lookup_deferred = host_lookup_failed = FALSE;
1671 HDEBUG(D_host_lookup)
1672 debug_printf("looking up host name for %s\n", sender_host_address);
1674 /* For testing the case when a lookup does not complete, we have a special
1675 reserved IP address. */
1677 if (running_in_test_harness &&
1678 Ustrcmp(sender_host_address, "99.99.99.99") == 0)
1680 HDEBUG(D_host_lookup)
1681 debug_printf("Test harness: host name lookup returns DEFER\n");
1682 host_lookup_deferred = TRUE;
1686 /* Do lookups directly in the DNS or via gethostbyaddr() (or equivalent), in
1687 the order specified by the host_lookup_order option. */
1689 while ((ordername = string_nextinlist(&list, &sep, buffer, sizeof(buffer))))
1691 if (strcmpic(ordername, US"bydns") == 0)
1693 dns_init(FALSE, FALSE, FALSE); /* dnssec ctrl by dns_dnssec_ok glbl */
1694 dns_build_reverse(sender_host_address, buffer);
1695 rc = dns_lookup_timerwrap(&dnsa, buffer, T_PTR, NULL);
1697 /* The first record we come across is used for the name; others are
1698 considered to be aliases. We have to scan twice, in order to find out the
1699 number of aliases. However, if all the names are empty, we will behave as
1700 if failure. (PTR records that yield empty names have been encountered in
1703 if (rc == DNS_SUCCEED)
1705 uschar **aptr = NULL;
1708 int old_pool = store_pool;
1710 sender_host_dnssec = dns_is_secure(&dnsa);
1712 debug_printf("Reverse DNS security status: %s\n",
1713 sender_host_dnssec ? "DNSSEC verified (AD)" : "unverified");
1715 store_pool = POOL_PERM; /* Save names in permanent storage */
1717 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
1719 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
1720 if (rr->type == T_PTR)
1723 /* Get store for the list of aliases. For compatibility with
1724 gethostbyaddr, we make an empty list if there are none. */
1726 aptr = sender_host_aliases = store_get(count * sizeof(uschar *));
1728 /* Re-scan and extract the names */
1730 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
1732 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
1735 if (rr->type != T_PTR) continue;
1736 s = store_get(ssize);
1738 /* If an overlong response was received, the data will have been
1739 truncated and dn_expand may fail. */
1741 if (dn_expand(dnsa.answer, dnsa.answer + dnsa.answerlen,
1742 US (rr->data), (DN_EXPAND_ARG4_TYPE)(s), ssize) < 0)
1744 log_write(0, LOG_MAIN, "host name alias list truncated for %s",
1745 sender_host_address);
1749 store_reset(s + Ustrlen(s) + 1);
1752 HDEBUG(D_host_lookup) debug_printf("IP address lookup yielded an "
1753 "empty name: treated as non-existent host name\n");
1756 if (!sender_host_name) sender_host_name = s;
1758 while (*s != 0) { *s = tolower(*s); s++; }
1761 *aptr = NULL; /* End of alias list */
1762 store_pool = old_pool; /* Reset store pool */
1764 /* If we've found a names, break out of the "order" loop */
1766 if (sender_host_name != NULL) break;
1769 /* If the DNS lookup deferred, we must also defer. */
1771 if (rc == DNS_AGAIN)
1773 HDEBUG(D_host_lookup)
1774 debug_printf("IP address PTR lookup gave temporary error\n");
1775 host_lookup_deferred = TRUE;
1780 /* Do a lookup using gethostbyaddr() - or equivalent */
1782 else if (strcmpic(ordername, US"byaddr") == 0)
1784 HDEBUG(D_host_lookup)
1785 debug_printf("IP address lookup using gethostbyaddr()\n");
1786 rc = host_name_lookup_byaddr();
1789 host_lookup_deferred = TRUE;
1790 return rc; /* Can't carry on */
1792 if (rc == OK) break; /* Found a name */
1794 } /* Loop for bydns/byaddr scanning */
1796 /* If we have failed to find a name, return FAIL and log when required.
1797 NB host_lookup_msg must be in permanent store. */
1799 if (sender_host_name == NULL)
1801 if (host_checking || !log_testing_mode)
1802 log_write(L_host_lookup_failed, LOG_MAIN, "no host name found for IP "
1803 "address %s", sender_host_address);
1804 host_lookup_msg = US" (failed to find host name from IP address)";
1805 host_lookup_failed = TRUE;
1809 HDEBUG(D_host_lookup)
1811 uschar **aliases = sender_host_aliases;
1812 debug_printf("IP address lookup yielded \"%s\"\n", sender_host_name);
1813 while (*aliases != NULL) debug_printf(" alias \"%s\"\n", *aliases++);
1816 /* We need to verify that a forward lookup on the name we found does indeed
1817 correspond to the address. This is for security: in principle a malefactor who
1818 happened to own a reverse zone could set it to point to any names at all.
1820 This code was present in versions of Exim before 3.20. At that point I took it
1821 out because I thought that gethostbyaddr() did the check anyway. It turns out
1822 that this isn't always the case, so it's coming back in at 4.01. This version
1823 is actually better, because it also checks aliases.
1825 The code was made more robust at release 4.21. Prior to that, it accepted all
1826 the names if any of them had the correct IP address. Now the code checks all
1827 the names, and accepts only those that have the correct IP address. */
1829 save_hostname = sender_host_name; /* Save for error messages */
1830 aliases = sender_host_aliases;
1831 for (hname = sender_host_name; hname; hname = *aliases++)
1842 d.request = sender_host_dnssec ? US"*" : NULL;;
1845 if ( (rc = host_find_bydns(&h, NULL, HOST_FIND_BY_A,
1846 NULL, NULL, NULL, &d, NULL, NULL)) == HOST_FOUND
1847 || rc == HOST_FOUND_LOCAL
1851 HDEBUG(D_host_lookup) debug_printf("checking addresses for %s\n", hname);
1853 /* If the forward lookup was not secure we cancel the is-secure variable */
1855 DEBUG(D_dns) debug_printf("Forward DNS security status: %s\n",
1856 h.dnssec == DS_YES ? "DNSSEC verified (AD)" : "unverified");
1857 if (h.dnssec != DS_YES) sender_host_dnssec = FALSE;
1859 for (hh = &h; hh; hh = hh->next)
1860 if (host_is_in_net(hh->address, sender_host_address, 0))
1862 HDEBUG(D_host_lookup) debug_printf(" %s OK\n", hh->address);
1867 HDEBUG(D_host_lookup) debug_printf(" %s\n", hh->address);
1869 if (!ok) HDEBUG(D_host_lookup)
1870 debug_printf("no IP address for %s matched %s\n", hname,
1871 sender_host_address);
1873 else if (rc == HOST_FIND_AGAIN)
1875 HDEBUG(D_host_lookup) debug_printf("temporary error for host name lookup\n");
1876 host_lookup_deferred = TRUE;
1877 sender_host_name = NULL;
1881 HDEBUG(D_host_lookup) debug_printf("no IP addresses found for %s\n", hname);
1883 /* If this name is no good, and it's the sender name, set it null pro tem;
1884 if it's an alias, just remove it from the list. */
1888 if (hname == sender_host_name) sender_host_name = NULL; else
1890 uschar **a; /* Don't amalgamate - some */
1891 a = --aliases; /* compilers grumble */
1892 while (*a != NULL) { *a = a[1]; a++; }
1897 /* If sender_host_name == NULL, it means we didn't like the name. Replace
1898 it with the first alias, if there is one. */
1900 if (sender_host_name == NULL && *sender_host_aliases != NULL)
1901 sender_host_name = *sender_host_aliases++;
1903 /* If we now have a main name, all is well. */
1905 if (sender_host_name != NULL) return OK;
1907 /* We have failed to find an address that matches. */
1909 HDEBUG(D_host_lookup)
1910 debug_printf("%s does not match any IP address for %s\n",
1911 sender_host_address, save_hostname);
1913 /* This message must be in permanent store */
1915 old_pool = store_pool;
1916 store_pool = POOL_PERM;
1917 host_lookup_msg = string_sprintf(" (%s does not match any IP address for %s)",
1918 sender_host_address, save_hostname);
1919 store_pool = old_pool;
1920 host_lookup_failed = TRUE;
1927 /*************************************************
1928 * Find IP address(es) for host by name *
1929 *************************************************/
1931 /* The input is a host_item structure with the name filled in and the address
1932 field set to NULL. We use gethostbyname() or getipnodebyname() or
1933 gethostbyname2(), as appropriate. Of course, these functions may use the DNS,
1934 but they do not do MX processing. It appears, however, that in some systems the
1935 current setting of resolver options is used when one of these functions calls
1936 the resolver. For this reason, we call dns_init() at the start, with arguments
1937 influenced by bits in "flags", just as we do for host_find_bydns().
1939 The second argument provides a host list (usually an IP list) of hosts to
1940 ignore. This makes it possible to ignore IPv6 link-local addresses or loopback
1941 addresses in unreasonable places.
1943 The lookup may result in a change of name. For compatibility with the dns
1944 lookup, return this via fully_qualified_name as well as updating the host item.
1945 The lookup may also yield more than one IP address, in which case chain on
1946 subsequent host_item structures.
1949 host a host item with the name and MX filled in;
1950 the address is to be filled in;
1951 multiple IP addresses cause other host items to be
1953 ignore_target_hosts a list of hosts to ignore
1954 flags HOST_FIND_QUALIFY_SINGLE ) passed to
1955 HOST_FIND_SEARCH_PARENTS ) dns_init()
1956 fully_qualified_name if not NULL, set to point to host name for
1957 compatibility with host_find_bydns
1958 local_host_check TRUE if a check for the local host is wanted
1960 Returns: HOST_FIND_FAILED Failed to find the host or domain
1961 HOST_FIND_AGAIN Try again later
1962 HOST_FOUND Host found - data filled in
1963 HOST_FOUND_LOCAL Host found and is the local host
1967 host_find_byname(host_item *host, const uschar *ignore_target_hosts, int flags,
1968 const uschar **fully_qualified_name, BOOL local_host_check)
1970 int i, yield, times;
1972 host_item *last = NULL;
1973 BOOL temp_error = FALSE;
1978 /* Make sure DNS options are set as required. This appears to be necessary in
1979 some circumstances when the get..byname() function actually calls the DNS. */
1981 dns_init((flags & HOST_FIND_QUALIFY_SINGLE) != 0,
1982 (flags & HOST_FIND_SEARCH_PARENTS) != 0,
1983 FALSE); /* Cannot retrieve dnssec status so do not request */
1985 /* In an IPv6 world, unless IPv6 has been disabled, we need to scan for both
1986 kinds of address, so go round the loop twice. Note that we have ensured that
1987 AF_INET6 is defined even in an IPv4 world, which makes for slightly tidier
1988 code. However, if dns_ipv4_lookup matches the domain, we also just do IPv4
1989 lookups here (except when testing standalone). */
1996 (dns_ipv4_lookup != NULL &&
1997 match_isinlist(host->name, CUSS &dns_ipv4_lookup, 0, NULL, NULL,
1998 MCL_DOMAIN, TRUE, NULL) == OK))
2001 { af = AF_INET; times = 1; }
2003 { af = AF_INET6; times = 2; }
2005 /* No IPv6 support */
2007 #else /* HAVE_IPV6 */
2009 #endif /* HAVE_IPV6 */
2011 /* Initialize the flag that gets set for DNS syntax check errors, so that the
2012 interface to this function can be similar to host_find_bydns. */
2014 host_find_failed_syntax = FALSE;
2016 /* Loop to look up both kinds of address in an IPv6 world */
2018 for (i = 1; i <= times;
2020 af = AF_INET, /* If 2 passes, IPv4 on the second */
2026 struct hostent *hostdata;
2027 unsigned long time_msec = 0; /* compiler quietening */
2030 printf("Looking up: %s\n", host->name);
2033 if (slow_lookup_log) time_msec = get_time_in_ms();
2036 if (running_in_test_harness)
2037 hostdata = host_fake_gethostbyname(host->name, af, &error_num);
2040 #if HAVE_GETIPNODEBYNAME
2041 hostdata = getipnodebyname(CS host->name, af, 0, &error_num);
2043 hostdata = gethostbyname2(CS host->name, af);
2044 error_num = h_errno;
2048 #else /* not HAVE_IPV6 */
2049 if (running_in_test_harness)
2050 hostdata = host_fake_gethostbyname(host->name, AF_INET, &error_num);
2053 hostdata = gethostbyname(CS host->name);
2054 error_num = h_errno;
2056 #endif /* HAVE_IPV6 */
2058 if ( slow_lookup_log
2059 && (time_msec = get_time_in_ms() - time_msec) > slow_lookup_log)
2060 log_long_lookup(US"name", host->name, time_msec);
2062 if (hostdata == NULL)
2067 case HOST_NOT_FOUND: error = US"HOST_NOT_FOUND"; break;
2068 case TRY_AGAIN: error = US"TRY_AGAIN"; break;
2069 case NO_RECOVERY: error = US"NO_RECOVERY"; break;
2070 case NO_DATA: error = US"NO_DATA"; break;
2071 #if NO_DATA != NO_ADDRESS
2072 case NO_ADDRESS: error = US"NO_ADDRESS"; break;
2074 default: error = US"?"; break;
2077 DEBUG(D_host_lookup) debug_printf("%s returned %d (%s)\n",
2079 #if HAVE_GETIPNODEBYNAME
2080 (af == AF_INET6)? "getipnodebyname(af=inet6)" : "getipnodebyname(af=inet)",
2082 (af == AF_INET6)? "gethostbyname2(af=inet6)" : "gethostbyname2(af=inet)",
2089 if (error_num == TRY_AGAIN || error_num == NO_RECOVERY) temp_error = TRUE;
2092 if ((hostdata->h_addr_list)[0] == NULL) continue;
2094 /* Replace the name with the fully qualified one if necessary, and fill in
2095 the fully_qualified_name pointer. */
2097 if (hostdata->h_name[0] != 0 &&
2098 Ustrcmp(host->name, hostdata->h_name) != 0)
2099 host->name = string_copy_dnsdomain(US hostdata->h_name);
2100 if (fully_qualified_name != NULL) *fully_qualified_name = host->name;
2102 /* Get the list of addresses. IPv4 and IPv6 addresses can be distinguished
2103 by their different lengths. Scan the list, ignoring any that are to be
2104 ignored, and build a chain from the rest. */
2106 ipv4_addr = hostdata->h_length == sizeof(struct in_addr);
2108 for (addrlist = USS hostdata->h_addr_list; *addrlist != NULL; addrlist++)
2110 uschar *text_address =
2111 host_ntoa(ipv4_addr? AF_INET:AF_INET6, *addrlist, NULL, NULL);
2114 if (ignore_target_hosts != NULL &&
2115 verify_check_this_host(&ignore_target_hosts, NULL, host->name,
2116 text_address, NULL) == OK)
2118 DEBUG(D_host_lookup)
2119 debug_printf("ignored host %s [%s]\n", host->name, text_address);
2124 /* If this is the first address, last == NULL and we put the data in the
2129 host->address = text_address;
2130 host->port = PORT_NONE;
2131 host->status = hstatus_unknown;
2132 host->why = hwhy_unknown;
2133 host->dnssec = DS_UNK;
2137 /* Else add further host item blocks for any other addresses, keeping
2142 host_item *next = store_get(sizeof(host_item));
2143 next->name = host->name;
2144 next->mx = host->mx;
2145 next->address = text_address;
2146 next->port = PORT_NONE;
2147 next->status = hstatus_unknown;
2148 next->why = hwhy_unknown;
2149 next->dnssec = DS_UNK;
2151 next->next = last->next;
2158 /* If no hosts were found, the address field in the original host block will be
2159 NULL. If temp_error is set, at least one of the lookups gave a temporary error,
2160 so we pass that back. */
2162 if (host->address == NULL)
2166 (message_id[0] == 0 && smtp_in != NULL)?
2167 string_sprintf("no IP address found for host %s (during %s)", host->name,
2168 smtp_get_connection_info()) :
2170 string_sprintf("no IP address found for host %s", host->name);
2172 HDEBUG(D_host_lookup) debug_printf("%s\n", msg);
2173 if (temp_error) goto RETURN_AGAIN;
2174 if (host_checking || !log_testing_mode)
2175 log_write(L_host_lookup_failed, LOG_MAIN, "%s", msg);
2176 return HOST_FIND_FAILED;
2179 /* Remove any duplicate IP addresses, then check to see if this is the local
2180 host if required. */
2182 host_remove_duplicates(host, &last);
2183 yield = local_host_check?
2184 host_scan_for_local_hosts(host, &last, NULL) : HOST_FOUND;
2186 HDEBUG(D_host_lookup)
2189 if (fully_qualified_name != NULL)
2190 debug_printf("fully qualified name = %s\n", *fully_qualified_name);
2191 debug_printf("%s looked up these IP addresses:\n",
2193 #if HAVE_GETIPNODEBYNAME
2202 for (h = host; h != last->next; h = h->next)
2203 debug_printf(" name=%s address=%s\n", h->name,
2204 (h->address == NULL)? US"<null>" : h->address);
2207 /* Return the found status. */
2211 /* Handle the case when there is a temporary error. If the name matches
2212 dns_again_means_nonexist, return permanent rather than temporary failure. */
2218 const uschar *save = deliver_domain;
2219 deliver_domain = host->name; /* set $domain */
2220 rc = match_isinlist(host->name, CUSS &dns_again_means_nonexist, 0, NULL, NULL,
2221 MCL_DOMAIN, TRUE, NULL);
2222 deliver_domain = save;
2225 DEBUG(D_host_lookup) debug_printf("%s is in dns_again_means_nonexist: "
2226 "returning HOST_FIND_FAILED\n", host->name);
2227 return HOST_FIND_FAILED;
2230 return HOST_FIND_AGAIN;
2236 /*************************************************
2237 * Fill in a host address from the DNS *
2238 *************************************************/
2240 /* Given a host item, with its name, port and mx fields set, and its address
2241 field set to NULL, fill in its IP address from the DNS. If it is multi-homed,
2242 create additional host items for the additional addresses, copying all the
2243 other fields, and randomizing the order.
2245 On IPv6 systems, A6 records are sought first (but only if support for A6 is
2246 configured - they may never become mainstream), then AAAA records are sought,
2247 and finally A records are sought as well.
2249 The host name may be changed if the DNS returns a different name - e.g. fully
2250 qualified or changed via CNAME. If fully_qualified_name is not NULL, dns_lookup
2251 ensures that it points to the fully qualified name. However, this is the fully
2252 qualified version of the original name; if a CNAME is involved, the actual
2253 canonical host name may be different again, and so we get it directly from the
2254 relevant RR. Note that we do NOT change the mx field of the host item in this
2255 function as it may be called to set the addresses of hosts taken from MX
2259 host points to the host item we're filling in
2260 lastptr points to pointer to last host item in a chain of
2261 host items (may be updated if host is last and gets
2262 extended because multihomed)
2263 ignore_target_hosts list of hosts to ignore
2264 allow_ip if TRUE, recognize an IP address and return it
2265 fully_qualified_name if not NULL, return fully qualified name here if
2266 the contents are different (i.e. it must be preset
2268 dnssec_request if TRUE request the AD bit
2269 dnssec_require if TRUE require the AD bit
2271 Returns: HOST_FIND_FAILED couldn't find A record
2272 HOST_FIND_AGAIN try again later
2273 HOST_FIND_SECURITY dnssec required but not acheived
2274 HOST_FOUND found AAAA and/or A record(s)
2275 HOST_IGNORED found, but all IPs ignored
2279 set_address_from_dns(host_item *host, host_item **lastptr,
2280 const uschar *ignore_target_hosts, BOOL allow_ip,
2281 const uschar **fully_qualified_name,
2282 BOOL dnssec_request, BOOL dnssec_require)
2285 host_item *thishostlast = NULL; /* Indicates not yet filled in anything */
2286 BOOL v6_find_again = FALSE;
2287 BOOL dnssec_fail = FALSE;
2290 /* If allow_ip is set, a name which is an IP address returns that value
2291 as its address. This is used for MX records when allow_mx_to_ip is set, for
2292 those sites that feel they have to flaunt the RFC rules. */
2294 if (allow_ip && string_is_ip_address(host->name, NULL) != 0)
2297 if (ignore_target_hosts != NULL &&
2298 verify_check_this_host(&ignore_target_hosts, NULL, host->name,
2299 host->name, NULL) == OK)
2300 return HOST_IGNORED;
2303 host->address = host->name;
2307 /* On an IPv6 system, unless IPv6 is disabled, go round the loop up to twice,
2308 looking for AAAA records the first time. However, unless
2309 doing standalone testing, we force an IPv4 lookup if the domain matches
2310 dns_ipv4_lookup is set. On an IPv4 system, go round the
2311 loop once only, looking only for A records. */
2315 if (disable_ipv6 || (dns_ipv4_lookup != NULL &&
2316 match_isinlist(host->name, CUSS &dns_ipv4_lookup, 0, NULL, NULL,
2317 MCL_DOMAIN, TRUE, NULL) == OK))
2318 i = 0; /* look up A records only */
2320 #endif /* STAND_ALONE */
2322 i = 1; /* look up AAAA and A records */
2324 /* The IPv4 world */
2326 #else /* HAVE_IPV6 */
2327 i = 0; /* look up A records only */
2328 #endif /* HAVE_IPV6 */
2332 static int types[] = { T_A, T_AAAA };
2333 int type = types[i];
2334 int randoffset = (i == 0)? 500 : 0; /* Ensures v6 sorts before v4 */
2338 int rc = dns_lookup_timerwrap(&dnsa, host->name, type, fully_qualified_name);
2339 lookup_dnssec_authenticated = !dnssec_request ? NULL
2340 : dns_is_secure(&dnsa) ? US"yes" : US"no";
2343 if ( (dnssec_request || dnssec_require)
2344 && !dns_is_secure(&dnsa)
2347 debug_printf("DNS lookup of %.256s (A/AAAA) requested AD, but got AA\n", host->name);
2349 /* We want to return HOST_FIND_AGAIN if one of the A or AAAA lookups
2350 fails or times out, but not if another one succeeds. (In the early
2351 IPv6 days there are name servers that always fail on AAAA, but are happy
2352 to give out an A record. We want to proceed with that A record.) */
2354 if (rc != DNS_SUCCEED)
2356 if (i == 0) /* Just tried for an A record, i.e. end of loop */
2358 if (host->address != NULL) return HOST_FOUND; /* AAAA was found */
2359 if (rc == DNS_AGAIN || rc == DNS_FAIL || v6_find_again)
2360 return HOST_FIND_AGAIN;
2361 return HOST_FIND_FAILED; /* DNS_NOMATCH or DNS_NODATA */
2364 /* Tried for an AAAA record: remember if this was a temporary
2365 error, and look for the next record type. */
2367 if (rc != DNS_NOMATCH && rc != DNS_NODATA) v6_find_again = TRUE;
2373 if (dns_is_secure(&dnsa))
2375 DEBUG(D_host_lookup) debug_printf("%s A DNSSEC\n", host->name);
2376 if (host->dnssec == DS_UNK) /* set in host_find_bydns() */
2377 host->dnssec = DS_YES;
2384 DEBUG(D_host_lookup) debug_printf("dnssec fail on %s for %.256s",
2385 i>0 ? "AAAA" : "A", host->name);
2388 if (host->dnssec == DS_YES) /* set in host_find_bydns() */
2390 DEBUG(D_host_lookup) debug_printf("%s A cancel DNSSEC\n", host->name);
2391 host->dnssec = DS_NO;
2392 lookup_dnssec_authenticated = US"no";
2397 /* Lookup succeeded: fill in the given host item with the first non-ignored
2398 address found; create additional items for any others. A single A6 record
2399 may generate more than one address. The lookup had a chance to update the
2400 fqdn; we do not want any later times round the loop to do so. */
2402 fully_qualified_name = NULL;
2404 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
2406 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
2408 if (rr->type == type)
2410 dns_address *da = dns_address_from_rr(&dnsa, rr);
2412 DEBUG(D_host_lookup)
2413 if (!da) debug_printf("no addresses extracted from A6 RR for %s\n",
2416 /* This loop runs only once for A and AAAA records, but may run
2417 several times for an A6 record that generated multiple addresses. */
2419 for (; da; da = da->next)
2422 if (ignore_target_hosts != NULL &&
2423 verify_check_this_host(&ignore_target_hosts, NULL,
2424 host->name, da->address, NULL) == OK)
2426 DEBUG(D_host_lookup)
2427 debug_printf("ignored host %s [%s]\n", host->name, da->address);
2432 /* If this is the first address, stick it in the given host block,
2433 and change the name if the returned RR has a different name. */
2435 if (thishostlast == NULL)
2437 if (strcmpic(host->name, rr->name) != 0)
2438 host->name = string_copy_dnsdomain(rr->name);
2439 host->address = da->address;
2440 host->sort_key = host->mx * 1000 + random_number(500) + randoffset;
2441 host->status = hstatus_unknown;
2442 host->why = hwhy_unknown;
2443 thishostlast = host;
2446 /* Not the first address. Check for, and ignore, duplicates. Then
2447 insert in the chain at a random point. */
2454 /* End of our local chain is specified by "thishostlast". */
2456 for (next = host;; next = next->next)
2458 if (Ustrcmp(CS da->address, next->address) == 0) break;
2459 if (next == thishostlast) { next = NULL; break; }
2461 if (next != NULL) continue; /* With loop for next address */
2463 /* Not a duplicate */
2465 new_sort_key = host->mx * 1000 + random_number(500) + randoffset;
2466 next = store_get(sizeof(host_item));
2468 /* New address goes first: insert the new block after the first one
2469 (so as not to disturb the original pointer) but put the new address
2470 in the original block. */
2472 if (new_sort_key < host->sort_key)
2474 *next = *host; /* Copies port */
2476 host->address = da->address;
2477 host->sort_key = new_sort_key;
2478 if (thishostlast == host) thishostlast = next; /* Local last */
2479 if (*lastptr == host) *lastptr = next; /* Global last */
2482 /* Otherwise scan down the addresses for this host to find the
2483 one to insert after. */
2487 host_item *h = host;
2488 while (h != thishostlast)
2490 if (new_sort_key < h->next->sort_key) break;
2493 *next = *h; /* Copies port */
2495 next->address = da->address;
2496 next->sort_key = new_sort_key;
2497 if (h == thishostlast) thishostlast = next; /* Local last */
2498 if (h == *lastptr) *lastptr = next; /* Global last */
2506 /* Control gets here only if the second lookup (the A record) succeeded.
2507 However, the address may not be filled in if it was ignored. */
2509 return host->address
2512 ? HOST_FIND_SECURITY
2519 /*************************************************
2520 * Find IP addresses and host names via DNS *
2521 *************************************************/
2523 /* The input is a host_item structure with the name field filled in and the
2524 address field set to NULL. This may be in a chain of other host items. The
2525 lookup may result in more than one IP address, in which case we must created
2526 new host blocks for the additional addresses, and insert them into the chain.
2527 The original name may not be fully qualified. Use the fully_qualified_name
2528 argument to return the official name, as returned by the resolver.
2531 host point to initial host item
2532 ignore_target_hosts a list of hosts to ignore
2533 whichrrs flags indicating which RRs to look for:
2534 HOST_FIND_BY_SRV => look for SRV
2535 HOST_FIND_BY_MX => look for MX
2536 HOST_FIND_BY_A => look for A or AAAA
2537 also flags indicating how the lookup is done
2538 HOST_FIND_QUALIFY_SINGLE ) passed to the
2539 HOST_FIND_SEARCH_PARENTS ) resolver
2540 srv_service when SRV used, the service name
2541 srv_fail_domains DNS errors for these domains => assume nonexist
2542 mx_fail_domains DNS errors for these domains => assume nonexist
2543 dnssec_d.request => make dnssec request: domainlist
2544 dnssec_d.require => ditto and nonexist failures
2545 fully_qualified_name if not NULL, return fully-qualified name
2546 removed set TRUE if local host was removed from the list
2548 Returns: HOST_FIND_FAILED Failed to find the host or domain;
2549 if there was a syntax error,
2550 host_find_failed_syntax is set.
2551 HOST_FIND_AGAIN Could not resolve at this time
2552 HOST_FIND_SECURITY dnsssec required but not acheived
2553 HOST_FOUND Host found
2554 HOST_FOUND_LOCAL The lowest MX record points to this
2555 machine, if MX records were found, or
2556 an A record that was found contains
2557 an address of the local host
2561 host_find_bydns(host_item *host, const uschar *ignore_target_hosts, int whichrrs,
2562 uschar *srv_service, uschar *srv_fail_domains, uschar *mx_fail_domains,
2563 const dnssec_domains *dnssec_d,
2564 const uschar **fully_qualified_name, BOOL *removed)
2566 host_item *h, *last;
2573 BOOL dnssec_require = dnssec_d
2574 && match_isinlist(host->name, CUSS &dnssec_d->require,
2575 0, NULL, NULL, MCL_DOMAIN, TRUE, NULL) == OK;
2576 BOOL dnssec_request = dnssec_require
2578 && match_isinlist(host->name, CUSS &dnssec_d->request,
2579 0, NULL, NULL, MCL_DOMAIN, TRUE, NULL) == OK);
2580 dnssec_status_t dnssec;
2582 /* Set the default fully qualified name to the incoming name, initialize the
2583 resolver if necessary, set up the relevant options, and initialize the flag
2584 that gets set for DNS syntax check errors. */
2586 if (fully_qualified_name != NULL) *fully_qualified_name = host->name;
2587 dns_init((whichrrs & HOST_FIND_QUALIFY_SINGLE) != 0,
2588 (whichrrs & HOST_FIND_SEARCH_PARENTS) != 0,
2590 host_find_failed_syntax = FALSE;
2592 /* First, if requested, look for SRV records. The service name is given; we
2593 assume TCP protocol. DNS domain names are constrained to a maximum of 256
2594 characters, so the code below should be safe. */
2596 if ((whichrrs & HOST_FIND_BY_SRV) != 0)
2599 uschar *temp_fully_qualified_name = buffer;
2602 (void)sprintf(CS buffer, "_%s._tcp.%n%.256s", srv_service, &prefix_length,
2606 /* Search for SRV records. If the fully qualified name is different to
2607 the input name, pass back the new original domain, without the prepended
2611 lookup_dnssec_authenticated = NULL;
2612 rc = dns_lookup_timerwrap(&dnsa, buffer, ind_type, CUSS &temp_fully_qualified_name);
2615 if ((dnssec_request || dnssec_require)
2616 & !dns_is_secure(&dnsa)
2618 debug_printf("DNS lookup of %.256s (SRV) requested AD, but got AA\n", host->name);
2622 if (dns_is_secure(&dnsa))
2623 { dnssec = DS_YES; lookup_dnssec_authenticated = US"yes"; }
2625 { dnssec = DS_NO; lookup_dnssec_authenticated = US"no"; }
2628 if (temp_fully_qualified_name != buffer && fully_qualified_name != NULL)
2629 *fully_qualified_name = temp_fully_qualified_name + prefix_length;
2631 /* On DNS failures, we give the "try again" error unless the domain is
2632 listed as one for which we continue. */
2634 if (rc == DNS_SUCCEED && dnssec_require && !dns_is_secure(&dnsa))
2636 log_write(L_host_lookup_failed, LOG_MAIN,
2637 "dnssec fail on SRV for %.256s", host->name);
2640 if (rc == DNS_FAIL || rc == DNS_AGAIN)
2643 if (match_isinlist(host->name, CUSS &srv_fail_domains, 0, NULL, NULL,
2644 MCL_DOMAIN, TRUE, NULL) != OK)
2646 { yield = HOST_FIND_AGAIN; goto out; }
2647 DEBUG(D_host_lookup) debug_printf("DNS_%s treated as DNS_NODATA "
2648 "(domain in srv_fail_domains)\n", (rc == DNS_FAIL)? "FAIL":"AGAIN");
2652 /* If we did not find any SRV records, search the DNS for MX records, if
2653 requested to do so. If the result is DNS_NOMATCH, it means there is no such
2654 domain, and there's no point in going on to look for address records with the
2655 same domain. The result will be DNS_NODATA if the domain exists but has no MX
2656 records. On DNS failures, we give the "try again" error unless the domain is
2657 listed as one for which we continue. */
2659 if (rc != DNS_SUCCEED && whichrrs & HOST_FIND_BY_MX)
2663 lookup_dnssec_authenticated = NULL;
2664 rc = dns_lookup_timerwrap(&dnsa, host->name, ind_type, fully_qualified_name);
2667 if ( (dnssec_request || dnssec_require)
2668 && !dns_is_secure(&dnsa)
2669 && dns_is_aa(&dnsa))
2670 debug_printf("DNS lookup of %.256s (MX) requested AD, but got AA\n", host->name);
2673 if (dns_is_secure(&dnsa))
2675 DEBUG(D_host_lookup) debug_printf("%s MX DNSSEC\n", host->name);
2676 dnssec = DS_YES; lookup_dnssec_authenticated = US"yes";
2680 dnssec = DS_NO; lookup_dnssec_authenticated = US"no";
2686 yield = HOST_FIND_FAILED; goto out;
2689 if (!dnssec_require || dns_is_secure(&dnsa))
2691 DEBUG(D_host_lookup)
2692 debug_printf("dnssec fail on MX for %.256s", host->name);
2694 if (match_isinlist(host->name, CUSS &mx_fail_domains, 0, NULL, NULL,
2695 MCL_DOMAIN, TRUE, NULL) != OK)
2696 { yield = HOST_FIND_SECURITY; goto out; }
2704 if (match_isinlist(host->name, CUSS &mx_fail_domains, 0, NULL, NULL,
2705 MCL_DOMAIN, TRUE, NULL) != OK)
2707 { yield = HOST_FIND_AGAIN; goto out; }
2708 DEBUG(D_host_lookup) debug_printf("DNS_%s treated as DNS_NODATA "
2709 "(domain in mx_fail_domains)\n", (rc == DNS_FAIL)? "FAIL":"AGAIN");
2714 /* If we haven't found anything yet, and we are requested to do so, try for an
2715 A or AAAA record. If we find it (or them) check to see that it isn't the local
2718 if (rc != DNS_SUCCEED)
2720 if ((whichrrs & HOST_FIND_BY_A) == 0)
2722 DEBUG(D_host_lookup) debug_printf("Address records are not being sought\n");
2723 yield = HOST_FIND_FAILED;
2727 last = host; /* End of local chainlet */
2729 host->port = PORT_NONE;
2730 host->dnssec = DS_UNK;
2731 lookup_dnssec_authenticated = NULL;
2732 rc = set_address_from_dns(host, &last, ignore_target_hosts, FALSE,
2733 fully_qualified_name, dnssec_request, dnssec_require);
2735 /* If one or more address records have been found, check that none of them
2736 are local. Since we know the host items all have their IP addresses
2737 inserted, host_scan_for_local_hosts() can only return HOST_FOUND or
2738 HOST_FOUND_LOCAL. We do not need to scan for duplicate IP addresses here,
2739 because set_address_from_dns() removes them. */
2741 if (rc == HOST_FOUND)
2742 rc = host_scan_for_local_hosts(host, &last, removed);
2744 if (rc == HOST_IGNORED) rc = HOST_FIND_FAILED; /* No special action */
2746 DEBUG(D_host_lookup)
2749 if (host->address != NULL)
2751 if (fully_qualified_name != NULL)
2752 debug_printf("fully qualified name = %s\n", *fully_qualified_name);
2753 for (h = host; h != last->next; h = h->next)
2754 debug_printf("%s %s mx=%d sort=%d %s\n", h->name,
2755 (h->address == NULL)? US"<null>" : h->address, h->mx, h->sort_key,
2756 (h->status >= hstatus_unusable)? US"*" : US"");
2764 /* We have found one or more MX or SRV records. Sort them according to
2765 precedence. Put the data for the first one into the existing host block, and
2766 insert new host_item blocks into the chain for the remainder. For equal
2767 precedences one is supposed to randomize the order. To make this happen, the
2768 sorting is actually done on the MX value * 1000 + a random number. This is put
2769 into a host field called sort_key.
2771 In the case of hosts with both IPv6 and IPv4 addresses, we want to choose the
2772 IPv6 address in preference. At this stage, we don't know what kind of address
2773 the host has. We choose a random number < 500; if later we find an A record
2774 first, we add 500 to the random number. Then for any other address records, we
2775 use random numbers in the range 0-499 for AAAA records and 500-999 for A
2778 At this point we remove any duplicates that point to the same host, retaining
2779 only the one with the lowest precedence. We cannot yet check for precedence
2780 greater than that of the local host, because that test cannot be properly done
2781 until the addresses have been found - an MX record may point to a name for this
2782 host which is not the primary hostname. */
2784 last = NULL; /* Indicates that not even the first item is filled yet */
2786 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
2788 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT)) if (rr->type == ind_type)
2791 int weight = 0; /* For SRV records */
2792 int port = PORT_NONE;
2793 const uschar * s = rr->data; /* MUST be unsigned for GETSHORT */
2796 GETSHORT(precedence, s); /* Pointer s is advanced */
2798 /* For MX records, we use a random "weight" which causes multiple records of
2799 the same precedence to sort randomly. */
2801 if (ind_type == T_MX)
2802 weight = random_number(500);
2804 /* SRV records are specified with a port and a weight. The weight is used
2805 in a special algorithm. However, to start with, we just use it to order the
2806 records of equal priority (precedence). */
2810 GETSHORT(weight, s);
2814 /* Get the name of the host pointed to. */
2816 (void)dn_expand(dnsa.answer, dnsa.answer + dnsa.answerlen, s,
2817 (DN_EXPAND_ARG4_TYPE)data, sizeof(data));
2819 /* Check that we haven't already got this host on the chain; if we have,
2820 keep only the lower precedence. This situation shouldn't occur, but you
2821 never know what junk might get into the DNS (and this case has been seen on
2822 more than one occasion). */
2824 if (last != NULL) /* This is not the first record */
2826 host_item *prev = NULL;
2828 for (h = host; h != last->next; prev = h, h = h->next)
2830 if (strcmpic(h->name, data) == 0)
2832 DEBUG(D_host_lookup)
2833 debug_printf("discarded duplicate host %s (MX=%d)\n", data,
2834 (precedence > h->mx)? precedence : h->mx);
2835 if (precedence >= h->mx) goto NEXT_MX_RR; /* Skip greater precedence */
2836 if (h == host) /* Override first item */
2839 host->sort_key = precedence * 1000 + weight;
2843 /* Unwanted host item is not the first in the chain, so we can get
2844 get rid of it by cutting it out. */
2846 prev->next = h->next;
2847 if (h == last) last = prev;
2853 /* If this is the first MX or SRV record, put the data into the existing host
2854 block. Otherwise, add a new block in the correct place; if it has to be
2855 before the first block, copy the first block's data to a new second block. */
2859 host->name = string_copy_dnsdomain(data);
2860 host->address = NULL;
2862 host->mx = precedence;
2863 host->sort_key = precedence * 1000 + weight;
2864 host->status = hstatus_unknown;
2865 host->why = hwhy_unknown;
2866 host->dnssec = dnssec;
2870 /* Make a new host item and seek the correct insertion place */
2874 int sort_key = precedence * 1000 + weight;
2875 host_item *next = store_get(sizeof(host_item));
2876 next->name = string_copy_dnsdomain(data);
2877 next->address = NULL;
2879 next->mx = precedence;
2880 next->sort_key = sort_key;
2881 next->status = hstatus_unknown;
2882 next->why = hwhy_unknown;
2883 next->dnssec = dnssec;
2886 /* Handle the case when we have to insert before the first item. */
2888 if (sort_key < host->sort_key)
2895 if (last == host) last = next;
2898 /* Else scan down the items we have inserted as part of this exercise;
2899 don't go further. */
2903 for (h = host; h != last; h = h->next)
2905 if (sort_key < h->next->sort_key)
2907 next->next = h->next;
2913 /* Join on after the last host item that's part of this
2914 processing if we haven't stopped sooner. */
2918 next->next = last->next;
2925 NEXT_MX_RR: continue;
2928 if (!last) /* No rr of correct type; give up */
2930 yield = HOST_FIND_FAILED;
2934 /* If the list of hosts was obtained from SRV records, there are two things to
2935 do. First, if there is only one host, and it's name is ".", it means there is
2936 no SMTP service at this domain. Otherwise, we have to sort the hosts of equal
2937 priority according to their weights, using an algorithm that is defined in RFC
2938 2782. The hosts are currently sorted by priority and weight. For each priority
2939 group we have to pick off one host and put it first, and then repeat for any
2940 remaining in the same priority group. */
2942 if (ind_type == T_SRV)
2946 if (host == last && host->name[0] == 0)
2948 DEBUG(D_host_lookup) debug_printf("the single SRV record is \".\"\n");
2949 yield = HOST_FIND_FAILED;
2953 DEBUG(D_host_lookup)
2955 debug_printf("original ordering of hosts from SRV records:\n");
2956 for (h = host; h != last->next; h = h->next)
2957 debug_printf(" %s P=%d W=%d\n", h->name, h->mx, h->sort_key % 1000);
2960 for (pptr = &host, h = host; h != last; pptr = &h->next, h = h->next)
2965 /* Find the last following host that has the same precedence. At the same
2966 time, compute the sum of the weights and the running totals. These can be
2967 stored in the sort_key field. */
2969 for (hh = h; hh != last; hh = hh->next)
2971 int weight = hh->sort_key % 1000; /* was precedence * 1000 + weight */
2974 if (hh->mx != hh->next->mx) break;
2977 /* If there's more than one host at this precedence (priority), we need to
2978 pick one to go first. */
2984 int randomizer = random_number(sum + 1);
2986 for (ppptr = pptr, hhh = h;
2988 ppptr = &(hhh->next), hhh = hhh->next)
2990 if (hhh->sort_key >= randomizer) break;
2993 /* hhh now points to the host that should go first; ppptr points to the
2994 place that points to it. Unfortunately, if the start of the minilist is
2995 the start of the entire list, we can't just swap the items over, because
2996 we must not change the value of host, since it is passed in from outside.
2997 One day, this could perhaps be changed.
2999 The special case is fudged by putting the new item *second* in the chain,
3000 and then transferring the data between the first and second items. We
3001 can't just swap the first and the chosen item, because that would mean
3002 that an item with zero weight might no longer be first. */
3006 *ppptr = hhh->next; /* Cuts it out of the chain */
3010 host_item temp = *h;
3013 hhh->next = temp.next;
3019 hhh->next = h; /* The rest of the chain follows it */
3020 *pptr = hhh; /* It takes the place of h */
3021 h = hhh; /* It's now the start of this minilist */
3026 /* A host has been chosen to be first at this priority and h now points
3027 to this host. There may be others at the same priority, or others at a
3028 different priority. Before we leave this host, we need to put back a sort
3029 key of the traditional MX kind, in case this host is multihomed, because
3030 the sort key is used for ordering the multiple IP addresses. We do not need
3031 to ensure that these new sort keys actually reflect the order of the hosts,
3034 h->sort_key = h->mx * 1000 + random_number(500);
3035 } /* Move on to the next host */
3038 /* Now we have to find IP addresses for all the hosts. We have ensured above
3039 that the names in all the host items are unique. Before release 4.61 we used to
3040 process records from the additional section in the DNS packet that returned the
3041 MX or SRV records. However, a DNS name server is free to drop any resource
3042 records from the additional section. In theory, this has always been a
3043 potential problem, but it is exacerbated by the advent of IPv6. If a host had
3044 several IPv4 addresses and some were not in the additional section, at least
3045 Exim would try the others. However, if a host had both IPv4 and IPv6 addresses
3046 and all the IPv4 (say) addresses were absent, Exim would try only for a IPv6
3047 connection, and never try an IPv4 address. When there was only IPv4
3048 connectivity, this was a disaster that did in practice occur.
3050 So, from release 4.61 onwards, we always search for A and AAAA records
3051 explicitly. The names shouldn't point to CNAMES, but we use the general lookup
3052 function that handles them, just in case. If any lookup gives a soft error,
3053 change the default yield.
3055 For these DNS lookups, we must disable qualify_single and search_parents;
3056 otherwise invalid host names obtained from MX or SRV records can cause trouble
3057 if they happen to match something local. */
3059 yield = HOST_FIND_FAILED; /* Default yield */
3060 dns_init(FALSE, FALSE, /* Disable qualify_single and search_parents */
3061 dnssec_request || dnssec_require);
3063 for (h = host; h != last->next; h = h->next)
3065 if (h->address) continue; /* Inserted by a multihomed host */
3067 rc = set_address_from_dns(h, &last, ignore_target_hosts, allow_mx_to_ip,
3068 NULL, dnssec_request, dnssec_require);
3069 if (rc != HOST_FOUND)
3071 h->status = hstatus_unusable;
3074 case HOST_FIND_AGAIN:
3075 yield = rc; h->why = hwhy_deferred; break;
3076 case HOST_FIND_SECURITY:
3077 yield = rc; h->why = hwhy_insecure; break;
3079 h->why = hwhy_ignored; break;
3081 h->why = hwhy_failed; break;
3086 /* Scan the list for any hosts that are marked unusable because they have
3087 been explicitly ignored, and remove them from the list, as if they did not
3088 exist. If we end up with just a single, ignored host, flatten its fields as if
3089 nothing was found. */
3091 if (ignore_target_hosts)
3093 host_item *prev = NULL;
3094 for (h = host; h != last->next; h = h->next)
3097 if (h->why != hwhy_ignored) /* Non ignored host, just continue */
3099 else if (prev == NULL) /* First host is ignored */
3101 if (h != last) /* First is not last */
3103 if (h->next == last) last = h; /* Overwrite it with next */
3104 *h = *(h->next); /* and reprocess it. */
3105 goto REDO; /* C should have redo, like Perl */
3108 else /* Ignored host is not first - */
3110 prev->next = h->next;
3111 if (h == last) last = prev;
3115 if (host->why == hwhy_ignored) host->address = NULL;
3118 /* There is still one complication in the case of IPv6. Although the code above
3119 arranges that IPv6 addresses take precedence over IPv4 addresses for multihomed
3120 hosts, it doesn't do this for addresses that apply to different hosts with the
3121 same MX precedence, because the sorting on MX precedence happens first. So we
3122 have to make another pass to check for this case. We ensure that, within a
3123 single MX preference value, IPv6 addresses come first. This can separate the
3124 addresses of a multihomed host, but that should not matter. */
3127 if (h != last && !disable_ipv6) for (h = host; h != last; h = h->next)
3130 host_item *next = h->next;
3132 if (h->mx != next->mx || /* If next is different MX */
3133 h->address == NULL || /* OR this one is unset */
3134 Ustrchr(h->address, ':') != NULL || /* OR this one is IPv6 */
3135 (next->address != NULL &&
3136 Ustrchr(next->address, ':') == NULL)) /* OR next is IPv4 */
3137 continue; /* move on to next */
3138 temp = *h; /* otherwise, swap */
3139 temp.next = next->next;
3146 /* Remove any duplicate IP addresses and then scan the list of hosts for any
3147 whose IP addresses are on the local host. If any are found, all hosts with the
3148 same or higher MX values are removed. However, if the local host has the lowest
3149 numbered MX, then HOST_FOUND_LOCAL is returned. Otherwise, if at least one host
3150 with an IP address is on the list, HOST_FOUND is returned. Otherwise,
3151 HOST_FIND_FAILED is returned, but in this case do not update the yield, as it
3152 might have been set to HOST_FIND_AGAIN just above here. If not, it will already
3153 be HOST_FIND_FAILED. */
3155 host_remove_duplicates(host, &last);
3156 rc = host_scan_for_local_hosts(host, &last, removed);
3157 if (rc != HOST_FIND_FAILED) yield = rc;
3159 DEBUG(D_host_lookup)
3161 if (fully_qualified_name != NULL)
3162 debug_printf("fully qualified name = %s\n", *fully_qualified_name);
3163 debug_printf("host_find_bydns yield = %s (%d); returned hosts:\n",
3164 (yield == HOST_FOUND)? "HOST_FOUND" :
3165 (yield == HOST_FOUND_LOCAL)? "HOST_FOUND_LOCAL" :
3166 (yield == HOST_FIND_SECURITY)? "HOST_FIND_SECURITY" :
3167 (yield == HOST_FIND_AGAIN)? "HOST_FIND_AGAIN" :
3168 (yield == HOST_FIND_FAILED)? "HOST_FIND_FAILED" : "?",
3170 for (h = host; h != last->next; h = h->next)
3172 debug_printf(" %s %s MX=%d %s", h->name,
3173 !h->address ? US"<null>" : h->address, h->mx,
3174 h->dnssec == DS_YES ? US"DNSSEC " : US"");
3175 if (h->port != PORT_NONE) debug_printf("port=%d ", h->port);
3176 if (h->status >= hstatus_unusable) debug_printf("*");
3183 dns_init(FALSE, FALSE, FALSE); /* clear the dnssec bit for getaddrbyname */
3187 /*************************************************
3188 **************************************************
3189 * Stand-alone test program *
3190 **************************************************
3191 *************************************************/
3195 int main(int argc, char **cargv)
3198 int whichrrs = HOST_FIND_BY_MX | HOST_FIND_BY_A;
3199 BOOL byname = FALSE;
3200 BOOL qualify_single = TRUE;
3201 BOOL search_parents = FALSE;
3202 BOOL request_dnssec = FALSE;
3203 BOOL require_dnssec = FALSE;
3204 uschar **argv = USS cargv;
3207 disable_ipv6 = FALSE;
3208 primary_hostname = US"";
3209 store_pool = POOL_MAIN;
3210 debug_selector = D_host_lookup|D_interface;
3211 debug_file = stdout;
3212 debug_fd = fileno(debug_file);
3214 printf("Exim stand-alone host functions test\n");
3216 host_find_interfaces();
3217 debug_selector = D_host_lookup | D_dns;
3219 if (argc > 1) primary_hostname = argv[1];
3221 /* So that debug level changes can be done first */
3223 dns_init(qualify_single, search_parents, FALSE);
3225 printf("Testing host lookup\n");
3227 while (Ufgets(buffer, 256, stdin) != NULL)
3230 int len = Ustrlen(buffer);
3231 uschar *fully_qualified_name;
3233 while (len > 0 && isspace(buffer[len-1])) len--;
3236 if (Ustrcmp(buffer, "q") == 0) break;
3238 if (Ustrcmp(buffer, "byname") == 0) byname = TRUE;
3239 else if (Ustrcmp(buffer, "no_byname") == 0) byname = FALSE;
3240 else if (Ustrcmp(buffer, "a_only") == 0) whichrrs = HOST_FIND_BY_A;
3241 else if (Ustrcmp(buffer, "mx_only") == 0) whichrrs = HOST_FIND_BY_MX;
3242 else if (Ustrcmp(buffer, "srv_only") == 0) whichrrs = HOST_FIND_BY_SRV;
3243 else if (Ustrcmp(buffer, "srv+a") == 0)
3244 whichrrs = HOST_FIND_BY_SRV | HOST_FIND_BY_A;
3245 else if (Ustrcmp(buffer, "srv+mx") == 0)
3246 whichrrs = HOST_FIND_BY_SRV | HOST_FIND_BY_MX;
3247 else if (Ustrcmp(buffer, "srv+mx+a") == 0)
3248 whichrrs = HOST_FIND_BY_SRV | HOST_FIND_BY_MX | HOST_FIND_BY_A;
3249 else if (Ustrcmp(buffer, "qualify_single") == 0) qualify_single = TRUE;
3250 else if (Ustrcmp(buffer, "no_qualify_single") == 0) qualify_single = FALSE;
3251 else if (Ustrcmp(buffer, "search_parents") == 0) search_parents = TRUE;
3252 else if (Ustrcmp(buffer, "no_search_parents") == 0) search_parents = FALSE;
3253 else if (Ustrcmp(buffer, "request_dnssec") == 0) request_dnssec = TRUE;
3254 else if (Ustrcmp(buffer, "no_request_dnssec") == 0) request_dnssec = FALSE;
3255 else if (Ustrcmp(buffer, "require_dnssec") == 0) require_dnssec = TRUE;
3256 else if (Ustrcmp(buffer, "no_require_dnssec") == 0) require_dnssec = FALSE;
3257 else if (Ustrcmp(buffer, "test_harness") == 0)
3258 running_in_test_harness = !running_in_test_harness;
3259 else if (Ustrcmp(buffer, "ipv6") == 0) disable_ipv6 = !disable_ipv6;
3260 else if (Ustrcmp(buffer, "res_debug") == 0)
3262 _res.options ^= RES_DEBUG;
3264 else if (Ustrncmp(buffer, "retrans", 7) == 0)
3266 (void)sscanf(CS(buffer+8), "%d", &dns_retrans);
3267 _res.retrans = dns_retrans;
3269 else if (Ustrncmp(buffer, "retry", 5) == 0)
3271 (void)sscanf(CS(buffer+6), "%d", &dns_retry);
3272 _res.retry = dns_retry;
3276 int flags = whichrrs;
3283 h.status = hstatus_unknown;
3284 h.why = hwhy_unknown;
3287 if (qualify_single) flags |= HOST_FIND_QUALIFY_SINGLE;
3288 if (search_parents) flags |= HOST_FIND_SEARCH_PARENTS;
3290 d.request = request_dnssec ? &h.name : NULL;
3291 d.require = require_dnssec ? &h.name : NULL;
3294 ? host_find_byname(&h, NULL, flags, &fully_qualified_name, TRUE)
3295 : host_find_bydns(&h, NULL, flags, US"smtp", NULL, NULL,
3296 &d, &fully_qualified_name, NULL);
3300 case HOST_FIND_FAILED: printf("Failed\n"); break;
3301 case HOST_FIND_AGAIN: printf("Again\n"); break;
3302 case HOST_FIND_SECURITY: printf("Security\n"); break;
3303 case HOST_FOUND_LOCAL: printf("Local\n"); break;
3310 printf("Testing host_aton\n");
3312 while (Ufgets(buffer, 256, stdin) != NULL)
3316 int len = Ustrlen(buffer);
3318 while (len > 0 && isspace(buffer[len-1])) len--;
3321 if (Ustrcmp(buffer, "q") == 0) break;
3323 len = host_aton(buffer, x);
3324 printf("length = %d ", len);
3325 for (i = 0; i < len; i++)
3327 printf("%04x ", (x[i] >> 16) & 0xffff);
3328 printf("%04x ", x[i] & 0xffff);
3335 printf("Testing host_name_lookup\n");
3337 while (Ufgets(buffer, 256, stdin) != NULL)
3339 int len = Ustrlen(buffer);
3340 while (len > 0 && isspace(buffer[len-1])) len--;
3342 if (Ustrcmp(buffer, "q") == 0) break;
3343 sender_host_address = buffer;
3344 sender_host_name = NULL;
3345 sender_host_aliases = NULL;
3346 host_lookup_msg = US"";
3347 host_lookup_failed = FALSE;
3348 if (host_name_lookup() == FAIL) /* Debug causes printing */
3349 printf("Lookup failed:%s\n", host_lookup_msg);
3357 #endif /* STAND_ALONE */