1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2012 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* Functions for finding hosts, either by gethostbyname(), gethostbyaddr(), or
9 directly via the DNS. When IPv6 is supported, getipnodebyname() and
10 getipnodebyaddr() may be used instead of gethostbyname() and gethostbyaddr(),
11 if the newer functions are available. This module also contains various other
12 functions concerned with hosts and addresses, and a random number function,
13 used for randomizing hosts with equal MXs but available for use in other parts
20 /* Static variable for preserving the list of interface addresses in case it is
21 used more than once. */
23 static ip_address_item *local_interface_data = NULL;
26 #ifdef USE_INET_NTOA_FIX
27 /*************************************************
28 * Replacement for broken inet_ntoa() *
29 *************************************************/
31 /* On IRIX systems, gcc uses a different structure passing convention to the
32 native libraries. This causes inet_ntoa() to always yield 0.0.0.0 or
33 255.255.255.255. To get round this, we provide a private version of the
34 function here. It is used only if USE_INET_NTOA_FIX is set, which should happen
35 only when gcc is in use on an IRIX system. Code send to me by J.T. Breitner,
39 as seen in comp.sys.sgi.admin
41 August 2005: Apparently this is also needed for AIX systems; USE_INET_NTOA_FIX
42 should now be set for them as well.
44 Arguments: sa an in_addr structure
45 Returns: pointer to static text string
49 inet_ntoa(struct in_addr sa)
51 static uschar addr[20];
52 sprintf(addr, "%d.%d.%d.%d",
63 /*************************************************
64 * Random number generator *
65 *************************************************/
67 /* This is a simple pseudo-random number generator. It does not have to be
68 very good for the uses to which it is put. When running the regression tests,
69 start with a fixed seed.
71 If you need better, see vaguely_random_number() which is potentially stronger,
72 if a crypto library is available, but might end up just calling this instead.
75 limit: one more than the largest number required
77 Returns: a pseudo-random number in the range 0 to limit-1
81 random_number(int limit)
87 if (running_in_test_harness) random_seed = 42; else
89 int p = (int)getpid();
90 random_seed = (int)time(NULL) ^ ((p << 16) | p);
93 random_seed = 1103515245 * random_seed + 12345;
94 return (unsigned int)(random_seed >> 16) % limit;
99 /*************************************************
100 * Replace gethostbyname() when testing *
101 *************************************************/
103 /* This function is called instead of gethostbyname(), gethostbyname2(), or
104 getipnodebyname() when running in the test harness. It recognizes the name
105 "manyhome.test.ex" and generates a humungous number of IP addresses. It also
106 recognizes an unqualified "localhost" and forces it to the appropriate loopback
107 address. IP addresses are treated as literals. For other names, it uses the DNS
108 to find the host name. In the test harness, this means it will access only the
112 name the host name or a textual IP address
113 af AF_INET or AF_INET6
114 error_num where to put an error code:
115 HOST_NOT_FOUND/TRY_AGAIN/NO_RECOVERY/NO_DATA
117 Returns: a hostent structure or NULL for an error
120 static struct hostent *
121 host_fake_gethostbyname(uschar *name, int af, int *error_num)
124 int alen = (af == AF_INET)? sizeof(struct in_addr):sizeof(struct in6_addr);
126 int alen = sizeof(struct in_addr);
130 uschar *lname = name;
133 struct hostent *yield;
139 debug_printf("using host_fake_gethostbyname for %s (%s)\n", name,
140 (af == AF_INET)? "IPv4" : "IPv6");
142 /* Handle the name that needs a vast number of IP addresses */
144 if (Ustrcmp(name, "manyhome.test.ex") == 0 && af == AF_INET)
147 yield = store_get(sizeof(struct hostent));
148 alist = store_get(2049 * sizeof(char *));
149 adds = store_get(2048 * alen);
150 yield->h_name = CS name;
151 yield->h_aliases = NULL;
152 yield->h_addrtype = af;
153 yield->h_length = alen;
154 yield->h_addr_list = CSS alist;
155 for (i = 104; i <= 111; i++)
157 for (j = 0; j <= 255; j++)
170 /* Handle unqualified "localhost" */
172 if (Ustrcmp(name, "localhost") == 0)
173 lname = (af == AF_INET)? US"127.0.0.1" : US"::1";
175 /* Handle a literal IP address */
177 ipa = string_is_ip_address(lname, NULL);
180 if ((ipa == 4 && af == AF_INET) ||
181 (ipa == 6 && af == AF_INET6))
185 yield = store_get(sizeof(struct hostent));
186 alist = store_get(2 * sizeof(char *));
187 adds = store_get(alen);
188 yield->h_name = CS name;
189 yield->h_aliases = NULL;
190 yield->h_addrtype = af;
191 yield->h_length = alen;
192 yield->h_addr_list = CSS alist;
194 n = host_aton(lname, x);
195 for (i = 0; i < n; i++)
198 *adds++ = (y >> 24) & 255;
199 *adds++ = (y >> 16) & 255;
200 *adds++ = (y >> 8) & 255;
206 /* Wrong kind of literal address */
210 *error_num = HOST_NOT_FOUND;
215 /* Handle a host name */
219 int type = (af == AF_INET)? T_A:T_AAAA;
220 int rc = dns_lookup(&dnsa, lname, type, NULL);
225 case DNS_SUCCEED: break;
226 case DNS_NOMATCH: *error_num = HOST_NOT_FOUND; return NULL;
227 case DNS_NODATA: *error_num = NO_DATA; return NULL;
228 case DNS_AGAIN: *error_num = TRY_AGAIN; return NULL;
230 case DNS_FAIL: *error_num = NO_RECOVERY; return NULL;
233 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
235 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
237 if (rr->type == type) count++;
240 yield = store_get(sizeof(struct hostent));
241 alist = store_get((count + 1) * sizeof(char **));
242 adds = store_get(count *alen);
244 yield->h_name = CS name;
245 yield->h_aliases = NULL;
246 yield->h_addrtype = af;
247 yield->h_length = alen;
248 yield->h_addr_list = CSS alist;
250 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
252 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
257 if (rr->type != type) continue;
258 da = dns_address_from_rr(&dnsa, rr);
260 n = host_aton(da->address, x);
261 for (i = 0; i < n; i++)
264 *adds++ = (y >> 24) & 255;
265 *adds++ = (y >> 16) & 255;
266 *adds++ = (y >> 8) & 255;
278 /*************************************************
279 * Build chain of host items from list *
280 *************************************************/
282 /* This function builds a chain of host items from a textual list of host
283 names. It does not do any lookups. If randomize is true, the chain is build in
284 a randomized order. There may be multiple groups of independently randomized
285 hosts; they are delimited by a host name consisting of just "+".
288 anchor anchor for the chain
290 randomize TRUE for randomizing
296 host_build_hostlist(host_item **anchor, uschar *list, BOOL randomize)
299 int fake_mx = MX_NONE; /* This value is actually -1 */
303 if (list == NULL) return;
304 if (randomize) fake_mx--; /* Start at -2 for randomizing */
308 while ((name = string_nextinlist(&list, &sep, buffer, sizeof(buffer))) != NULL)
312 if (name[0] == '+' && name[1] == 0) /* "+" delimits a randomized group */
313 { /* ignore if not randomizing */
314 if (randomize) fake_mx--;
318 h = store_get(sizeof(host_item));
319 h->name = string_copy(name);
323 h->sort_key = randomize? (-fake_mx)*1000 + random_number(1000) : 0;
324 h->status = hstatus_unknown;
325 h->why = hwhy_unknown;
335 host_item *hh = *anchor;
336 if (h->sort_key < hh->sort_key)
343 while (hh->next != NULL && h->sort_key >= (hh->next)->sort_key)
356 /*************************************************
357 * Extract port from address string *
358 *************************************************/
360 /* In the spool file, and in the -oMa and -oMi options, a host plus port is
361 given as an IP address followed by a dot and a port number. This function
364 An alternative format for the -oMa and -oMi options is [ip address]:port which
365 is what Exim 4 uses for output, because it seems to becoming commonly used,
366 whereas the dot form confuses some programs/people. So we recognize that form
370 address points to the string; if there is a port, the '.' in the string
371 is overwritten with zero to terminate the address; if the string
372 is in the [xxx]:ppp format, the address is shifted left and the
375 Returns: 0 if there is no port, else the port number. If there's a syntax
376 error, leave the incoming address alone, and return 0.
380 host_address_extract_port(uschar *address)
385 /* Handle the "bracketed with colon on the end" format */
389 uschar *rb = address + 1;
390 while (*rb != 0 && *rb != ']') rb++;
391 if (*rb++ == 0) return 0; /* Missing ]; leave invalid address */
394 port = Ustrtol(rb + 1, &endptr, 10);
395 if (*endptr != 0) return 0; /* Invalid port; leave invalid address */
397 else if (*rb != 0) return 0; /* Bad syntax; leave invalid address */
398 memmove(address, address + 1, rb - address - 2);
402 /* Handle the "dot on the end" format */
406 int skip = -3; /* Skip 3 dots in IPv4 addresses */
408 while (*(++address) != 0)
411 if (ch == ':') skip = 0; /* Skip 0 dots in IPv6 addresses */
412 else if (ch == '.' && skip++ >= 0) break;
414 if (*address == 0) return 0;
415 port = Ustrtol(address + 1, &endptr, 10);
416 if (*endptr != 0) return 0; /* Invalid port; leave invalid address */
424 /*************************************************
425 * Get port from a host item's name *
426 *************************************************/
428 /* This function is called when finding the IP address for a host that is in a
429 list of hosts explicitly configured, such as in the manualroute router, or in a
430 fallback hosts list. We see if there is a port specification at the end of the
431 host name, and if so, remove it. A minimum length of 3 is required for the
432 original name; nothing shorter is recognized as having a port.
434 We test for a name ending with a sequence of digits; if preceded by colon we
435 have a port if the character before the colon is ] and the name starts with [
436 or if there are no other colons in the name (i.e. it's not an IPv6 address).
438 Arguments: pointer to the host item
439 Returns: a port number or PORT_NONE
443 host_item_get_port(host_item *h)
447 int len = Ustrlen(h->name);
449 if (len < 3 || (p = h->name + len - 1, !isdigit(*p))) return PORT_NONE;
451 /* Extract potential port number */
456 while (p > h->name + 1 && isdigit(*p))
458 port += (*p-- - '0') * x;
462 /* The smallest value of p at this point is h->name + 1. */
464 if (*p != ':') return PORT_NONE;
466 if (p[-1] == ']' && h->name[0] == '[')
467 h->name = string_copyn(h->name + 1, p - h->name - 2);
468 else if (Ustrchr(h->name, ':') == p)
469 h->name = string_copyn(h->name, p - h->name);
470 else return PORT_NONE;
472 DEBUG(D_route|D_host_lookup) debug_printf("host=%s port=%d\n", h->name, port);
478 #ifndef STAND_ALONE /* Omit when standalone testing */
480 /*************************************************
481 * Build sender_fullhost and sender_rcvhost *
482 *************************************************/
484 /* This function is called when sender_host_name and/or sender_helo_name
485 have been set. Or might have been set - for a local message read off the spool
486 they won't be. In that case, do nothing. Otherwise, set up the fullhost string
489 (a) No sender_host_name or sender_helo_name: "[ip address]"
490 (b) Just sender_host_name: "host_name [ip address]"
491 (c) Just sender_helo_name: "(helo_name) [ip address]" unless helo is IP
492 in which case: "[ip address}"
493 (d) The two are identical: "host_name [ip address]" includes helo = IP
494 (e) The two are different: "host_name (helo_name) [ip address]"
496 If log_incoming_port is set, the sending host's port number is added to the IP
499 This function also builds sender_rcvhost for use in Received: lines, whose
500 syntax is a bit different. This value also includes the RFC 1413 identity.
501 There wouldn't be two different variables if I had got all this right in the
504 Because this data may survive over more than one incoming SMTP message, it has
505 to be in permanent store.
512 host_build_sender_fullhost(void)
514 BOOL show_helo = TRUE;
517 int old_pool = store_pool;
519 if (sender_host_address == NULL) return;
521 store_pool = POOL_PERM;
523 /* Set up address, with or without the port. After discussion, it seems that
524 the only format that doesn't cause trouble is [aaaa]:pppp. However, we can't
525 use this directly as the first item for Received: because it ain't an RFC 2822
528 address = string_sprintf("[%s]:%d", sender_host_address, sender_host_port);
529 if ((log_extra_selector & LX_incoming_port) == 0 || sender_host_port <= 0)
530 *(Ustrrchr(address, ':')) = 0;
532 /* If there's no EHLO/HELO data, we can't show it. */
534 if (sender_helo_name == NULL) show_helo = FALSE;
536 /* If HELO/EHLO was followed by an IP literal, it's messy because of two
537 features of IPv6. Firstly, there's the "IPv6:" prefix (Exim is liberal and
538 doesn't require this, for historical reasons). Secondly, IPv6 addresses may not
539 be given in canonical form, so we have to canonicize them before comparing. As
540 it happens, the code works for both IPv4 and IPv6. */
542 else if (sender_helo_name[0] == '[' &&
543 sender_helo_name[(len=Ustrlen(sender_helo_name))-1] == ']')
548 if (strncmpic(sender_helo_name + 1, US"IPv6:", 5) == 0) offset += 5;
549 if (strncmpic(sender_helo_name + 1, US"IPv4:", 5) == 0) offset += 5;
551 helo_ip = string_copyn(sender_helo_name + offset, len - offset - 1);
553 if (string_is_ip_address(helo_ip, NULL) != 0)
557 uschar ipx[48], ipy[48]; /* large enough for full IPv6 */
559 sizex = host_aton(helo_ip, x);
560 sizey = host_aton(sender_host_address, y);
562 (void)host_nmtoa(sizex, x, -1, ipx, ':');
563 (void)host_nmtoa(sizey, y, -1, ipy, ':');
565 if (strcmpic(ipx, ipy) == 0) show_helo = FALSE;
569 /* Host name is not verified */
571 if (sender_host_name == NULL)
573 uschar *portptr = Ustrstr(address, "]:");
576 int adlen; /* Sun compiler doesn't like ++ in initializers */
578 adlen = (portptr == NULL)? Ustrlen(address) : (++portptr - address);
579 sender_fullhost = (sender_helo_name == NULL)? address :
580 string_sprintf("(%s) %s", sender_helo_name, address);
582 sender_rcvhost = string_cat(NULL, &size, &ptr, address, adlen);
584 if (sender_ident != NULL || show_helo || portptr != NULL)
587 sender_rcvhost = string_cat(sender_rcvhost, &size, &ptr, US" (", 2);
591 sender_rcvhost = string_append(sender_rcvhost, &size, &ptr, 2, US"port=",
595 sender_rcvhost = string_append(sender_rcvhost, &size, &ptr, 2,
596 (firstptr == ptr)? US"helo=" : US" helo=", sender_helo_name);
598 if (sender_ident != NULL)
599 sender_rcvhost = string_append(sender_rcvhost, &size, &ptr, 2,
600 (firstptr == ptr)? US"ident=" : US" ident=", sender_ident);
602 sender_rcvhost = string_cat(sender_rcvhost, &size, &ptr, US")", 1);
605 sender_rcvhost[ptr] = 0; /* string_cat() always leaves room */
607 /* Release store, because string_cat allocated a minimum of 100 bytes that
608 are rarely completely used. */
610 store_reset(sender_rcvhost + ptr + 1);
613 /* Host name is known and verified. Unless we've already found that the HELO
614 data matches the IP address, compare it with the name. */
618 if (show_helo && strcmpic(sender_host_name, sender_helo_name) == 0)
623 sender_fullhost = string_sprintf("%s (%s) %s", sender_host_name,
624 sender_helo_name, address);
625 sender_rcvhost = (sender_ident == NULL)?
626 string_sprintf("%s (%s helo=%s)", sender_host_name,
627 address, sender_helo_name) :
628 string_sprintf("%s\n\t(%s helo=%s ident=%s)", sender_host_name,
629 address, sender_helo_name, sender_ident);
633 sender_fullhost = string_sprintf("%s %s", sender_host_name, address);
634 sender_rcvhost = (sender_ident == NULL)?
635 string_sprintf("%s (%s)", sender_host_name, address) :
636 string_sprintf("%s (%s ident=%s)", sender_host_name, address,
641 store_pool = old_pool;
643 DEBUG(D_host_lookup) debug_printf("sender_fullhost = %s\n", sender_fullhost);
644 DEBUG(D_host_lookup) debug_printf("sender_rcvhost = %s\n", sender_rcvhost);
649 /*************************************************
650 * Build host+ident message *
651 *************************************************/
653 /* Used when logging rejections and various ACL and SMTP incidents. The text
654 return depends on whether sender_fullhost and sender_ident are set or not:
656 no ident, no host => U=unknown
657 no ident, host set => H=sender_fullhost
658 ident set, no host => U=ident
659 ident set, host set => H=sender_fullhost U=ident
662 useflag TRUE if first item to be flagged (H= or U=); if there are two
663 items, the second is always flagged
665 Returns: pointer to a string in big_buffer
669 host_and_ident(BOOL useflag)
671 if (sender_fullhost == NULL)
673 (void)string_format(big_buffer, big_buffer_size, "%s%s", useflag? "U=" : "",
674 (sender_ident == NULL)? US"unknown" : sender_ident);
678 uschar *flag = useflag? US"H=" : US"";
679 uschar *iface = US"";
680 if ((log_extra_selector & LX_incoming_interface) != 0 &&
681 interface_address != NULL)
682 iface = string_sprintf(" I=[%s]:%d", interface_address, interface_port);
683 if (sender_ident == NULL)
684 (void)string_format(big_buffer, big_buffer_size, "%s%s%s",
685 flag, sender_fullhost, iface);
687 (void)string_format(big_buffer, big_buffer_size, "%s%s%s U=%s",
688 flag, sender_fullhost, iface, sender_ident);
693 #endif /* STAND_ALONE */
698 /*************************************************
699 * Build list of local interfaces *
700 *************************************************/
702 /* This function interprets the contents of the local_interfaces or
703 extra_local_interfaces options, and creates an ip_address_item block for each
704 item on the list. There is no special interpretation of any IP addresses; in
705 particular, 0.0.0.0 and ::0 are returned without modification. If any address
706 includes a port, it is set in the block. Otherwise the port value is set to
711 name the name of the option being expanded
713 Returns: a chain of ip_address_items, each containing to a textual
714 version of an IP address, and a port number (host order) or
715 zero if no port was given with the address
719 host_build_ifacelist(uschar *list, uschar *name)
724 ip_address_item *yield = NULL;
725 ip_address_item *last = NULL;
726 ip_address_item *next;
728 while ((s = string_nextinlist(&list, &sep, buffer, sizeof(buffer))) != NULL)
731 int port = host_address_extract_port(s); /* Leaves just the IP address */
732 if ((ipv = string_is_ip_address(s, NULL)) == 0)
733 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Malformed IP address \"%s\" in %s",
736 /* Skip IPv6 addresses if IPv6 is disabled. */
738 if (disable_ipv6 && ipv == 6) continue;
740 /* This use of strcpy() is OK because we have checked that s is a valid IP
741 address above. The field in the ip_address_item is large enough to hold an
744 next = store_get(sizeof(ip_address_item));
746 Ustrcpy(next->address, s);
748 next->v6_include_v4 = FALSE;
750 if (yield == NULL) yield = last = next; else
764 /*************************************************
765 * Find addresses on local interfaces *
766 *************************************************/
768 /* This function finds the addresses of local IP interfaces. These are used
769 when testing for routing to the local host. As the function may be called more
770 than once, the list is preserved in permanent store, pointed to by a static
771 variable, to save doing the work more than once per process.
773 The generic list of interfaces is obtained by calling host_build_ifacelist()
774 for local_interfaces and extra_local_interfaces. This list scanned to remove
775 duplicates (which may exist with different ports - not relevant here). If
776 either of the wildcard IP addresses (0.0.0.0 and ::0) are encountered, they are
777 replaced by the appropriate (IPv4 or IPv6) list of actual local interfaces,
778 obtained from os_find_running_interfaces().
781 Returns: a chain of ip_address_items, each containing to a textual
782 version of an IP address; the port numbers are not relevant
786 /* First, a local subfunction to add an interface to a list in permanent store,
787 but only if there isn't a previous copy of that address on the list. */
789 static ip_address_item *
790 add_unique_interface(ip_address_item *list, ip_address_item *ipa)
792 ip_address_item *ipa2;
793 for (ipa2 = list; ipa2 != NULL; ipa2 = ipa2->next)
794 if (Ustrcmp(ipa2->address, ipa->address) == 0) return list;
795 ipa2 = store_get_perm(sizeof(ip_address_item));
802 /* This is the globally visible function */
805 host_find_interfaces(void)
807 ip_address_item *running_interfaces = NULL;
809 if (local_interface_data == NULL)
811 void *reset_item = store_get(0);
812 ip_address_item *dlist = host_build_ifacelist(local_interfaces,
813 US"local_interfaces");
814 ip_address_item *xlist = host_build_ifacelist(extra_local_interfaces,
815 US"extra_local_interfaces");
816 ip_address_item *ipa;
818 if (dlist == NULL) dlist = xlist; else
820 for (ipa = dlist; ipa->next != NULL; ipa = ipa->next);
824 for (ipa = dlist; ipa != NULL; ipa = ipa->next)
826 if (Ustrcmp(ipa->address, "0.0.0.0") == 0 ||
827 Ustrcmp(ipa->address, "::0") == 0)
829 ip_address_item *ipa2;
830 BOOL ipv6 = ipa->address[0] == ':';
831 if (running_interfaces == NULL)
832 running_interfaces = os_find_running_interfaces();
833 for (ipa2 = running_interfaces; ipa2 != NULL; ipa2 = ipa2->next)
835 if ((Ustrchr(ipa2->address, ':') != NULL) == ipv6)
836 local_interface_data = add_unique_interface(local_interface_data,
842 local_interface_data = add_unique_interface(local_interface_data, ipa);
845 debug_printf("Configured local interface: address=%s", ipa->address);
846 if (ipa->port != 0) debug_printf(" port=%d", ipa->port);
851 store_reset(reset_item);
854 return local_interface_data;
861 /*************************************************
862 * Convert network IP address to text *
863 *************************************************/
865 /* Given an IPv4 or IPv6 address in binary, convert it to a text
866 string and return the result in a piece of new store. The address can
867 either be given directly, or passed over in a sockaddr structure. Note
868 that this isn't the converse of host_aton() because of byte ordering
869 differences. See host_nmtoa() below.
872 type if < 0 then arg points to a sockaddr, else
873 either AF_INET or AF_INET6
874 arg points to a sockaddr if type is < 0, or
875 points to an IPv4 address (32 bits), or
876 points to an IPv6 address (128 bits),
877 in both cases, in network byte order
878 buffer if NULL, the result is returned in gotten store;
879 else points to a buffer to hold the answer
880 portptr points to where to put the port number, if non NULL; only
883 Returns: pointer to character string
887 host_ntoa(int type, const void *arg, uschar *buffer, int *portptr)
891 /* The new world. It is annoying that we have to fish out the address from
892 different places in the block, depending on what kind of address it is. It
893 is also a pain that inet_ntop() returns a const uschar *, whereas the IPv4
894 function inet_ntoa() returns just uschar *, and some picky compilers insist
895 on warning if one assigns a const uschar * to a uschar *. Hence the casts. */
898 uschar addr_buffer[46];
901 int family = ((struct sockaddr *)arg)->sa_family;
902 if (family == AF_INET6)
904 struct sockaddr_in6 *sk = (struct sockaddr_in6 *)arg;
905 yield = (uschar *)inet_ntop(family, &(sk->sin6_addr), CS addr_buffer,
906 sizeof(addr_buffer));
907 if (portptr != NULL) *portptr = ntohs(sk->sin6_port);
911 struct sockaddr_in *sk = (struct sockaddr_in *)arg;
912 yield = (uschar *)inet_ntop(family, &(sk->sin_addr), CS addr_buffer,
913 sizeof(addr_buffer));
914 if (portptr != NULL) *portptr = ntohs(sk->sin_port);
919 yield = (uschar *)inet_ntop(type, arg, CS addr_buffer, sizeof(addr_buffer));
922 /* If the result is a mapped IPv4 address, show it in V4 format. */
924 if (Ustrncmp(yield, "::ffff:", 7) == 0) yield += 7;
926 #else /* HAVE_IPV6 */
932 yield = US inet_ntoa(((struct sockaddr_in *)arg)->sin_addr);
933 if (portptr != NULL) *portptr = ntohs(((struct sockaddr_in *)arg)->sin_port);
936 yield = US inet_ntoa(*((struct in_addr *)arg));
939 /* If there is no buffer, put the string into some new store. */
941 if (buffer == NULL) return string_copy(yield);
943 /* Callers of this function with a non-NULL buffer must ensure that it is
944 large enough to hold an IPv6 address, namely, at least 46 bytes. That's what
945 makes this use of strcpy() OK. */
947 Ustrcpy(buffer, yield);
954 /*************************************************
955 * Convert address text to binary *
956 *************************************************/
958 /* Given the textual form of an IP address, convert it to binary in an
959 array of ints. IPv4 addresses occupy one int; IPv6 addresses occupy 4 ints.
960 The result has the first byte in the most significant byte of the first int. In
961 other words, the result is not in network byte order, but in host byte order.
962 As a result, this is not the converse of host_ntoa(), which expects network
963 byte order. See host_nmtoa() below.
966 address points to the textual address, checked for syntax
967 bin points to an array of 4 ints
969 Returns: the number of ints used
973 host_aton(uschar *address, int *bin)
978 /* Handle IPv6 address, which may end with an IPv4 address. It may also end
979 with a "scope", introduced by a percent sign. This code is NOT enclosed in #if
980 HAVE_IPV6 in order that IPv6 addresses are recognized even if IPv6 is not
983 if (Ustrchr(address, ':') != NULL)
986 uschar *component[8];
987 BOOL ipv4_ends = FALSE;
993 /* If the address starts with a colon, it will start with two colons.
994 Just lose the first one, which will leave a null first component. */
998 /* Split the address into components separated by colons. The input address
999 is supposed to be checked for syntax. There was a case where this was
1000 overlooked; to guard against that happening again, check here and crash if
1001 there are too many components. */
1003 while (*p != 0 && *p != '%')
1005 int len = Ustrcspn(p, ":%");
1006 if (len == 0) nulloffset = ci;
1007 if (ci > 7) log_write(0, LOG_MAIN|LOG_PANIC_DIE,
1008 "Internal error: invalid IPv6 address \"%s\" passed to host_aton()",
1010 component[ci++] = p;
1015 /* If the final component contains a dot, it is a trailing v4 address.
1016 As the syntax is known to be checked, just set up for a trailing
1017 v4 address and restrict the v6 part to 6 components. */
1019 if (Ustrchr(component[ci-1], '.') != NULL)
1021 address = component[--ci];
1027 /* If there are fewer than 6 or 8 components, we have to insert some
1028 more empty ones in the middle. */
1032 int insert_count = v6count - ci;
1033 for (i = v6count-1; i > nulloffset + insert_count; i--)
1034 component[i] = component[i - insert_count];
1035 while (i > nulloffset) component[i--] = US"";
1038 /* Now turn the components into binary in pairs and bung them
1039 into the vector of ints. */
1041 for (i = 0; i < v6count; i += 2)
1042 bin[i/2] = (Ustrtol(component[i], NULL, 16) << 16) +
1043 Ustrtol(component[i+1], NULL, 16);
1045 /* If there was no terminating v4 component, we are done. */
1047 if (!ipv4_ends) return 4;
1050 /* Handle IPv4 address */
1052 (void)sscanf(CS address, "%d.%d.%d.%d", x, x+1, x+2, x+3);
1053 bin[v4offset] = (x[0] << 24) + (x[1] << 16) + (x[2] << 8) + x[3];
1058 /*************************************************
1059 * Apply mask to an IP address *
1060 *************************************************/
1062 /* Mask an address held in 1 or 4 ints, with the ms bit in the ms bit of the
1066 count the number of ints
1067 binary points to the ints to be masked
1068 mask the count of ms bits to leave, or -1 if no masking
1074 host_mask(int count, int *binary, int mask)
1077 if (mask < 0) mask = 99999;
1078 for (i = 0; i < count; i++)
1081 if (mask == 0) wordmask = 0;
1084 wordmask = (-1) << (32 - mask);
1092 binary[i] &= wordmask;
1099 /*************************************************
1100 * Convert masked IP address in ints to text *
1101 *************************************************/
1103 /* We can't use host_ntoa() because it assumes the binary values are in network
1104 byte order, and these are the result of host_aton(), which puts them in ints in
1105 host byte order. Also, we really want IPv6 addresses to be in a canonical
1106 format, so we output them with no abbreviation. In a number of cases we can't
1107 use the normal colon separator in them because it terminates keys in lsearch
1108 files, so we want to use dot instead. There's an argument that specifies what
1109 to use for IPv6 addresses.
1112 count 1 or 4 (number of ints)
1113 binary points to the ints
1114 mask mask value; if < 0 don't add to result
1115 buffer big enough to hold the result
1116 sep component separator character for IPv6 addresses
1118 Returns: the number of characters placed in buffer, not counting
1123 host_nmtoa(int count, int *binary, int mask, uschar *buffer, int sep)
1126 uschar *tt = buffer;
1131 for (i = 24; i >= 0; i -= 8)
1133 sprintf(CS tt, "%d.", (j >> i) & 255);
1139 for (i = 0; i < 4; i++)
1142 sprintf(CS tt, "%04x%c%04x%c", (j >> 16) & 0xffff, sep, j & 0xffff, sep);
1147 tt--; /* lose final separator */
1153 sprintf(CS tt, "/%d", mask);
1162 /*************************************************
1163 * Check port for tls_on_connect *
1164 *************************************************/
1166 /* This function checks whether a given incoming port is configured for tls-
1167 on-connect. It is called from the daemon and from inetd handling. If the global
1168 option tls_on_connect is already set, all ports operate this way. Otherwise, we
1169 check the tls_on_connect_ports option for a list of ports.
1171 Argument: a port number
1172 Returns: TRUE or FALSE
1176 host_is_tls_on_connect_port(int port)
1180 uschar *list = tls_in.on_connect_ports;
1183 if (tls_in.on_connect) return TRUE;
1185 while ((s = string_nextinlist(&list, &sep, buffer, sizeof(buffer))) != NULL)
1188 int lport = Ustrtol(s, &end, 10);
1189 if (*end != 0) log_write(0, LOG_MAIN|LOG_PANIC_DIE, "tls_on_connect_ports "
1190 "contains \"%s\", which is not a port number: exim abandoned", s);
1191 if (lport == port) return TRUE;
1199 /*************************************************
1200 * Check whether host is in a network *
1201 *************************************************/
1203 /* This function checks whether a given IP address matches a pattern that
1204 represents either a single host, or a network (using CIDR notation). The caller
1205 of this function must check the syntax of the arguments before calling it.
1208 host string representation of the ip-address to check
1209 net string representation of the network, with optional CIDR mask
1210 maskoffset offset to the / that introduces the mask in the key
1211 zero if there is no mask
1214 TRUE the host is inside the network
1215 FALSE the host is NOT inside the network
1219 host_is_in_net(uschar *host, uschar *net, int maskoffset)
1225 int size = host_aton(net, address);
1228 /* No mask => all bits to be checked */
1230 if (maskoffset == 0) mlen = 99999; /* Big number */
1231 else mlen = Uatoi(net + maskoffset + 1);
1233 /* Convert the incoming address to binary. */
1235 insize = host_aton(host, incoming);
1237 /* Convert IPv4 addresses given in IPv6 compatible mode, which represent
1238 connections from IPv4 hosts to IPv6 hosts, that is, addresses of the form
1239 ::ffff:<v4address>, to IPv4 format. */
1241 if (insize == 4 && incoming[0] == 0 && incoming[1] == 0 &&
1242 incoming[2] == 0xffff)
1245 incoming[0] = incoming[3];
1248 /* No match if the sizes don't agree. */
1250 if (insize != size) return FALSE;
1252 /* Else do the masked comparison. */
1254 for (i = 0; i < size; i++)
1257 if (mlen == 0) mask = 0;
1260 mask = (-1) << (32 - mlen);
1268 if ((incoming[i] & mask) != (address[i] & mask)) return FALSE;
1276 /*************************************************
1277 * Scan host list for local hosts *
1278 *************************************************/
1280 /* Scan through a chain of addresses and check whether any of them is the
1281 address of an interface on the local machine. If so, remove that address and
1282 any previous ones with the same MX value, and all subsequent ones (which will
1283 have greater or equal MX values) from the chain. Note: marking them as unusable
1284 is NOT the right thing to do because it causes the hosts not to be used for
1285 other domains, for which they may well be correct.
1287 The hosts may be part of a longer chain; we only process those between the
1288 initial pointer and the "last" pointer.
1290 There is also a list of "pseudo-local" host names which are checked against the
1291 host names. Any match causes that host item to be treated the same as one which
1292 matches a local IP address.
1294 If the very first host is a local host, then all MX records had a precedence
1295 greater than or equal to that of the local host. Either there's a problem in
1296 the DNS, or an apparently remote name turned out to be an abbreviation for the
1297 local host. Give a specific return code, and let the caller decide what to do.
1298 Otherwise, give a success code if at least one host address has been found.
1301 host pointer to the first host in the chain
1302 lastptr pointer to pointer to the last host in the chain (may be updated)
1303 removed if not NULL, set TRUE if some local addresses were removed
1307 HOST_FOUND if there is at least one host with an IP address on the chain
1308 and an MX value less than any MX value associated with the
1310 HOST_FOUND_LOCAL if a local host is among the lowest-numbered MX hosts; when
1311 the host addresses were obtained from A records or
1312 gethostbyname(), the MX values are set to -1.
1313 HOST_FIND_FAILED if no valid hosts with set IP addresses were found
1317 host_scan_for_local_hosts(host_item *host, host_item **lastptr, BOOL *removed)
1319 int yield = HOST_FIND_FAILED;
1320 host_item *last = *lastptr;
1321 host_item *prev = NULL;
1324 if (removed != NULL) *removed = FALSE;
1326 if (local_interface_data == NULL) local_interface_data = host_find_interfaces();
1328 for (h = host; h != last->next; h = h->next)
1331 if (hosts_treat_as_local != NULL)
1334 uschar *save = deliver_domain;
1335 deliver_domain = h->name; /* set $domain */
1336 rc = match_isinlist(string_copylc(h->name), &hosts_treat_as_local, 0,
1337 &domainlist_anchor, NULL, MCL_DOMAIN, TRUE, NULL);
1338 deliver_domain = save;
1339 if (rc == OK) goto FOUND_LOCAL;
1343 /* It seems that on many operating systems, 0.0.0.0 is treated as a synonym
1344 for 127.0.0.1 and refers to the local host. We therefore force it always to
1345 be treated as local. */
1347 if (h->address != NULL)
1349 ip_address_item *ip;
1350 if (Ustrcmp(h->address, "0.0.0.0") == 0) goto FOUND_LOCAL;
1351 for (ip = local_interface_data; ip != NULL; ip = ip->next)
1352 if (Ustrcmp(h->address, ip->address) == 0) goto FOUND_LOCAL;
1353 yield = HOST_FOUND; /* At least one remote address has been found */
1356 /* Update prev to point to the last host item before any that have
1357 the same MX value as the one we have just considered. */
1359 if (h->next == NULL || h->next->mx != h->mx) prev = h;
1362 return yield; /* No local hosts found: return HOST_FOUND or HOST_FIND_FAILED */
1364 /* A host whose IP address matches a local IP address, or whose name matches
1365 something in hosts_treat_as_local has been found. */
1371 HDEBUG(D_host_lookup) debug_printf((h->mx >= 0)?
1372 "local host has lowest MX\n" :
1373 "local host found for non-MX address\n");
1374 return HOST_FOUND_LOCAL;
1377 HDEBUG(D_host_lookup)
1379 debug_printf("local host in host list - removed hosts:\n");
1380 for (h = prev->next; h != last->next; h = h->next)
1381 debug_printf(" %s %s %d\n", h->name, h->address, h->mx);
1384 if (removed != NULL) *removed = TRUE;
1385 prev->next = last->next;
1393 /*************************************************
1394 * Remove duplicate IPs in host list *
1395 *************************************************/
1397 /* You would think that administrators could set up their DNS records so that
1398 one ended up with a list of unique IP addresses after looking up A or MX
1399 records, but apparently duplication is common. So we scan such lists and
1400 remove the later duplicates. Note that we may get lists in which some host
1401 addresses are not set.
1404 host pointer to the first host in the chain
1405 lastptr pointer to pointer to the last host in the chain (may be updated)
1411 host_remove_duplicates(host_item *host, host_item **lastptr)
1413 while (host != *lastptr)
1415 if (host->address != NULL)
1417 host_item *h = host;
1418 while (h != *lastptr)
1420 if (h->next->address != NULL &&
1421 Ustrcmp(h->next->address, host->address) == 0)
1423 DEBUG(D_host_lookup) debug_printf("duplicate IP address %s (MX=%d) "
1424 "removed\n", host->address, h->next->mx);
1425 if (h->next == *lastptr) *lastptr = h;
1426 h->next = h->next->next;
1431 /* If the last item was removed, host may have become == *lastptr */
1432 if (host != *lastptr) host = host->next;
1439 /*************************************************
1440 * Find sender host name by gethostbyaddr() *
1441 *************************************************/
1443 /* This used to be the only way it was done, but it turns out that not all
1444 systems give aliases for calls to gethostbyaddr() - or one of the modern
1445 equivalents like getipnodebyaddr(). Fortunately, multiple PTR records are rare,
1446 but they can still exist. This function is now used only when a DNS lookup of
1447 the IP address fails, in order to give access to /etc/hosts.
1450 Returns: OK, DEFER, FAIL
1454 host_name_lookup_byaddr(void)
1458 struct hostent *hosts;
1459 struct in_addr addr;
1461 /* Lookup on IPv6 system */
1464 if (Ustrchr(sender_host_address, ':') != NULL)
1466 struct in6_addr addr6;
1467 if (inet_pton(AF_INET6, CS sender_host_address, &addr6) != 1)
1468 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "unable to parse \"%s\" as an "
1469 "IPv6 address", sender_host_address);
1470 #if HAVE_GETIPNODEBYADDR
1471 hosts = getipnodebyaddr(CS &addr6, sizeof(addr6), AF_INET6, &h_errno);
1473 hosts = gethostbyaddr(CS &addr6, sizeof(addr6), AF_INET6);
1478 if (inet_pton(AF_INET, CS sender_host_address, &addr) != 1)
1479 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "unable to parse \"%s\" as an "
1480 "IPv4 address", sender_host_address);
1481 #if HAVE_GETIPNODEBYADDR
1482 hosts = getipnodebyaddr(CS &addr, sizeof(addr), AF_INET, &h_errno);
1484 hosts = gethostbyaddr(CS &addr, sizeof(addr), AF_INET);
1488 /* Do lookup on IPv4 system */
1491 addr.s_addr = (S_ADDR_TYPE)inet_addr(CS sender_host_address);
1492 hosts = gethostbyaddr(CS(&addr), sizeof(addr), AF_INET);
1495 /* Failed to look up the host. */
1499 HDEBUG(D_host_lookup) debug_printf("IP address lookup failed: h_errno=%d\n",
1501 return (h_errno == TRY_AGAIN || h_errno == NO_RECOVERY) ? DEFER : FAIL;
1504 /* It seems there are some records in the DNS that yield an empty name. We
1505 treat this as non-existent. In some operating systems, this is returned as an
1506 empty string; in others as a single dot. */
1508 if (hosts->h_name == NULL || hosts->h_name[0] == 0 || hosts->h_name[0] == '.')
1510 HDEBUG(D_host_lookup) debug_printf("IP address lookup yielded an empty name: "
1511 "treated as non-existent host name\n");
1515 /* Copy and lowercase the name, which is in static storage in many systems.
1516 Put it in permanent memory. */
1518 s = (uschar *)hosts->h_name;
1519 len = Ustrlen(s) + 1;
1520 t = sender_host_name = store_get_perm(len);
1521 while (*s != 0) *t++ = tolower(*s++);
1524 /* If the host has aliases, build a copy of the alias list */
1526 if (hosts->h_aliases != NULL)
1529 uschar **aliases, **ptr;
1530 for (aliases = USS hosts->h_aliases; *aliases != NULL; aliases++) count++;
1531 ptr = sender_host_aliases = store_get_perm(count * sizeof(uschar *));
1532 for (aliases = USS hosts->h_aliases; *aliases != NULL; aliases++)
1534 uschar *s = *aliases;
1535 int len = Ustrlen(s) + 1;
1536 uschar *t = *ptr++ = store_get_perm(len);
1537 while (*s != 0) *t++ = tolower(*s++);
1548 /*************************************************
1549 * Find host name for incoming call *
1550 *************************************************/
1552 /* Put the name in permanent store, pointed to by sender_host_name. We also set
1553 up a list of alias names, pointed to by sender_host_alias. The list is
1554 NULL-terminated. The incoming address is in sender_host_address, either in
1555 dotted-quad form for IPv4 or in colon-separated form for IPv6.
1557 This function does a thorough check that the names it finds point back to the
1558 incoming IP address. Any that do not are discarded. Note that this is relied on
1559 by the ACL reverse_host_lookup check.
1561 On some systems, get{host,ipnode}byaddr() appears to do this internally, but
1562 this it not universally true. Also, for release 4.30, this function was changed
1563 to do a direct DNS lookup first, by default[1], because it turns out that that
1564 is the only guaranteed way to find all the aliases on some systems. My
1565 experiments indicate that Solaris gethostbyaddr() gives the aliases for but
1568 [1] The actual order is controlled by the host_lookup_order option.
1571 Returns: OK on success, the answer being placed in the global variable
1572 sender_host_name, with any aliases in a list hung off
1574 FAIL if no host name can be found
1575 DEFER if a temporary error was encountered
1577 The variable host_lookup_msg is set to an empty string on sucess, or to a
1578 reason for the failure otherwise, in a form suitable for tagging onto an error
1579 message, and also host_lookup_failed is set TRUE if the lookup failed. If there
1580 was a defer, host_lookup_deferred is set TRUE.
1582 Any dynamically constructed string for host_lookup_msg must be in permanent
1583 store, because it might be used for several incoming messages on the same SMTP
1587 host_name_lookup(void)
1591 uschar *hname, *save_hostname;
1595 uschar *list = host_lookup_order;
1600 sender_host_dnssec = host_lookup_deferred = host_lookup_failed = FALSE;
1602 HDEBUG(D_host_lookup)
1603 debug_printf("looking up host name for %s\n", sender_host_address);
1605 /* For testing the case when a lookup does not complete, we have a special
1606 reserved IP address. */
1608 if (running_in_test_harness &&
1609 Ustrcmp(sender_host_address, "99.99.99.99") == 0)
1611 HDEBUG(D_host_lookup)
1612 debug_printf("Test harness: host name lookup returns DEFER\n");
1613 host_lookup_deferred = TRUE;
1617 /* Do lookups directly in the DNS or via gethostbyaddr() (or equivalent), in
1618 the order specified by the host_lookup_order option. */
1620 while ((ordername = string_nextinlist(&list, &sep, buffer, sizeof(buffer)))
1623 if (strcmpic(ordername, US"bydns") == 0)
1625 dns_init(FALSE, FALSE);
1626 dns_build_reverse(sender_host_address, buffer);
1627 rc = dns_lookup(&dnsa, buffer, T_PTR, NULL);
1629 /* The first record we come across is used for the name; others are
1630 considered to be aliases. We have to scan twice, in order to find out the
1631 number of aliases. However, if all the names are empty, we will behave as
1632 if failure. (PTR records that yield empty names have been encountered in
1635 if (rc == DNS_SUCCEED)
1637 uschar **aptr = NULL;
1640 int old_pool = store_pool;
1642 /* Ideally we'd check DNSSEC both forward and reverse, but we use the
1643 gethost* routines for forward, so can't do that unless/until we rewrite. */
1644 sender_host_dnssec = dns_is_secure(&dnsa);
1646 debug_printf("Reverse DNS security status: %s\n",
1647 sender_host_dnssec ? "DNSSEC verified (AD)" : "unverified");
1649 store_pool = POOL_PERM; /* Save names in permanent storage */
1651 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
1653 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
1655 if (rr->type == T_PTR) count++;
1658 /* Get store for the list of aliases. For compatibility with
1659 gethostbyaddr, we make an empty list if there are none. */
1661 aptr = sender_host_aliases = store_get(count * sizeof(uschar *));
1663 /* Re-scan and extract the names */
1665 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
1667 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
1670 if (rr->type != T_PTR) continue;
1671 s = store_get(ssize);
1673 /* If an overlong response was received, the data will have been
1674 truncated and dn_expand may fail. */
1676 if (dn_expand(dnsa.answer, dnsa.answer + dnsa.answerlen,
1677 (uschar *)(rr->data), (DN_EXPAND_ARG4_TYPE)(s), ssize) < 0)
1679 log_write(0, LOG_MAIN, "host name alias list truncated for %s",
1680 sender_host_address);
1684 store_reset(s + Ustrlen(s) + 1);
1687 HDEBUG(D_host_lookup) debug_printf("IP address lookup yielded an "
1688 "empty name: treated as non-existent host name\n");
1691 if (sender_host_name == NULL) sender_host_name = s;
1693 while (*s != 0) { *s = tolower(*s); s++; }
1696 *aptr = NULL; /* End of alias list */
1697 store_pool = old_pool; /* Reset store pool */
1699 /* If we've found a names, break out of the "order" loop */
1701 if (sender_host_name != NULL) break;
1704 /* If the DNS lookup deferred, we must also defer. */
1706 if (rc == DNS_AGAIN)
1708 HDEBUG(D_host_lookup)
1709 debug_printf("IP address PTR lookup gave temporary error\n");
1710 host_lookup_deferred = TRUE;
1715 /* Do a lookup using gethostbyaddr() - or equivalent */
1717 else if (strcmpic(ordername, US"byaddr") == 0)
1719 HDEBUG(D_host_lookup)
1720 debug_printf("IP address lookup using gethostbyaddr()\n");
1721 rc = host_name_lookup_byaddr();
1724 host_lookup_deferred = TRUE;
1725 return rc; /* Can't carry on */
1727 if (rc == OK) break; /* Found a name */
1729 } /* Loop for bydns/byaddr scanning */
1731 /* If we have failed to find a name, return FAIL and log when required.
1732 NB host_lookup_msg must be in permanent store. */
1734 if (sender_host_name == NULL)
1736 if (host_checking || !log_testing_mode)
1737 log_write(L_host_lookup_failed, LOG_MAIN, "no host name found for IP "
1738 "address %s", sender_host_address);
1739 host_lookup_msg = US" (failed to find host name from IP address)";
1740 host_lookup_failed = TRUE;
1744 HDEBUG(D_host_lookup)
1746 uschar **aliases = sender_host_aliases;
1747 debug_printf("IP address lookup yielded %s\n", sender_host_name);
1748 while (*aliases != NULL) debug_printf(" alias %s\n", *aliases++);
1751 /* We need to verify that a forward lookup on the name we found does indeed
1752 correspond to the address. This is for security: in principle a malefactor who
1753 happened to own a reverse zone could set it to point to any names at all.
1755 This code was present in versions of Exim before 3.20. At that point I took it
1756 out because I thought that gethostbyaddr() did the check anyway. It turns out
1757 that this isn't always the case, so it's coming back in at 4.01. This version
1758 is actually better, because it also checks aliases.
1760 The code was made more robust at release 4.21. Prior to that, it accepted all
1761 the names if any of them had the correct IP address. Now the code checks all
1762 the names, and accepts only those that have the correct IP address. */
1764 save_hostname = sender_host_name; /* Save for error messages */
1765 aliases = sender_host_aliases;
1766 for (hname = sender_host_name; hname != NULL; hname = *aliases++)
1776 /* When called with the last argument FALSE, host_find_byname() won't return
1777 HOST_FOUND_LOCAL. If the incoming address is an IPv4 address expressed in
1778 IPv6 format, we must compare the IPv4 part to any IPv4 addresses. */
1780 if ((rc = host_find_byname(&h, NULL, 0, NULL, FALSE)) == HOST_FOUND)
1783 HDEBUG(D_host_lookup) debug_printf("checking addresses for %s\n", hname);
1784 for (hh = &h; hh != NULL; hh = hh->next)
1786 if (host_is_in_net(hh->address, sender_host_address, 0))
1788 HDEBUG(D_host_lookup) debug_printf(" %s OK\n", hh->address);
1794 HDEBUG(D_host_lookup) debug_printf(" %s\n", hh->address);
1797 if (!ok) HDEBUG(D_host_lookup)
1798 debug_printf("no IP address for %s matched %s\n", hname,
1799 sender_host_address);
1801 else if (rc == HOST_FIND_AGAIN)
1803 HDEBUG(D_host_lookup) debug_printf("temporary error for host name lookup\n");
1804 host_lookup_deferred = TRUE;
1805 sender_host_name = NULL;
1810 HDEBUG(D_host_lookup) debug_printf("no IP addresses found for %s\n", hname);
1813 /* If this name is no good, and it's the sender name, set it null pro tem;
1814 if it's an alias, just remove it from the list. */
1818 if (hname == sender_host_name) sender_host_name = NULL; else
1820 uschar **a; /* Don't amalgamate - some */
1821 a = --aliases; /* compilers grumble */
1822 while (*a != NULL) { *a = a[1]; a++; }
1827 /* If sender_host_name == NULL, it means we didn't like the name. Replace
1828 it with the first alias, if there is one. */
1830 if (sender_host_name == NULL && *sender_host_aliases != NULL)
1831 sender_host_name = *sender_host_aliases++;
1833 /* If we now have a main name, all is well. */
1835 if (sender_host_name != NULL) return OK;
1837 /* We have failed to find an address that matches. */
1839 HDEBUG(D_host_lookup)
1840 debug_printf("%s does not match any IP address for %s\n",
1841 sender_host_address, save_hostname);
1843 /* This message must be in permanent store */
1845 old_pool = store_pool;
1846 store_pool = POOL_PERM;
1847 host_lookup_msg = string_sprintf(" (%s does not match any IP address for %s)",
1848 sender_host_address, save_hostname);
1849 store_pool = old_pool;
1850 host_lookup_failed = TRUE;
1857 /*************************************************
1858 * Find IP address(es) for host by name *
1859 *************************************************/
1861 /* The input is a host_item structure with the name filled in and the address
1862 field set to NULL. We use gethostbyname() or getipnodebyname() or
1863 gethostbyname2(), as appropriate. Of course, these functions may use the DNS,
1864 but they do not do MX processing. It appears, however, that in some systems the
1865 current setting of resolver options is used when one of these functions calls
1866 the resolver. For this reason, we call dns_init() at the start, with arguments
1867 influenced by bits in "flags", just as we do for host_find_bydns().
1869 The second argument provides a host list (usually an IP list) of hosts to
1870 ignore. This makes it possible to ignore IPv6 link-local addresses or loopback
1871 addresses in unreasonable places.
1873 The lookup may result in a change of name. For compatibility with the dns
1874 lookup, return this via fully_qualified_name as well as updating the host item.
1875 The lookup may also yield more than one IP address, in which case chain on
1876 subsequent host_item structures.
1879 host a host item with the name and MX filled in;
1880 the address is to be filled in;
1881 multiple IP addresses cause other host items to be
1883 ignore_target_hosts a list of hosts to ignore
1884 flags HOST_FIND_QUALIFY_SINGLE ) passed to
1885 HOST_FIND_SEARCH_PARENTS ) dns_init()
1886 fully_qualified_name if not NULL, set to point to host name for
1887 compatibility with host_find_bydns
1888 local_host_check TRUE if a check for the local host is wanted
1890 Returns: HOST_FIND_FAILED Failed to find the host or domain
1891 HOST_FIND_AGAIN Try again later
1892 HOST_FOUND Host found - data filled in
1893 HOST_FOUND_LOCAL Host found and is the local host
1897 host_find_byname(host_item *host, uschar *ignore_target_hosts, int flags,
1898 uschar **fully_qualified_name, BOOL local_host_check)
1900 int i, yield, times;
1902 host_item *last = NULL;
1903 BOOL temp_error = FALSE;
1908 /* If we are in the test harness, a name ending in .test.again.dns always
1909 forces a temporary error response, unless the name is in
1910 dns_again_means_nonexist. */
1912 if (running_in_test_harness)
1914 uschar *endname = host->name + Ustrlen(host->name);
1915 if (Ustrcmp(endname - 14, "test.again.dns") == 0) goto RETURN_AGAIN;
1918 /* Make sure DNS options are set as required. This appears to be necessary in
1919 some circumstances when the get..byname() function actually calls the DNS. */
1921 dns_init((flags & HOST_FIND_QUALIFY_SINGLE) != 0,
1922 (flags & HOST_FIND_SEARCH_PARENTS) != 0);
1924 /* In an IPv6 world, unless IPv6 has been disabled, we need to scan for both
1925 kinds of address, so go round the loop twice. Note that we have ensured that
1926 AF_INET6 is defined even in an IPv4 world, which makes for slightly tidier
1927 code. However, if dns_ipv4_lookup matches the domain, we also just do IPv4
1928 lookups here (except when testing standalone). */
1935 (dns_ipv4_lookup != NULL &&
1936 match_isinlist(host->name, &dns_ipv4_lookup, 0, NULL, NULL, MCL_DOMAIN,
1940 { af = AF_INET; times = 1; }
1942 { af = AF_INET6; times = 2; }
1944 /* No IPv6 support */
1946 #else /* HAVE_IPV6 */
1948 #endif /* HAVE_IPV6 */
1950 /* Initialize the flag that gets set for DNS syntax check errors, so that the
1951 interface to this function can be similar to host_find_bydns. */
1953 host_find_failed_syntax = FALSE;
1955 /* Loop to look up both kinds of address in an IPv6 world */
1957 for (i = 1; i <= times;
1959 af = AF_INET, /* If 2 passes, IPv4 on the second */
1965 struct hostent *hostdata;
1968 printf("Looking up: %s\n", host->name);
1972 if (running_in_test_harness)
1973 hostdata = host_fake_gethostbyname(host->name, af, &error_num);
1976 #if HAVE_GETIPNODEBYNAME
1977 hostdata = getipnodebyname(CS host->name, af, 0, &error_num);
1979 hostdata = gethostbyname2(CS host->name, af);
1980 error_num = h_errno;
1984 #else /* not HAVE_IPV6 */
1985 if (running_in_test_harness)
1986 hostdata = host_fake_gethostbyname(host->name, AF_INET, &error_num);
1989 hostdata = gethostbyname(CS host->name);
1990 error_num = h_errno;
1992 #endif /* HAVE_IPV6 */
1994 if (hostdata == NULL)
1999 case HOST_NOT_FOUND: error = US"HOST_NOT_FOUND"; break;
2000 case TRY_AGAIN: error = US"TRY_AGAIN"; break;
2001 case NO_RECOVERY: error = US"NO_RECOVERY"; break;
2002 case NO_DATA: error = US"NO_DATA"; break;
2003 #if NO_DATA != NO_ADDRESS
2004 case NO_ADDRESS: error = US"NO_ADDRESS"; break;
2006 default: error = US"?"; break;
2009 DEBUG(D_host_lookup) debug_printf("%s returned %d (%s)\n",
2011 #if HAVE_GETIPNODEBYNAME
2012 (af == AF_INET6)? "getipnodebyname(af=inet6)" : "getipnodebyname(af=inet)",
2014 (af == AF_INET6)? "gethostbyname2(af=inet6)" : "gethostbyname2(af=inet)",
2021 if (error_num == TRY_AGAIN || error_num == NO_RECOVERY) temp_error = TRUE;
2024 if ((hostdata->h_addr_list)[0] == NULL) continue;
2026 /* Replace the name with the fully qualified one if necessary, and fill in
2027 the fully_qualified_name pointer. */
2029 if (hostdata->h_name[0] != 0 &&
2030 Ustrcmp(host->name, hostdata->h_name) != 0)
2031 host->name = string_copy_dnsdomain((uschar *)hostdata->h_name);
2032 if (fully_qualified_name != NULL) *fully_qualified_name = host->name;
2034 /* Get the list of addresses. IPv4 and IPv6 addresses can be distinguished
2035 by their different lengths. Scan the list, ignoring any that are to be
2036 ignored, and build a chain from the rest. */
2038 ipv4_addr = hostdata->h_length == sizeof(struct in_addr);
2040 for (addrlist = USS hostdata->h_addr_list; *addrlist != NULL; addrlist++)
2042 uschar *text_address =
2043 host_ntoa(ipv4_addr? AF_INET:AF_INET6, *addrlist, NULL, NULL);
2046 if (ignore_target_hosts != NULL &&
2047 verify_check_this_host(&ignore_target_hosts, NULL, host->name,
2048 text_address, NULL) == OK)
2050 DEBUG(D_host_lookup)
2051 debug_printf("ignored host %s [%s]\n", host->name, text_address);
2056 /* If this is the first address, last == NULL and we put the data in the
2061 host->address = text_address;
2062 host->port = PORT_NONE;
2063 host->status = hstatus_unknown;
2064 host->why = hwhy_unknown;
2068 /* Else add further host item blocks for any other addresses, keeping
2073 host_item *next = store_get(sizeof(host_item));
2074 next->name = host->name;
2075 next->mx = host->mx;
2076 next->address = text_address;
2077 next->port = PORT_NONE;
2078 next->status = hstatus_unknown;
2079 next->why = hwhy_unknown;
2081 next->next = last->next;
2088 /* If no hosts were found, the address field in the original host block will be
2089 NULL. If temp_error is set, at least one of the lookups gave a temporary error,
2090 so we pass that back. */
2092 if (host->address == NULL)
2096 (message_id[0] == 0 && smtp_in != NULL)?
2097 string_sprintf("no IP address found for host %s (during %s)", host->name,
2098 smtp_get_connection_info()) :
2100 string_sprintf("no IP address found for host %s", host->name);
2102 HDEBUG(D_host_lookup) debug_printf("%s\n", msg);
2103 if (temp_error) goto RETURN_AGAIN;
2104 if (host_checking || !log_testing_mode)
2105 log_write(L_host_lookup_failed, LOG_MAIN, "%s", msg);
2106 return HOST_FIND_FAILED;
2109 /* Remove any duplicate IP addresses, then check to see if this is the local
2110 host if required. */
2112 host_remove_duplicates(host, &last);
2113 yield = local_host_check?
2114 host_scan_for_local_hosts(host, &last, NULL) : HOST_FOUND;
2116 HDEBUG(D_host_lookup)
2119 if (fully_qualified_name != NULL)
2120 debug_printf("fully qualified name = %s\n", *fully_qualified_name);
2121 debug_printf("%s looked up these IP addresses:\n",
2123 #if HAVE_GETIPNODEBYNAME
2132 for (h = host; h != last->next; h = h->next)
2133 debug_printf(" name=%s address=%s\n", h->name,
2134 (h->address == NULL)? US"<null>" : h->address);
2137 /* Return the found status. */
2141 /* Handle the case when there is a temporary error. If the name matches
2142 dns_again_means_nonexist, return permanent rather than temporary failure. */
2148 uschar *save = deliver_domain;
2149 deliver_domain = host->name; /* set $domain */
2150 rc = match_isinlist(host->name, &dns_again_means_nonexist, 0, NULL, NULL,
2151 MCL_DOMAIN, TRUE, NULL);
2152 deliver_domain = save;
2155 DEBUG(D_host_lookup) debug_printf("%s is in dns_again_means_nonexist: "
2156 "returning HOST_FIND_FAILED\n", host->name);
2157 return HOST_FIND_FAILED;
2160 return HOST_FIND_AGAIN;
2166 /*************************************************
2167 * Fill in a host address from the DNS *
2168 *************************************************/
2170 /* Given a host item, with its name, port and mx fields set, and its address
2171 field set to NULL, fill in its IP address from the DNS. If it is multi-homed,
2172 create additional host items for the additional addresses, copying all the
2173 other fields, and randomizing the order.
2175 On IPv6 systems, A6 records are sought first (but only if support for A6 is
2176 configured - they may never become mainstream), then AAAA records are sought,
2177 and finally A records are sought as well.
2179 The host name may be changed if the DNS returns a different name - e.g. fully
2180 qualified or changed via CNAME. If fully_qualified_name is not NULL, dns_lookup
2181 ensures that it points to the fully qualified name. However, this is the fully
2182 qualified version of the original name; if a CNAME is involved, the actual
2183 canonical host name may be different again, and so we get it directly from the
2184 relevant RR. Note that we do NOT change the mx field of the host item in this
2185 function as it may be called to set the addresses of hosts taken from MX
2189 host points to the host item we're filling in
2190 lastptr points to pointer to last host item in a chain of
2191 host items (may be updated if host is last and gets
2192 extended because multihomed)
2193 ignore_target_hosts list of hosts to ignore
2194 allow_ip if TRUE, recognize an IP address and return it
2195 fully_qualified_name if not NULL, return fully qualified name here if
2196 the contents are different (i.e. it must be preset
2199 Returns: HOST_FIND_FAILED couldn't find A record
2200 HOST_FIND_AGAIN try again later
2201 HOST_FOUND found AAAA and/or A record(s)
2202 HOST_IGNORED found, but all IPs ignored
2206 set_address_from_dns(host_item *host, host_item **lastptr,
2207 uschar *ignore_target_hosts, BOOL allow_ip, uschar **fully_qualified_name)
2210 host_item *thishostlast = NULL; /* Indicates not yet filled in anything */
2211 BOOL v6_find_again = FALSE;
2214 /* If allow_ip is set, a name which is an IP address returns that value
2215 as its address. This is used for MX records when allow_mx_to_ip is set, for
2216 those sites that feel they have to flaunt the RFC rules. */
2218 if (allow_ip && string_is_ip_address(host->name, NULL) != 0)
2221 if (ignore_target_hosts != NULL &&
2222 verify_check_this_host(&ignore_target_hosts, NULL, host->name,
2223 host->name, NULL) == OK)
2224 return HOST_IGNORED;
2227 host->address = host->name;
2231 /* On an IPv6 system, unless IPv6 is disabled, go round the loop up to three
2232 times, looking for A6 and AAAA records the first two times. However, unless
2233 doing standalone testing, we force an IPv4 lookup if the domain matches
2234 dns_ipv4_lookup is set. Since A6 records look like being abandoned, support
2235 them only if explicitly configured to do so. On an IPv4 system, go round the
2236 loop once only, looking only for A records. */
2240 if (disable_ipv6 || (dns_ipv4_lookup != NULL &&
2241 match_isinlist(host->name, &dns_ipv4_lookup, 0, NULL, NULL, MCL_DOMAIN,
2243 i = 0; /* look up A records only */
2245 #endif /* STAND_ALONE */
2248 i = 2; /* look up A6 and AAAA and A records */
2250 i = 1; /* look up AAAA and A records */
2251 #endif /* SUPPORT_A6 */
2253 /* The IPv4 world */
2255 #else /* HAVE_IPV6 */
2256 i = 0; /* look up A records only */
2257 #endif /* HAVE_IPV6 */
2261 static int types[] = { T_A, T_AAAA, T_A6 };
2262 int type = types[i];
2263 int randoffset = (i == 0)? 500 : 0; /* Ensures v6 sorts before v4 */
2267 int rc = dns_lookup(&dnsa, host->name, type, fully_qualified_name);
2269 /* We want to return HOST_FIND_AGAIN if one of the A, A6, or AAAA lookups
2270 fails or times out, but not if another one succeeds. (In the early
2271 IPv6 days there are name servers that always fail on AAAA, but are happy
2272 to give out an A record. We want to proceed with that A record.) */
2274 if (rc != DNS_SUCCEED)
2276 if (i == 0) /* Just tried for an A record, i.e. end of loop */
2278 if (host->address != NULL) return HOST_FOUND; /* A6 or AAAA was found */
2279 if (rc == DNS_AGAIN || rc == DNS_FAIL || v6_find_again)
2280 return HOST_FIND_AGAIN;
2281 return HOST_FIND_FAILED; /* DNS_NOMATCH or DNS_NODATA */
2284 /* Tried for an A6 or AAAA record: remember if this was a temporary
2285 error, and look for the next record type. */
2287 if (rc != DNS_NOMATCH && rc != DNS_NODATA) v6_find_again = TRUE;
2291 /* Lookup succeeded: fill in the given host item with the first non-ignored
2292 address found; create additional items for any others. A single A6 record
2293 may generate more than one address. */
2295 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
2297 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
2299 if (rr->type == type)
2301 /* dns_address *da = dns_address_from_rr(&dnsa, rr); */
2304 da = dns_address_from_rr(&dnsa, rr);
2306 DEBUG(D_host_lookup)
2309 debug_printf("no addresses extracted from A6 RR for %s\n",
2313 /* This loop runs only once for A and AAAA records, but may run
2314 several times for an A6 record that generated multiple addresses. */
2316 for (; da != NULL; da = da->next)
2319 if (ignore_target_hosts != NULL &&
2320 verify_check_this_host(&ignore_target_hosts, NULL,
2321 host->name, da->address, NULL) == OK)
2323 DEBUG(D_host_lookup)
2324 debug_printf("ignored host %s [%s]\n", host->name, da->address);
2329 /* If this is the first address, stick it in the given host block,
2330 and change the name if the returned RR has a different name. */
2332 if (thishostlast == NULL)
2334 if (strcmpic(host->name, rr->name) != 0)
2335 host->name = string_copy_dnsdomain(rr->name);
2336 host->address = da->address;
2337 host->sort_key = host->mx * 1000 + random_number(500) + randoffset;
2338 host->status = hstatus_unknown;
2339 host->why = hwhy_unknown;
2340 thishostlast = host;
2343 /* Not the first address. Check for, and ignore, duplicates. Then
2344 insert in the chain at a random point. */
2351 /* End of our local chain is specified by "thishostlast". */
2353 for (next = host;; next = next->next)
2355 if (Ustrcmp(CS da->address, next->address) == 0) break;
2356 if (next == thishostlast) { next = NULL; break; }
2358 if (next != NULL) continue; /* With loop for next address */
2360 /* Not a duplicate */
2362 new_sort_key = host->mx * 1000 + random_number(500) + randoffset;
2363 next = store_get(sizeof(host_item));
2365 /* New address goes first: insert the new block after the first one
2366 (so as not to disturb the original pointer) but put the new address
2367 in the original block. */
2369 if (new_sort_key < host->sort_key)
2371 *next = *host; /* Copies port */
2373 host->address = da->address;
2374 host->sort_key = new_sort_key;
2375 if (thishostlast == host) thishostlast = next; /* Local last */
2376 if (*lastptr == host) *lastptr = next; /* Global last */
2379 /* Otherwise scan down the addresses for this host to find the
2380 one to insert after. */
2384 host_item *h = host;
2385 while (h != thishostlast)
2387 if (new_sort_key < h->next->sort_key) break;
2390 *next = *h; /* Copies port */
2392 next->address = da->address;
2393 next->sort_key = new_sort_key;
2394 if (h == thishostlast) thishostlast = next; /* Local last */
2395 if (h == *lastptr) *lastptr = next; /* Global last */
2403 /* Control gets here only if the third lookup (the A record) succeeded.
2404 However, the address may not be filled in if it was ignored. */
2406 return (host->address == NULL)? HOST_IGNORED : HOST_FOUND;
2412 /*************************************************
2413 * Find IP addresses and host names via DNS *
2414 *************************************************/
2416 /* The input is a host_item structure with the name field filled in and the
2417 address field set to NULL. This may be in a chain of other host items. The
2418 lookup may result in more than one IP address, in which case we must created
2419 new host blocks for the additional addresses, and insert them into the chain.
2420 The original name may not be fully qualified. Use the fully_qualified_name
2421 argument to return the official name, as returned by the resolver.
2424 host point to initial host item
2425 ignore_target_hosts a list of hosts to ignore
2426 whichrrs flags indicating which RRs to look for:
2427 HOST_FIND_BY_SRV => look for SRV
2428 HOST_FIND_BY_MX => look for MX
2429 HOST_FIND_BY_A => look for A or AAAA
2430 also flags indicating how the lookup is done
2431 HOST_FIND_QUALIFY_SINGLE ) passed to the
2432 HOST_FIND_SEARCH_PARENTS ) resolver
2433 srv_service when SRV used, the service name
2434 srv_fail_domains DNS errors for these domains => assume nonexist
2435 mx_fail_domains DNS errors for these domains => assume nonexist
2436 fully_qualified_name if not NULL, return fully-qualified name
2437 removed set TRUE if local host was removed from the list
2439 Returns: HOST_FIND_FAILED Failed to find the host or domain;
2440 if there was a syntax error,
2441 host_find_failed_syntax is set.
2442 HOST_FIND_AGAIN Could not resolve at this time
2443 HOST_FOUND Host found
2444 HOST_FOUND_LOCAL The lowest MX record points to this
2445 machine, if MX records were found, or
2446 an A record that was found contains
2447 an address of the local host
2451 host_find_bydns(host_item *host, uschar *ignore_target_hosts, int whichrrs,
2452 uschar *srv_service, uschar *srv_fail_domains, uschar *mx_fail_domains,
2453 uschar **fully_qualified_name, BOOL *removed)
2455 host_item *h, *last;
2463 /* Set the default fully qualified name to the incoming name, initialize the
2464 resolver if necessary, set up the relevant options, and initialize the flag
2465 that gets set for DNS syntax check errors. */
2467 if (fully_qualified_name != NULL) *fully_qualified_name = host->name;
2468 dns_init((whichrrs & HOST_FIND_QUALIFY_SINGLE) != 0,
2469 (whichrrs & HOST_FIND_SEARCH_PARENTS) != 0);
2470 host_find_failed_syntax = FALSE;
2472 /* First, if requested, look for SRV records. The service name is given; we
2473 assume TCP progocol. DNS domain names are constrained to a maximum of 256
2474 characters, so the code below should be safe. */
2476 if ((whichrrs & HOST_FIND_BY_SRV) != 0)
2479 uschar *temp_fully_qualified_name = buffer;
2482 (void)sprintf(CS buffer, "_%s._tcp.%n%.256s", srv_service, &prefix_length,
2486 /* Search for SRV records. If the fully qualified name is different to
2487 the input name, pass back the new original domain, without the prepended
2490 rc = dns_lookup(&dnsa, buffer, ind_type, &temp_fully_qualified_name);
2491 if (temp_fully_qualified_name != buffer && fully_qualified_name != NULL)
2492 *fully_qualified_name = temp_fully_qualified_name + prefix_length;
2494 /* On DNS failures, we give the "try again" error unless the domain is
2495 listed as one for which we continue. */
2497 if (rc == DNS_FAIL || rc == DNS_AGAIN)
2500 if (match_isinlist(host->name, &srv_fail_domains, 0, NULL, NULL, MCL_DOMAIN,
2503 return HOST_FIND_AGAIN;
2504 DEBUG(D_host_lookup) debug_printf("DNS_%s treated as DNS_NODATA "
2505 "(domain in srv_fail_domains)\n", (rc == DNS_FAIL)? "FAIL":"AGAIN");
2509 /* If we did not find any SRV records, search the DNS for MX records, if
2510 requested to do so. If the result is DNS_NOMATCH, it means there is no such
2511 domain, and there's no point in going on to look for address records with the
2512 same domain. The result will be DNS_NODATA if the domain exists but has no MX
2513 records. On DNS failures, we give the "try again" error unless the domain is
2514 listed as one for which we continue. */
2516 if (rc != DNS_SUCCEED && (whichrrs & HOST_FIND_BY_MX) != 0)
2519 rc = dns_lookup(&dnsa, host->name, ind_type, fully_qualified_name);
2520 if (rc == DNS_NOMATCH) return HOST_FIND_FAILED;
2521 if (rc == DNS_FAIL || rc == DNS_AGAIN)
2524 if (match_isinlist(host->name, &mx_fail_domains, 0, NULL, NULL, MCL_DOMAIN,
2527 return HOST_FIND_AGAIN;
2528 DEBUG(D_host_lookup) debug_printf("DNS_%s treated as DNS_NODATA "
2529 "(domain in mx_fail_domains)\n", (rc == DNS_FAIL)? "FAIL":"AGAIN");
2533 /* If we haven't found anything yet, and we are requested to do so, try for an
2534 A or AAAA record. If we find it (or them) check to see that it isn't the local
2537 if (rc != DNS_SUCCEED)
2539 if ((whichrrs & HOST_FIND_BY_A) == 0)
2541 DEBUG(D_host_lookup) debug_printf("Address records are not being sought\n");
2542 return HOST_FIND_FAILED;
2545 last = host; /* End of local chainlet */
2547 host->port = PORT_NONE;
2548 rc = set_address_from_dns(host, &last, ignore_target_hosts, FALSE,
2549 fully_qualified_name);
2551 /* If one or more address records have been found, check that none of them
2552 are local. Since we know the host items all have their IP addresses
2553 inserted, host_scan_for_local_hosts() can only return HOST_FOUND or
2554 HOST_FOUND_LOCAL. We do not need to scan for duplicate IP addresses here,
2555 because set_address_from_dns() removes them. */
2557 if (rc == HOST_FOUND)
2558 rc = host_scan_for_local_hosts(host, &last, removed);
2560 if (rc == HOST_IGNORED) rc = HOST_FIND_FAILED; /* No special action */
2562 DEBUG(D_host_lookup)
2565 if (host->address != NULL)
2567 if (fully_qualified_name != NULL)
2568 debug_printf("fully qualified name = %s\n", *fully_qualified_name);
2569 for (h = host; h != last->next; h = h->next)
2570 debug_printf("%s %s mx=%d sort=%d %s\n", h->name,
2571 (h->address == NULL)? US"<null>" : h->address, h->mx, h->sort_key,
2572 (h->status >= hstatus_unusable)? US"*" : US"");
2579 /* We have found one or more MX or SRV records. Sort them according to
2580 precedence. Put the data for the first one into the existing host block, and
2581 insert new host_item blocks into the chain for the remainder. For equal
2582 precedences one is supposed to randomize the order. To make this happen, the
2583 sorting is actually done on the MX value * 1000 + a random number. This is put
2584 into a host field called sort_key.
2586 In the case of hosts with both IPv6 and IPv4 addresses, we want to choose the
2587 IPv6 address in preference. At this stage, we don't know what kind of address
2588 the host has. We choose a random number < 500; if later we find an A record
2589 first, we add 500 to the random number. Then for any other address records, we
2590 use random numbers in the range 0-499 for AAAA records and 500-999 for A
2593 At this point we remove any duplicates that point to the same host, retaining
2594 only the one with the lowest precedence. We cannot yet check for precedence
2595 greater than that of the local host, because that test cannot be properly done
2596 until the addresses have been found - an MX record may point to a name for this
2597 host which is not the primary hostname. */
2599 last = NULL; /* Indicates that not even the first item is filled yet */
2601 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
2603 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
2606 int weight = 0; /* For SRV records */
2607 int port = PORT_NONE;
2608 uschar *s; /* MUST be unsigned for GETSHORT */
2611 if (rr->type != ind_type) continue;
2613 GETSHORT(precedence, s); /* Pointer s is advanced */
2615 /* For MX records, we use a random "weight" which causes multiple records of
2616 the same precedence to sort randomly. */
2618 if (ind_type == T_MX)
2620 weight = random_number(500);
2623 /* SRV records are specified with a port and a weight. The weight is used
2624 in a special algorithm. However, to start with, we just use it to order the
2625 records of equal priority (precedence). */
2629 GETSHORT(weight, s);
2633 /* Get the name of the host pointed to. */
2635 (void)dn_expand(dnsa.answer, dnsa.answer + dnsa.answerlen, s,
2636 (DN_EXPAND_ARG4_TYPE)data, sizeof(data));
2638 /* Check that we haven't already got this host on the chain; if we have,
2639 keep only the lower precedence. This situation shouldn't occur, but you
2640 never know what junk might get into the DNS (and this case has been seen on
2641 more than one occasion). */
2643 if (last != NULL) /* This is not the first record */
2645 host_item *prev = NULL;
2647 for (h = host; h != last->next; prev = h, h = h->next)
2649 if (strcmpic(h->name, data) == 0)
2651 DEBUG(D_host_lookup)
2652 debug_printf("discarded duplicate host %s (MX=%d)\n", data,
2653 (precedence > h->mx)? precedence : h->mx);
2654 if (precedence >= h->mx) goto NEXT_MX_RR; /* Skip greater precedence */
2655 if (h == host) /* Override first item */
2658 host->sort_key = precedence * 1000 + weight;
2662 /* Unwanted host item is not the first in the chain, so we can get
2663 get rid of it by cutting it out. */
2665 prev->next = h->next;
2666 if (h == last) last = prev;
2672 /* If this is the first MX or SRV record, put the data into the existing host
2673 block. Otherwise, add a new block in the correct place; if it has to be
2674 before the first block, copy the first block's data to a new second block. */
2678 host->name = string_copy_dnsdomain(data);
2679 host->address = NULL;
2681 host->mx = precedence;
2682 host->sort_key = precedence * 1000 + weight;
2683 host->status = hstatus_unknown;
2684 host->why = hwhy_unknown;
2688 /* Make a new host item and seek the correct insertion place */
2692 int sort_key = precedence * 1000 + weight;
2693 host_item *next = store_get(sizeof(host_item));
2694 next->name = string_copy_dnsdomain(data);
2695 next->address = NULL;
2697 next->mx = precedence;
2698 next->sort_key = sort_key;
2699 next->status = hstatus_unknown;
2700 next->why = hwhy_unknown;
2703 /* Handle the case when we have to insert before the first item. */
2705 if (sort_key < host->sort_key)
2712 if (last == host) last = next;
2715 /* Else scan down the items we have inserted as part of this exercise;
2716 don't go further. */
2720 for (h = host; h != last; h = h->next)
2722 if (sort_key < h->next->sort_key)
2724 next->next = h->next;
2730 /* Join on after the last host item that's part of this
2731 processing if we haven't stopped sooner. */
2735 next->next = last->next;
2742 NEXT_MX_RR: continue;
2745 /* If the list of hosts was obtained from SRV records, there are two things to
2746 do. First, if there is only one host, and it's name is ".", it means there is
2747 no SMTP service at this domain. Otherwise, we have to sort the hosts of equal
2748 priority according to their weights, using an algorithm that is defined in RFC
2749 2782. The hosts are currently sorted by priority and weight. For each priority
2750 group we have to pick off one host and put it first, and then repeat for any
2751 remaining in the same priority group. */
2753 if (ind_type == T_SRV)
2757 if (host == last && host->name[0] == 0)
2759 DEBUG(D_host_lookup) debug_printf("the single SRV record is \".\"\n");
2760 return HOST_FIND_FAILED;
2763 DEBUG(D_host_lookup)
2765 debug_printf("original ordering of hosts from SRV records:\n");
2766 for (h = host; h != last->next; h = h->next)
2767 debug_printf(" %s P=%d W=%d\n", h->name, h->mx, h->sort_key % 1000);
2770 for (pptr = &host, h = host; h != last; pptr = &(h->next), h = h->next)
2775 /* Find the last following host that has the same precedence. At the same
2776 time, compute the sum of the weights and the running totals. These can be
2777 stored in the sort_key field. */
2779 for (hh = h; hh != last; hh = hh->next)
2781 int weight = hh->sort_key % 1000; /* was precedence * 1000 + weight */
2784 if (hh->mx != hh->next->mx) break;
2787 /* If there's more than one host at this precedence (priority), we need to
2788 pick one to go first. */
2794 int randomizer = random_number(sum + 1);
2796 for (ppptr = pptr, hhh = h;
2798 ppptr = &(hhh->next), hhh = hhh->next)
2800 if (hhh->sort_key >= randomizer) break;
2803 /* hhh now points to the host that should go first; ppptr points to the
2804 place that points to it. Unfortunately, if the start of the minilist is
2805 the start of the entire list, we can't just swap the items over, because
2806 we must not change the value of host, since it is passed in from outside.
2807 One day, this could perhaps be changed.
2809 The special case is fudged by putting the new item *second* in the chain,
2810 and then transferring the data between the first and second items. We
2811 can't just swap the first and the chosen item, because that would mean
2812 that an item with zero weight might no longer be first. */
2816 *ppptr = hhh->next; /* Cuts it out of the chain */
2820 host_item temp = *h;
2823 hhh->next = temp.next;
2829 hhh->next = h; /* The rest of the chain follows it */
2830 *pptr = hhh; /* It takes the place of h */
2831 h = hhh; /* It's now the start of this minilist */
2836 /* A host has been chosen to be first at this priority and h now points
2837 to this host. There may be others at the same priority, or others at a
2838 different priority. Before we leave this host, we need to put back a sort
2839 key of the traditional MX kind, in case this host is multihomed, because
2840 the sort key is used for ordering the multiple IP addresses. We do not need
2841 to ensure that these new sort keys actually reflect the order of the hosts,
2844 h->sort_key = h->mx * 1000 + random_number(500);
2845 } /* Move on to the next host */
2848 /* Now we have to find IP addresses for all the hosts. We have ensured above
2849 that the names in all the host items are unique. Before release 4.61 we used to
2850 process records from the additional section in the DNS packet that returned the
2851 MX or SRV records. However, a DNS name server is free to drop any resource
2852 records from the additional section. In theory, this has always been a
2853 potential problem, but it is exacerbated by the advent of IPv6. If a host had
2854 several IPv4 addresses and some were not in the additional section, at least
2855 Exim would try the others. However, if a host had both IPv4 and IPv6 addresses
2856 and all the IPv4 (say) addresses were absent, Exim would try only for a IPv6
2857 connection, and never try an IPv4 address. When there was only IPv4
2858 connectivity, this was a disaster that did in practice occur.
2860 So, from release 4.61 onwards, we always search for A and AAAA records
2861 explicitly. The names shouldn't point to CNAMES, but we use the general lookup
2862 function that handles them, just in case. If any lookup gives a soft error,
2863 change the default yield.
2865 For these DNS lookups, we must disable qualify_single and search_parents;
2866 otherwise invalid host names obtained from MX or SRV records can cause trouble
2867 if they happen to match something local. */
2869 yield = HOST_FIND_FAILED; /* Default yield */
2870 dns_init(FALSE, FALSE); /* Disable qualify_single and search_parents */
2872 for (h = host; h != last->next; h = h->next)
2874 if (h->address != NULL) continue; /* Inserted by a multihomed host */
2875 rc = set_address_from_dns(h, &last, ignore_target_hosts, allow_mx_to_ip, NULL);
2876 if (rc != HOST_FOUND)
2878 h->status = hstatus_unusable;
2879 if (rc == HOST_FIND_AGAIN)
2882 h->why = hwhy_deferred;
2885 h->why = (rc == HOST_IGNORED)? hwhy_ignored : hwhy_failed;
2889 /* Scan the list for any hosts that are marked unusable because they have
2890 been explicitly ignored, and remove them from the list, as if they did not
2891 exist. If we end up with just a single, ignored host, flatten its fields as if
2892 nothing was found. */
2894 if (ignore_target_hosts != NULL)
2896 host_item *prev = NULL;
2897 for (h = host; h != last->next; h = h->next)
2900 if (h->why != hwhy_ignored) /* Non ignored host, just continue */
2902 else if (prev == NULL) /* First host is ignored */
2904 if (h != last) /* First is not last */
2906 if (h->next == last) last = h; /* Overwrite it with next */
2907 *h = *(h->next); /* and reprocess it. */
2908 goto REDO; /* C should have redo, like Perl */
2911 else /* Ignored host is not first - */
2913 prev->next = h->next;
2914 if (h == last) last = prev;
2918 if (host->why == hwhy_ignored) host->address = NULL;
2921 /* There is still one complication in the case of IPv6. Although the code above
2922 arranges that IPv6 addresses take precedence over IPv4 addresses for multihomed
2923 hosts, it doesn't do this for addresses that apply to different hosts with the
2924 same MX precedence, because the sorting on MX precedence happens first. So we
2925 have to make another pass to check for this case. We ensure that, within a
2926 single MX preference value, IPv6 addresses come first. This can separate the
2927 addresses of a multihomed host, but that should not matter. */
2930 if (h != last && !disable_ipv6)
2932 for (h = host; h != last; h = h->next)
2935 host_item *next = h->next;
2936 if (h->mx != next->mx || /* If next is different MX */
2937 h->address == NULL || /* OR this one is unset */
2938 Ustrchr(h->address, ':') != NULL || /* OR this one is IPv6 */
2939 (next->address != NULL &&
2940 Ustrchr(next->address, ':') == NULL)) /* OR next is IPv4 */
2941 continue; /* move on to next */
2942 temp = *h; /* otherwise, swap */
2943 temp.next = next->next;
2951 /* Remove any duplicate IP addresses and then scan the list of hosts for any
2952 whose IP addresses are on the local host. If any are found, all hosts with the
2953 same or higher MX values are removed. However, if the local host has the lowest
2954 numbered MX, then HOST_FOUND_LOCAL is returned. Otherwise, if at least one host
2955 with an IP address is on the list, HOST_FOUND is returned. Otherwise,
2956 HOST_FIND_FAILED is returned, but in this case do not update the yield, as it
2957 might have been set to HOST_FIND_AGAIN just above here. If not, it will already
2958 be HOST_FIND_FAILED. */
2960 host_remove_duplicates(host, &last);
2961 rc = host_scan_for_local_hosts(host, &last, removed);
2962 if (rc != HOST_FIND_FAILED) yield = rc;
2964 DEBUG(D_host_lookup)
2966 if (fully_qualified_name != NULL)
2967 debug_printf("fully qualified name = %s\n", *fully_qualified_name);
2968 debug_printf("host_find_bydns yield = %s (%d); returned hosts:\n",
2969 (yield == HOST_FOUND)? "HOST_FOUND" :
2970 (yield == HOST_FOUND_LOCAL)? "HOST_FOUND_LOCAL" :
2971 (yield == HOST_FIND_AGAIN)? "HOST_FIND_AGAIN" :
2972 (yield == HOST_FIND_FAILED)? "HOST_FIND_FAILED" : "?",
2974 for (h = host; h != last->next; h = h->next)
2976 debug_printf(" %s %s MX=%d ", h->name,
2977 (h->address == NULL)? US"<null>" : h->address, h->mx);
2978 if (h->port != PORT_NONE) debug_printf("port=%d ", h->port);
2979 if (h->status >= hstatus_unusable) debug_printf("*");
2990 /*************************************************
2991 **************************************************
2992 * Stand-alone test program *
2993 **************************************************
2994 *************************************************/
2998 int main(int argc, char **cargv)
3001 int whichrrs = HOST_FIND_BY_MX | HOST_FIND_BY_A;
3002 BOOL byname = FALSE;
3003 BOOL qualify_single = TRUE;
3004 BOOL search_parents = FALSE;
3005 uschar **argv = USS cargv;
3008 disable_ipv6 = FALSE;
3009 primary_hostname = US"";
3010 store_pool = POOL_MAIN;
3011 debug_selector = D_host_lookup|D_interface;
3012 debug_file = stdout;
3013 debug_fd = fileno(debug_file);
3015 printf("Exim stand-alone host functions test\n");
3017 host_find_interfaces();
3018 debug_selector = D_host_lookup | D_dns;
3020 if (argc > 1) primary_hostname = argv[1];
3022 /* So that debug level changes can be done first */
3024 dns_init(qualify_single, search_parents);
3026 printf("Testing host lookup\n");
3028 while (Ufgets(buffer, 256, stdin) != NULL)
3031 int len = Ustrlen(buffer);
3032 uschar *fully_qualified_name;
3034 while (len > 0 && isspace(buffer[len-1])) len--;
3037 if (Ustrcmp(buffer, "q") == 0) break;
3039 if (Ustrcmp(buffer, "byname") == 0) byname = TRUE;
3040 else if (Ustrcmp(buffer, "no_byname") == 0) byname = FALSE;
3041 else if (Ustrcmp(buffer, "a_only") == 0) whichrrs = HOST_FIND_BY_A;
3042 else if (Ustrcmp(buffer, "mx_only") == 0) whichrrs = HOST_FIND_BY_MX;
3043 else if (Ustrcmp(buffer, "srv_only") == 0) whichrrs = HOST_FIND_BY_SRV;
3044 else if (Ustrcmp(buffer, "srv+a") == 0)
3045 whichrrs = HOST_FIND_BY_SRV | HOST_FIND_BY_A;
3046 else if (Ustrcmp(buffer, "srv+mx") == 0)
3047 whichrrs = HOST_FIND_BY_SRV | HOST_FIND_BY_MX;
3048 else if (Ustrcmp(buffer, "srv+mx+a") == 0)
3049 whichrrs = HOST_FIND_BY_SRV | HOST_FIND_BY_MX | HOST_FIND_BY_A;
3050 else if (Ustrcmp(buffer, "qualify_single") == 0) qualify_single = TRUE;
3051 else if (Ustrcmp(buffer, "no_qualify_single") == 0) qualify_single = FALSE;
3052 else if (Ustrcmp(buffer, "search_parents") == 0) search_parents = TRUE;
3053 else if (Ustrcmp(buffer, "no_search_parents") == 0) search_parents = FALSE;
3054 else if (Ustrcmp(buffer, "test_harness") == 0)
3055 running_in_test_harness = !running_in_test_harness;
3056 else if (Ustrcmp(buffer, "ipv6") == 0) disable_ipv6 = !disable_ipv6;
3057 else if (Ustrcmp(buffer, "res_debug") == 0)
3059 _res.options ^= RES_DEBUG;
3061 else if (Ustrncmp(buffer, "retrans", 7) == 0)
3063 (void)sscanf(CS(buffer+8), "%d", &dns_retrans);
3064 _res.retrans = dns_retrans;
3066 else if (Ustrncmp(buffer, "retry", 5) == 0)
3068 (void)sscanf(CS(buffer+6), "%d", &dns_retry);
3069 _res.retry = dns_retry;
3073 int flags = whichrrs;
3079 h.status = hstatus_unknown;
3080 h.why = hwhy_unknown;
3083 if (qualify_single) flags |= HOST_FIND_QUALIFY_SINGLE;
3084 if (search_parents) flags |= HOST_FIND_SEARCH_PARENTS;
3087 host_find_byname(&h, NULL, flags, &fully_qualified_name, TRUE)
3089 host_find_bydns(&h, NULL, flags, US"smtp", NULL, NULL,
3090 &fully_qualified_name, NULL);
3092 if (rc == HOST_FIND_FAILED) printf("Failed\n");
3093 else if (rc == HOST_FIND_AGAIN) printf("Again\n");
3094 else if (rc == HOST_FOUND_LOCAL) printf("Local\n");
3100 printf("Testing host_aton\n");
3102 while (Ufgets(buffer, 256, stdin) != NULL)
3106 int len = Ustrlen(buffer);
3108 while (len > 0 && isspace(buffer[len-1])) len--;
3111 if (Ustrcmp(buffer, "q") == 0) break;
3113 len = host_aton(buffer, x);
3114 printf("length = %d ", len);
3115 for (i = 0; i < len; i++)
3117 printf("%04x ", (x[i] >> 16) & 0xffff);
3118 printf("%04x ", x[i] & 0xffff);
3125 printf("Testing host_name_lookup\n");
3127 while (Ufgets(buffer, 256, stdin) != NULL)
3129 int len = Ustrlen(buffer);
3130 while (len > 0 && isspace(buffer[len-1])) len--;
3132 if (Ustrcmp(buffer, "q") == 0) break;
3133 sender_host_address = buffer;
3134 sender_host_name = NULL;
3135 sender_host_aliases = NULL;
3136 host_lookup_msg = US"";
3137 host_lookup_failed = FALSE;
3138 if (host_name_lookup() == FAIL) /* Debug causes printing */
3139 printf("Lookup failed:%s\n", host_lookup_msg);
3147 #endif /* STAND_ALONE */