1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2014 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* Functions concerned with verifying things. The original code for callout
9 caching was contributed by Kevin Fleming (but I hacked it around a bit). */
13 #include "transports/smtp.h"
15 #define CUTTHROUGH_CMD_TIMEOUT 30 /* timeout for cutthrough-routing calls */
16 #define CUTTHROUGH_DATA_TIMEOUT 60 /* timeout for cutthrough-routing calls */
17 address_item cutthrough_addr;
18 static smtp_outblock ctblock;
19 uschar ctbuffer[8192];
22 /* Structure for caching DNSBL lookups */
24 typedef struct dnsbl_cache_block {
32 /* Anchor for DNSBL cache */
34 static tree_node *dnsbl_cache = NULL;
37 /* Bits for match_type in one_check_dnsbl() */
44 /*************************************************
45 * Retrieve a callout cache record *
46 *************************************************/
48 /* If a record exists, check whether it has expired.
51 dbm_file an open hints file
53 type "address" or "domain"
54 positive_expire expire time for positive records
55 negative_expire expire time for negative records
57 Returns: the cache record if a non-expired one exists, else NULL
60 static dbdata_callout_cache *
61 get_callout_cache_record(open_db *dbm_file, uschar *key, uschar *type,
62 int positive_expire, int negative_expire)
67 dbdata_callout_cache *cache_record;
69 cache_record = dbfn_read_with_length(dbm_file, key, &length);
71 if (cache_record == NULL)
73 HDEBUG(D_verify) debug_printf("callout cache: no %s record found\n", type);
77 /* We treat a record as "negative" if its result field is not positive, or if
78 it is a domain record and the postmaster field is negative. */
80 negative = cache_record->result != ccache_accept ||
81 (type[0] == 'd' && cache_record->postmaster_result == ccache_reject);
82 expire = negative? negative_expire : positive_expire;
85 if (now - cache_record->time_stamp > expire)
87 HDEBUG(D_verify) debug_printf("callout cache: %s record expired\n", type);
91 /* If this is a non-reject domain record, check for the obsolete format version
92 that doesn't have the postmaster and random timestamps, by looking at the
93 length. If so, copy it to a new-style block, replicating the record's
94 timestamp. Then check the additional timestamps. (There's no point wasting
95 effort if connections are rejected.) */
97 if (type[0] == 'd' && cache_record->result != ccache_reject)
99 if (length == sizeof(dbdata_callout_cache_obs))
101 dbdata_callout_cache *new = store_get(sizeof(dbdata_callout_cache));
102 memcpy(new, cache_record, length);
103 new->postmaster_stamp = new->random_stamp = new->time_stamp;
107 if (now - cache_record->postmaster_stamp > expire)
108 cache_record->postmaster_result = ccache_unknown;
110 if (now - cache_record->random_stamp > expire)
111 cache_record->random_result = ccache_unknown;
114 HDEBUG(D_verify) debug_printf("callout cache: found %s record\n", type);
120 /*************************************************
121 * Do callout verification for an address *
122 *************************************************/
124 /* This function is called from verify_address() when the address has routed to
125 a host list, and a callout has been requested. Callouts are expensive; that is
126 why a cache is used to improve the efficiency.
129 addr the address that's been routed
130 host_list the list of hosts to try
131 tf the transport feedback block
133 ifstring "interface" option from transport, or NULL
134 portstring "port" option from transport, or NULL
135 protocolstring "protocol" option from transport, or NULL
136 callout the per-command callout timeout
137 callout_overall the overall callout timeout (if < 0 use 4*callout)
138 callout_connect the callout connection timeout (if < 0 use callout)
139 options the verification options - these bits are used:
140 vopt_is_recipient => this is a recipient address
141 vopt_callout_no_cache => don't use callout cache
142 vopt_callout_fullpm => if postmaster check, do full one
143 vopt_callout_random => do the "random" thing
144 vopt_callout_recipsender => use real sender for recipient
145 vopt_callout_recippmaster => use postmaster for recipient
146 se_mailfrom MAIL FROM address for sender verify; NULL => ""
147 pm_mailfrom if non-NULL, do the postmaster check with this sender
149 Returns: OK/FAIL/DEFER
153 do_callout(address_item *addr, host_item *host_list, transport_feedback *tf,
154 int callout, int callout_overall, int callout_connect, int options,
155 uschar *se_mailfrom, uschar *pm_mailfrom)
157 BOOL is_recipient = (options & vopt_is_recipient) != 0;
158 BOOL callout_no_cache = (options & vopt_callout_no_cache) != 0;
159 BOOL callout_random = (options & vopt_callout_random) != 0;
162 int old_domain_cache_result = ccache_accept;
165 uschar *from_address;
166 uschar *random_local_part = NULL;
167 uschar *save_deliver_domain = deliver_domain;
168 uschar **failure_ptr = is_recipient?
169 &recipient_verify_failure : &sender_verify_failure;
171 open_db *dbm_file = NULL;
172 dbdata_callout_cache new_domain_record;
173 dbdata_callout_cache_address new_address_record;
175 time_t callout_start_time;
177 new_domain_record.result = ccache_unknown;
178 new_domain_record.postmaster_result = ccache_unknown;
179 new_domain_record.random_result = ccache_unknown;
181 memset(&new_address_record, 0, sizeof(new_address_record));
183 /* For a recipient callout, the key used for the address cache record must
184 include the sender address if we are using the real sender in the callout,
185 because that may influence the result of the callout. */
187 address_key = addr->address;
192 if ((options & vopt_callout_recipsender) != 0)
194 address_key = string_sprintf("%s/<%s>", addr->address, sender_address);
195 from_address = sender_address;
197 else if ((options & vopt_callout_recippmaster) != 0)
199 address_key = string_sprintf("%s/<postmaster@%s>", addr->address,
200 qualify_domain_sender);
201 from_address = string_sprintf("postmaster@%s", qualify_domain_sender);
205 /* For a sender callout, we must adjust the key if the mailfrom address is not
210 from_address = (se_mailfrom == NULL)? US"" : se_mailfrom;
211 if (from_address[0] != 0)
212 address_key = string_sprintf("%s/<%s>", addr->address, from_address);
215 /* Open the callout cache database, it it exists, for reading only at this
216 stage, unless caching has been disabled. */
218 if (callout_no_cache)
220 HDEBUG(D_verify) debug_printf("callout cache: disabled by no_cache\n");
222 else if ((dbm_file = dbfn_open(US"callout", O_RDWR, &dbblock, FALSE)) == NULL)
224 HDEBUG(D_verify) debug_printf("callout cache: not available\n");
227 /* If a cache database is available see if we can avoid the need to do an
228 actual callout by making use of previously-obtained data. */
230 if (dbm_file != NULL)
232 dbdata_callout_cache_address *cache_address_record;
233 dbdata_callout_cache *cache_record = get_callout_cache_record(dbm_file,
234 addr->domain, US"domain",
235 callout_cache_domain_positive_expire,
236 callout_cache_domain_negative_expire);
238 /* If an unexpired cache record was found for this domain, see if the callout
239 process can be short-circuited. */
241 if (cache_record != NULL)
243 /* In most cases, if an early command (up to and including MAIL FROM:<>)
244 was rejected, there is no point carrying on. The callout fails. However, if
245 we are doing a recipient verification with use_sender or use_postmaster
246 set, a previous failure of MAIL FROM:<> doesn't count, because this time we
247 will be using a non-empty sender. We have to remember this situation so as
248 not to disturb the cached domain value if this whole verification succeeds
249 (we don't want it turning into "accept"). */
251 old_domain_cache_result = cache_record->result;
253 if (cache_record->result == ccache_reject ||
254 (*from_address == 0 && cache_record->result == ccache_reject_mfnull))
256 setflag(addr, af_verify_nsfail);
258 debug_printf("callout cache: domain gave initial rejection, or "
259 "does not accept HELO or MAIL FROM:<>\n");
260 setflag(addr, af_verify_nsfail);
261 addr->user_message = US"(result of an earlier callout reused).";
263 *failure_ptr = US"mail";
267 /* If a previous check on a "random" local part was accepted, we assume
268 that the server does not do any checking on local parts. There is therefore
269 no point in doing the callout, because it will always be successful. If a
270 random check previously failed, arrange not to do it again, but preserve
271 the data in the new record. If a random check is required but hasn't been
272 done, skip the remaining cache processing. */
274 if (callout_random) switch(cache_record->random_result)
278 debug_printf("callout cache: domain accepts random addresses\n");
279 goto END_CALLOUT; /* Default yield is OK */
283 debug_printf("callout cache: domain rejects random addresses\n");
284 callout_random = FALSE;
285 new_domain_record.random_result = ccache_reject;
286 new_domain_record.random_stamp = cache_record->random_stamp;
291 debug_printf("callout cache: need to check random address handling "
292 "(not cached or cache expired)\n");
296 /* If a postmaster check is requested, but there was a previous failure,
297 there is again no point in carrying on. If a postmaster check is required,
298 but has not been done before, we are going to have to do a callout, so skip
299 remaining cache processing. */
301 if (pm_mailfrom != NULL)
303 if (cache_record->postmaster_result == ccache_reject)
305 setflag(addr, af_verify_pmfail);
307 debug_printf("callout cache: domain does not accept "
308 "RCPT TO:<postmaster@domain>\n");
310 *failure_ptr = US"postmaster";
311 setflag(addr, af_verify_pmfail);
312 addr->user_message = US"(result of earlier verification reused).";
315 if (cache_record->postmaster_result == ccache_unknown)
318 debug_printf("callout cache: need to check RCPT "
319 "TO:<postmaster@domain> (not cached or cache expired)\n");
323 /* If cache says OK, set pm_mailfrom NULL to prevent a redundant
324 postmaster check if the address itself has to be checked. Also ensure
325 that the value in the cache record is preserved (with its old timestamp).
328 HDEBUG(D_verify) debug_printf("callout cache: domain accepts RCPT "
329 "TO:<postmaster@domain>\n");
331 new_domain_record.postmaster_result = ccache_accept;
332 new_domain_record.postmaster_stamp = cache_record->postmaster_stamp;
336 /* We can't give a result based on information about the domain. See if there
337 is an unexpired cache record for this specific address (combined with the
338 sender address if we are doing a recipient callout with a non-empty sender).
341 cache_address_record = (dbdata_callout_cache_address *)
342 get_callout_cache_record(dbm_file,
343 address_key, US"address",
344 callout_cache_positive_expire,
345 callout_cache_negative_expire);
347 if (cache_address_record != NULL)
349 if (cache_address_record->result == ccache_accept)
352 debug_printf("callout cache: address record is positive\n");
357 debug_printf("callout cache: address record is negative\n");
358 addr->user_message = US"Previous (cached) callout verification failure";
359 *failure_ptr = US"recipient";
365 /* Close the cache database while we actually do the callout for real. */
368 dbfn_close(dbm_file);
372 if (!addr->transport)
374 HDEBUG(D_verify) debug_printf("cannot callout via null transport\n");
376 else if (Ustrcmp(addr->transport->driver_name, "smtp") != 0)
377 log_write(0, LOG_MAIN|LOG_PANIC|LOG_CONFIG_FOR, "callout transport '%s': %s is non-smtp",
378 addr->transport->name, addr->transport->driver_name);
381 smtp_transport_options_block *ob =
382 (smtp_transport_options_block *)addr->transport->options_block;
384 /* The information wasn't available in the cache, so we have to do a real
385 callout and save the result in the cache for next time, unless no_cache is set,
386 or unless we have a previously cached negative random result. If we are to test
387 with a random local part, ensure that such a local part is available. If not,
388 log the fact, but carry on without randomming. */
390 if (callout_random && callout_random_local_part != NULL)
392 random_local_part = expand_string(callout_random_local_part);
393 if (random_local_part == NULL)
394 log_write(0, LOG_MAIN|LOG_PANIC, "failed to expand "
395 "callout_random_local_part: %s", expand_string_message);
398 /* Default the connect and overall callout timeouts if not set, and record the
399 time we are starting so that we can enforce it. */
401 if (callout_overall < 0) callout_overall = 4 * callout;
402 if (callout_connect < 0) callout_connect = callout;
403 callout_start_time = time(NULL);
405 /* Before doing a real callout, if this is an SMTP connection, flush the SMTP
406 output because a callout might take some time. When PIPELINING is active and
407 there are many recipients, the total time for doing lots of callouts can add up
408 and cause the client to time out. So in this case we forgo the PIPELINING
411 if (smtp_out != NULL && !disable_callout_flush) mac_smtp_fflush();
413 /* Now make connections to the hosts and do real callouts. The list of hosts
414 is passed in as an argument. */
416 for (host = host_list; host != NULL && !done; host = host->next)
418 smtp_inblock inblock;
419 smtp_outblock outblock;
422 BOOL send_quit = TRUE;
423 uschar *active_hostname = smtp_active_hostname;
427 BOOL suppress_tls = FALSE;
428 uschar *interface = NULL; /* Outgoing interface to use; NULL => any */
429 #if defined(SUPPORT_TLS) && defined(EXPERIMENTAL_DANE)
431 dns_answer tlsa_dnsa;
433 uschar inbuffer[4096];
434 uschar outbuffer[1024];
435 uschar responsebuffer[4096];
437 clearflag(addr, af_verify_pmfail); /* postmaster callout flag */
438 clearflag(addr, af_verify_nsfail); /* null sender callout flag */
440 /* Skip this host if we don't have an IP address for it. */
442 if (host->address == NULL)
444 DEBUG(D_verify) debug_printf("no IP address for host name %s: skipping\n",
449 /* Check the overall callout timeout */
451 if (time(NULL) - callout_start_time >= callout_overall)
453 HDEBUG(D_verify) debug_printf("overall timeout for callout exceeded\n");
457 /* Set IPv4 or IPv6 */
459 host_af = (Ustrchr(host->address, ':') == NULL)? AF_INET:AF_INET6;
461 /* Expand and interpret the interface and port strings. The latter will not
462 be used if there is a host-specific port (e.g. from a manualroute router).
463 This has to be delayed till now, because they may expand differently for
464 different hosts. If there's a failure, log it, but carry on with the
467 deliver_host = host->name;
468 deliver_host_address = host->address;
469 deliver_host_port = host->port;
470 deliver_domain = addr->domain;
472 if (!smtp_get_interface(tf->interface, host_af, addr, NULL, &interface,
474 !smtp_get_port(tf->port, addr, &port, US"callout"))
475 log_write(0, LOG_MAIN|LOG_PANIC, "<%s>: %s", addr->address,
478 /* Set HELO string according to the protocol */
479 lmtp= Ustrcmp(tf->protocol, "lmtp") == 0;
480 smtps= Ustrcmp(tf->protocol, "smtps") == 0;
483 HDEBUG(D_verify) debug_printf("interface=%s port=%d\n", interface, port);
485 #if defined(SUPPORT_TLS) && defined(EXPERIMENTAL_DANE)
490 tls_out.dane_verified = FALSE;
491 tls_out.tlsa_usage = 0;
493 dane_required = verify_check_this_host(&ob->hosts_require_dane, NULL,
494 host->name, host->address, NULL) == OK;
496 if (host->dnssec == DS_YES)
499 || verify_check_this_host(&ob->hosts_try_dane, NULL,
500 host->name, host->address, NULL) == OK
502 if ((rc = tlsa_lookup(host, &tlsa_dnsa, dane_required, &dane)) != OK)
505 else if (dane_required)
507 log_write(0, LOG_MAIN, "DANE error: %s lookup not DNSSEC", host->name);
512 ob->tls_tempfail_tryclear = FALSE;
516 /* Set up the buffer for reading SMTP response packets. */
518 inblock.buffer = inbuffer;
519 inblock.buffersize = sizeof(inbuffer);
520 inblock.ptr = inbuffer;
521 inblock.ptrend = inbuffer;
523 /* Set up the buffer for holding SMTP commands while pipelining */
525 outblock.buffer = outbuffer;
526 outblock.buffersize = sizeof(outbuffer);
527 outblock.ptr = outbuffer;
528 outblock.cmd_count = 0;
529 outblock.authenticating = FALSE;
531 /* Reset the parameters of a TLS session */
532 tls_out.cipher = tls_out.peerdn = NULL;
534 /* Connect to the host; on failure, just loop for the next one, but we
535 set the error for the last one. Use the callout_connect timeout. */
537 tls_retry_connection:
539 inblock.sock = outblock.sock =
540 smtp_connect(host, host_af, port, interface, callout_connect, TRUE, NULL
541 #ifdef EXPERIMENTAL_TPDA
542 /*XXX tpda action? NULL for now. */
546 /* reconsider DSCP here */
547 if (inblock.sock < 0)
549 addr->message = string_sprintf("could not connect to %s [%s]: %s",
550 host->name, host->address, strerror(errno));
551 deliver_host = deliver_host_address = NULL;
552 deliver_domain = save_deliver_domain;
556 /* Expand the helo_data string to find the host name to use. */
558 if (tf->helo_data != NULL)
560 uschar *s = expand_string(tf->helo_data);
562 log_write(0, LOG_MAIN|LOG_PANIC, "<%s>: failed to expand transport's "
563 "helo_data value for callout: %s", addr->address,
564 expand_string_message);
565 else active_hostname = s;
568 /* Wait for initial response, and send HELO. The smtp_write_command()
569 function leaves its command in big_buffer. This is used in error responses.
570 Initialize it in case the connection is rejected. */
572 Ustrcpy(big_buffer, "initial connection");
574 /* Unless ssl-on-connect, wait for the initial greeting */
578 if (!smtps || (smtps && tls_out.active >= 0))
581 if (!(done= smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer), '2', callout)))
582 goto RESPONSE_FAILED;
584 #ifdef EXPERIMENTAL_TPDA
585 if (tpda_raise_event(addr->transport->tpda_event_action,
586 US"smtp:connect", responsebuffer) == DEFER)
588 /* Logging? Debug? */
589 goto RESPONSE_FAILED;
594 /* Not worth checking greeting line for ESMTP support */
595 if (!(esmtp = verify_check_this_host(&(ob->hosts_avoid_esmtp), NULL,
596 host->name, host->address, NULL) != OK))
598 debug_printf("not sending EHLO (host matches hosts_avoid_esmtp)\n");
603 if (smtps && tls_out.active < 0) /* ssl-on-connect, first pass */
606 ob->tls_tempfail_tryclear = FALSE;
608 else /* all other cases */
613 if (!(done= smtp_write_command(&outblock, FALSE, "%s %s\r\n",
614 !esmtp? "HELO" : lmtp? "LHLO" : "EHLO", active_hostname) >= 0))
616 if (!smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer), '2', callout))
618 if (errno != 0 || responsebuffer[0] == 0 || lmtp || !esmtp || tls_out.active >= 0)
621 goto RESPONSE_FAILED;
627 goto esmtp_retry; /* fallback to HELO */
630 /* Set tls_offered if the response to EHLO specifies support for STARTTLS. */
632 if (esmtp && !suppress_tls && tls_out.active < 0)
634 if (regex_STARTTLS == NULL) regex_STARTTLS =
635 regex_must_compile(US"\\n250[\\s\\-]STARTTLS(\\s|\\n|$)", FALSE, TRUE);
637 tls_offered = pcre_exec(regex_STARTTLS, NULL, CS responsebuffer,
638 Ustrlen(responsebuffer), 0, PCRE_EOPT, NULL, 0) >= 0;
645 /* If TLS is available on this connection attempt to
646 start up a TLS session, unless the host is in hosts_avoid_tls. If successful,
647 send another EHLO - the server may give a different answer in secure mode. We
648 use a separate buffer for reading the response to STARTTLS so that if it is
649 negative, the original EHLO data is available for subsequent analysis, should
650 the client not be required to use TLS. If the response is bad, copy the buffer
651 for error analysis. */
655 verify_check_this_host(&(ob->hosts_avoid_tls), NULL, host->name,
656 host->address, NULL) != OK &&
657 verify_check_this_host(&(ob->hosts_verify_avoid_tls), NULL, host->name,
658 host->address, NULL) != OK
661 uschar buffer2[4096];
663 && !(done= smtp_write_command(&outblock, FALSE, "STARTTLS\r\n") >= 0))
666 /* If there is an I/O error, transmission of this message is deferred. If
667 there is a temporary rejection of STARRTLS and tls_tempfail_tryclear is
668 false, we also defer. However, if there is a temporary rejection of STARTTLS
669 and tls_tempfail_tryclear is true, or if there is an outright rejection of
670 STARTTLS, we carry on. This means we will try to send the message in clear,
671 unless the host is in hosts_require_tls (tested below). */
673 if (!smtps && !smtp_read_response(&inblock, buffer2, sizeof(buffer2), '2',
674 ob->command_timeout))
676 if (errno != 0 || buffer2[0] == 0 ||
677 (buffer2[0] == '4' && !ob->tls_tempfail_tryclear))
679 Ustrncpy(responsebuffer, buffer2, sizeof(responsebuffer));
681 goto RESPONSE_FAILED;
685 /* STARTTLS accepted or ssl-on-connect: try to negotiate a TLS session. */
688 int oldtimeout = ob->command_timeout;
691 ob->command_timeout = callout;
692 rc = tls_client_start(inblock.sock, host, addr, addr->transport
693 #ifdef EXPERIMENTAL_DANE
694 , dane ? &tlsa_dnsa : NULL
697 ob->command_timeout = oldtimeout;
699 /* TLS negotiation failed; give an error. Try in clear on a new connection,
700 if the options permit it for this host. */
704 && ob->tls_tempfail_tryclear
706 && verify_check_this_host(&(ob->hosts_require_tls), NULL,
707 host->name, host->address, NULL) != OK
710 (void)close(inblock.sock);
711 #ifdef EXPERIMENTAL_TPDA
712 (void) tpda_raise_event(addr->transport->tpda_event_action,
713 US"tcp:close", NULL);
715 log_write(0, LOG_MAIN, "TLS session failure: delivering unencrypted "
716 "to %s [%s] (not in hosts_require_tls)", host->name, host->address);
718 goto tls_retry_connection;
720 /*save_errno = ERRNO_TLSFAILURE;*/
721 /*message = US"failure while setting up TLS session";*/
727 /* TLS session is set up. Copy info for logging. */
728 addr->cipher = tls_out.cipher;
729 addr->peerdn = tls_out.peerdn;
731 /* For SMTPS we need to wait for the initial OK response, then do HELO. */
733 goto smtps_redo_greeting;
735 /* For STARTTLS we need to redo EHLO */
740 /* If the host is required to use a secure channel, ensure that we have one. */
741 if (tls_out.active < 0)
743 #ifdef EXPERIMENTAL_DANE
746 verify_check_this_host(&(ob->hosts_require_tls), NULL, host->name,
747 host->address, NULL) == OK
750 /*save_errno = ERRNO_TLSREQUIRED;*/
751 log_write(0, LOG_MAIN, "a TLS session is required for %s [%s], but %s",
752 host->name, host->address,
753 tls_offered? "an attempt to start TLS failed" : "the server did not offer TLS support");
758 #endif /*SUPPORT_TLS*/
760 done = TRUE; /* so far so good; have response to HELO */
762 /*XXX the EHLO response would be analyzed here for IGNOREQUOTA, SIZE, PIPELINING */
764 /* For now, transport_filter by cutthrough-delivery is not supported */
765 /* Need proper integration with the proper transport mechanism. */
766 if (cutthrough_delivery)
768 if (addr->transport->filter_command)
770 cutthrough_delivery= FALSE;
771 HDEBUG(D_acl|D_v) debug_printf("Cutthrough cancelled by presence of transport filter\n");
776 cutthrough_delivery= FALSE;
777 HDEBUG(D_acl|D_v) debug_printf("Cutthrough cancelled by presence of DKIM signing\n");
786 /* Clear down of the TLS, SMTP and TCP layers on error is handled below. */
788 /* Failure to accept HELO is cached; this blocks the whole domain for all
789 senders. I/O errors and defer responses are not cached. */
793 *failure_ptr = US"mail"; /* At or before MAIL */
794 if (errno == 0 && responsebuffer[0] == '5')
796 setflag(addr, af_verify_nsfail);
797 new_domain_record.result = ccache_reject;
801 /* If we haven't authenticated, but are required to, give up. */
804 else done = smtp_auth(responsebuffer, sizeof(responsebuffer),
805 addr, host, ob, esmtp, &inblock, &outblock) == OK &&
807 /* Copy AUTH info for logging */
808 ( (addr->authenticator = client_authenticator),
809 (addr->auth_id = client_authenticated_id),
811 /* Build a mail-AUTH string (re-using responsebuffer for convenience */
812 !smtp_mail_auth_str(responsebuffer, sizeof(responsebuffer), addr, ob)
815 ( (addr->auth_sndr = client_authenticated_sender),
817 /* Send the MAIL command */
818 (smtp_write_command(&outblock, FALSE, "MAIL FROM:<%s>%s\r\n",
819 from_address, responsebuffer) >= 0)
822 smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer),
825 deliver_host = deliver_host_address = NULL;
826 deliver_domain = save_deliver_domain;
828 /* If the host does not accept MAIL FROM:<>, arrange to cache this
829 information, but again, don't record anything for an I/O error or a defer. Do
830 not cache rejections of MAIL when a non-empty sender has been used, because
831 that blocks the whole domain for all senders. */
835 *failure_ptr = US"mail"; /* At or before MAIL */
836 if (errno == 0 && responsebuffer[0] == '5')
838 setflag(addr, af_verify_nsfail);
839 if (from_address[0] == 0)
840 new_domain_record.result = ccache_reject_mfnull;
844 /* Otherwise, proceed to check a "random" address (if required), then the
845 given address, and the postmaster address (if required). Between each check,
846 issue RSET, because some servers accept only one recipient after MAIL
849 Before doing this, set the result in the domain cache record to "accept",
850 unless its previous value was ccache_reject_mfnull. In that case, the domain
851 rejects MAIL FROM:<> and we want to continue to remember that. When that is
852 the case, we have got here only in the case of a recipient verification with
853 a non-null sender. */
857 new_domain_record.result =
858 (old_domain_cache_result == ccache_reject_mfnull)?
859 ccache_reject_mfnull: ccache_accept;
861 /* Do the random local part check first */
863 if (random_local_part != NULL)
865 uschar randombuffer[1024];
867 smtp_write_command(&outblock, FALSE,
868 "RCPT TO:<%.1000s@%.1000s>\r\n", random_local_part,
869 addr->domain) >= 0 &&
870 smtp_read_response(&inblock, randombuffer,
871 sizeof(randombuffer), '2', callout);
873 /* Remember when we last did a random test */
875 new_domain_record.random_stamp = time(NULL);
877 /* If accepted, we aren't going to do any further tests below. */
881 new_domain_record.random_result = ccache_accept;
884 /* Otherwise, cache a real negative response, and get back to the right
885 state to send RCPT. Unless there's some problem such as a dropped
886 connection, we expect to succeed, because the commands succeeded above. */
890 if (randombuffer[0] == '5')
891 new_domain_record.random_result = ccache_reject;
894 smtp_write_command(&outblock, FALSE, "RSET\r\n") >= 0 &&
895 smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer),
898 smtp_write_command(&outblock, FALSE, "MAIL FROM:<%s>\r\n",
899 from_address) >= 0 &&
900 smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer),
903 else done = FALSE; /* Some timeout/connection problem */
906 /* If the host is accepting all local parts, as determined by the "random"
907 check, we don't need to waste time doing any further checking. */
909 if (new_domain_record.random_result != ccache_accept && done)
911 /* Get the rcpt_include_affixes flag from the transport if there is one,
912 but assume FALSE if there is not. */
915 smtp_write_command(&outblock, FALSE, "RCPT TO:<%.1000s>\r\n",
916 transport_rcpt_address(addr,
917 (addr->transport == NULL)? FALSE :
918 addr->transport->rcpt_include_affixes)) >= 0 &&
919 smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer),
923 new_address_record.result = ccache_accept;
924 else if (errno == 0 && responsebuffer[0] == '5')
926 *failure_ptr = US"recipient";
927 new_address_record.result = ccache_reject;
930 /* Do postmaster check if requested; if a full check is required, we
931 check for RCPT TO:<postmaster> (no domain) in accordance with RFC 821. */
933 if (done && pm_mailfrom != NULL)
935 /*XXX not suitable for cutthrough - sequencing problems */
936 cutthrough_delivery= FALSE;
937 HDEBUG(D_acl|D_v) debug_printf("Cutthrough cancelled by presence of postmaster verify\n");
940 smtp_write_command(&outblock, FALSE, "RSET\r\n") >= 0 &&
941 smtp_read_response(&inblock, responsebuffer,
942 sizeof(responsebuffer), '2', callout) &&
944 smtp_write_command(&outblock, FALSE,
945 "MAIL FROM:<%s>\r\n", pm_mailfrom) >= 0 &&
946 smtp_read_response(&inblock, responsebuffer,
947 sizeof(responsebuffer), '2', callout) &&
949 /* First try using the current domain */
952 smtp_write_command(&outblock, FALSE,
953 "RCPT TO:<postmaster@%.1000s>\r\n", addr->domain) >= 0 &&
954 smtp_read_response(&inblock, responsebuffer,
955 sizeof(responsebuffer), '2', callout)
960 /* If that doesn't work, and a full check is requested,
961 try without the domain. */
964 (options & vopt_callout_fullpm) != 0 &&
965 smtp_write_command(&outblock, FALSE,
966 "RCPT TO:<postmaster>\r\n") >= 0 &&
967 smtp_read_response(&inblock, responsebuffer,
968 sizeof(responsebuffer), '2', callout)
971 /* Sort out the cache record */
973 new_domain_record.postmaster_stamp = time(NULL);
976 new_domain_record.postmaster_result = ccache_accept;
977 else if (errno == 0 && responsebuffer[0] == '5')
979 *failure_ptr = US"postmaster";
980 setflag(addr, af_verify_pmfail);
981 new_domain_record.postmaster_result = ccache_reject;
984 } /* Random not accepted */
985 } /* MAIL FROM: accepted */
987 /* For any failure of the main check, other than a negative response, we just
988 close the connection and carry on. We can identify a negative response by the
989 fact that errno is zero. For I/O errors it will be non-zero
991 Set up different error texts for logging and for sending back to the caller
992 as an SMTP response. Log in all cases, using a one-line format. For sender
993 callouts, give a full response to the caller, but for recipient callouts,
994 don't give the IP address because this may be an internal host whose identity
995 is not to be widely broadcast. */
999 if (errno == ETIMEDOUT)
1001 HDEBUG(D_verify) debug_printf("SMTP timeout\n");
1004 else if (errno == 0)
1006 if (*responsebuffer == 0) Ustrcpy(responsebuffer, US"connection dropped");
1009 string_sprintf("response to \"%s\" from %s [%s] was: %s",
1010 big_buffer, host->name, host->address,
1011 string_printing(responsebuffer));
1013 addr->user_message = is_recipient?
1014 string_sprintf("Callout verification failed:\n%s", responsebuffer)
1016 string_sprintf("Called: %s\nSent: %s\nResponse: %s",
1017 host->address, big_buffer, responsebuffer);
1019 /* Hard rejection ends the process */
1021 if (responsebuffer[0] == '5') /* Address rejected */
1029 /* End the SMTP conversation and close the connection. */
1031 /* Cutthrough - on a successfull connect and recipient-verify with use-sender
1032 and we have no cutthrough conn so far
1033 here is where we want to leave the conn open */
1034 if ( cutthrough_delivery
1037 && (options & (vopt_callout_recipsender|vopt_callout_recippmaster)) == vopt_callout_recipsender
1038 && !random_local_part
1040 && cutthrough_fd < 0
1043 cutthrough_fd= outblock.sock; /* We assume no buffer in use in the outblock */
1044 cutthrough_addr = *addr; /* Save the address_item for later logging */
1045 cutthrough_addr.next = NULL;
1046 cutthrough_addr.host_used = store_get(sizeof(host_item));
1047 cutthrough_addr.host_used->name = host->name;
1048 cutthrough_addr.host_used->address = host->address;
1049 cutthrough_addr.host_used->port = port;
1051 *(cutthrough_addr.parent = store_get(sizeof(address_item)))= *addr->parent;
1052 ctblock.buffer = ctbuffer;
1053 ctblock.buffersize = sizeof(ctbuffer);
1054 ctblock.ptr = ctbuffer;
1055 /* ctblock.cmd_count = 0; ctblock.authenticating = FALSE; */
1056 ctblock.sock = cutthrough_fd;
1060 /* Ensure no cutthrough on multiple address verifies */
1061 if (options & vopt_callout_recipsender)
1062 cancel_cutthrough_connection("multiple verify calls");
1063 if (send_quit) (void)smtp_write_command(&outblock, FALSE, "QUIT\r\n");
1066 tls_close(FALSE, TRUE);
1068 (void)close(inblock.sock);
1069 #ifdef EXPERIMENTAL_TPDA
1070 (void) tpda_raise_event(addr->transport->tpda_event_action,
1071 US"tcp:close", NULL);
1075 } /* Loop through all hosts, while !done */
1078 /* If we get here with done == TRUE, a successful callout happened, and yield
1079 will be set OK or FAIL according to the response to the RCPT command.
1080 Otherwise, we looped through the hosts but couldn't complete the business.
1081 However, there may be domain-specific information to cache in both cases.
1083 The value of the result field in the new_domain record is ccache_unknown if
1084 there was an error before or with MAIL FROM:, and errno was not zero,
1085 implying some kind of I/O error. We don't want to write the cache in that case.
1086 Otherwise the value is ccache_accept, ccache_reject, or ccache_reject_mfnull. */
1088 if (!callout_no_cache && new_domain_record.result != ccache_unknown)
1090 if ((dbm_file = dbfn_open(US"callout", O_RDWR|O_CREAT, &dbblock, FALSE))
1093 HDEBUG(D_verify) debug_printf("callout cache: not available\n");
1097 (void)dbfn_write(dbm_file, addr->domain, &new_domain_record,
1098 (int)sizeof(dbdata_callout_cache));
1099 HDEBUG(D_verify) debug_printf("wrote callout cache domain record:\n"
1100 " result=%d postmaster=%d random=%d\n",
1101 new_domain_record.result,
1102 new_domain_record.postmaster_result,
1103 new_domain_record.random_result);
1107 /* If a definite result was obtained for the callout, cache it unless caching
1112 if (!callout_no_cache && new_address_record.result != ccache_unknown)
1114 if (dbm_file == NULL)
1115 dbm_file = dbfn_open(US"callout", O_RDWR|O_CREAT, &dbblock, FALSE);
1116 if (dbm_file == NULL)
1118 HDEBUG(D_verify) debug_printf("no callout cache available\n");
1122 (void)dbfn_write(dbm_file, address_key, &new_address_record,
1123 (int)sizeof(dbdata_callout_cache_address));
1124 HDEBUG(D_verify) debug_printf("wrote %s callout cache address record\n",
1125 (new_address_record.result == ccache_accept)? "positive" : "negative");
1130 /* Failure to connect to any host, or any response other than 2xx or 5xx is a
1131 temporary error. If there was only one host, and a response was received, leave
1132 it alone if supplying details. Otherwise, give a generic response. */
1136 uschar *dullmsg = string_sprintf("Could not complete %s verify callout",
1137 is_recipient? "recipient" : "sender");
1140 if (host_list->next != NULL || addr->message == NULL) addr->message = dullmsg;
1142 addr->user_message = (!smtp_return_error_details)? dullmsg :
1143 string_sprintf("%s for <%s>.\n"
1144 "The mail server(s) for the domain may be temporarily unreachable, or\n"
1145 "they may be permanently unreachable from this server. In the latter case,\n%s",
1146 dullmsg, addr->address,
1148 "the address will never be accepted."
1150 "you need to change the address or create an MX record for its domain\n"
1151 "if it is supposed to be generally accessible from the Internet.\n"
1152 "Talk to your mail administrator for details.");
1154 /* Force a specific error code */
1156 addr->basic_errno = ERRNO_CALLOUTDEFER;
1159 /* Come here from within the cache-reading code on fast-track exit. */
1162 if (dbm_file != NULL) dbfn_close(dbm_file);
1168 /* Called after recipient-acl to get a cutthrough connection open when
1169 one was requested and a recipient-verify wasn't subsequently done.
1172 open_cutthrough_connection( address_item * addr )
1176 /* Use a recipient-verify-callout to set up the cutthrough connection. */
1177 /* We must use a copy of the address for verification, because it might
1181 HDEBUG(D_acl) debug_printf("----------- start cutthrough setup ------------\n");
1182 (void) verify_address(&addr2, NULL,
1183 vopt_is_recipient | vopt_callout_recipsender | vopt_callout_no_cache,
1184 CUTTHROUGH_CMD_TIMEOUT, -1, -1,
1186 HDEBUG(D_acl) debug_printf("----------- end cutthrough setup ------------\n");
1192 /* Send given number of bytes from the buffer */
1194 cutthrough_send(int n)
1196 if(cutthrough_fd < 0)
1201 (tls_out.active == cutthrough_fd) ? tls_write(FALSE, ctblock.buffer, n) :
1203 send(cutthrough_fd, ctblock.buffer, n, 0) > 0
1206 transport_count += n;
1207 ctblock.ptr= ctblock.buffer;
1211 HDEBUG(D_transport|D_acl) debug_printf("cutthrough_send failed: %s\n", strerror(errno));
1218 _cutthrough_puts(uschar * cp, int n)
1222 if(ctblock.ptr >= ctblock.buffer+ctblock.buffersize)
1223 if(!cutthrough_send(ctblock.buffersize))
1226 *ctblock.ptr++ = *cp++;
1231 /* Buffered output of counted data block. Return boolean success */
1233 cutthrough_puts(uschar * cp, int n)
1235 if (cutthrough_fd < 0) return TRUE;
1236 if (_cutthrough_puts(cp, n)) return TRUE;
1237 cancel_cutthrough_connection("transmit failed");
1243 _cutthrough_flush_send( void )
1245 int n= ctblock.ptr-ctblock.buffer;
1248 if(!cutthrough_send(n))
1254 /* Send out any bufferred output. Return boolean success. */
1256 cutthrough_flush_send( void )
1258 if (_cutthrough_flush_send()) return TRUE;
1259 cancel_cutthrough_connection("transmit failed");
1265 cutthrough_put_nl( void )
1267 return cutthrough_puts(US"\r\n", 2);
1271 /* Get and check response from cutthrough target */
1273 cutthrough_response(char expect, uschar ** copy)
1275 smtp_inblock inblock;
1276 uschar inbuffer[4096];
1277 uschar responsebuffer[4096];
1279 inblock.buffer = inbuffer;
1280 inblock.buffersize = sizeof(inbuffer);
1281 inblock.ptr = inbuffer;
1282 inblock.ptrend = inbuffer;
1283 inblock.sock = cutthrough_fd;
1284 /* this relies on (inblock.sock == tls_out.active) */
1285 if(!smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer), expect, CUTTHROUGH_DATA_TIMEOUT))
1286 cancel_cutthrough_connection("target timeout on read");
1291 *copy= cp= string_copy(responsebuffer);
1292 /* Trim the trailing end of line */
1293 cp += Ustrlen(responsebuffer);
1294 if(cp > *copy && cp[-1] == '\n') *--cp = '\0';
1295 if(cp > *copy && cp[-1] == '\r') *--cp = '\0';
1298 return responsebuffer[0];
1302 /* Negotiate dataphase with the cutthrough target, returning success boolean */
1304 cutthrough_predata( void )
1306 if(cutthrough_fd < 0)
1309 HDEBUG(D_transport|D_acl|D_v) debug_printf(" SMTP>> DATA\n");
1310 cutthrough_puts(US"DATA\r\n", 6);
1311 cutthrough_flush_send();
1313 /* Assume nothing buffered. If it was it gets ignored. */
1314 return cutthrough_response('3', NULL) == '3';
1318 /* fd and use_crlf args only to match write_chunk() */
1320 cutthrough_write_chunk(int fd, uschar * s, int len, BOOL use_crlf)
1323 while(s && (s2 = Ustrchr(s, '\n')))
1325 if(!cutthrough_puts(s, s2-s) || !cutthrough_put_nl())
1333 /* Buffered send of headers. Return success boolean. */
1334 /* Expands newlines to wire format (CR,NL). */
1335 /* Also sends header-terminating blank line. */
1337 cutthrough_headers_send( void )
1339 if(cutthrough_fd < 0)
1342 /* We share a routine with the mainline transport to handle header add/remove/rewrites,
1343 but having a separate buffered-output function (for now)
1345 HDEBUG(D_acl) debug_printf("----------- start cutthrough headers send -----------\n");
1347 if (!transport_headers_send(&cutthrough_addr, cutthrough_fd,
1348 cutthrough_addr.transport->add_headers, cutthrough_addr.transport->remove_headers,
1349 &cutthrough_write_chunk, TRUE,
1350 cutthrough_addr.transport->rewrite_rules, cutthrough_addr.transport->rewrite_existflags))
1353 HDEBUG(D_acl) debug_printf("----------- done cutthrough headers send ------------\n");
1359 close_cutthrough_connection( const char * why )
1361 if(cutthrough_fd >= 0)
1363 /* We could be sending this after a bunch of data, but that is ok as
1364 the only way to cancel the transfer in dataphase is to drop the tcp
1365 conn before the final dot.
1367 ctblock.ptr = ctbuffer;
1368 HDEBUG(D_transport|D_acl|D_v) debug_printf(" SMTP>> QUIT\n");
1369 _cutthrough_puts(US"QUIT\r\n", 6); /* avoid recursion */
1370 _cutthrough_flush_send();
1371 /* No wait for response */
1374 tls_close(FALSE, TRUE);
1376 (void)close(cutthrough_fd);
1378 HDEBUG(D_acl) debug_printf("----------- cutthrough shutdown (%s) ------------\n", why);
1380 ctblock.ptr = ctbuffer;
1384 cancel_cutthrough_connection( const char * why )
1386 close_cutthrough_connection(why);
1387 cutthrough_delivery= FALSE;
1393 /* Have senders final-dot. Send one to cutthrough target, and grab the response.
1394 Log an OK response as a transmission.
1395 Close the connection.
1396 Return smtp response-class digit.
1399 cutthrough_finaldot( void )
1401 HDEBUG(D_transport|D_acl|D_v) debug_printf(" SMTP>> .\n");
1403 /* Assume data finshed with new-line */
1404 if(!cutthrough_puts(US".", 1) || !cutthrough_put_nl() || !cutthrough_flush_send())
1405 return cutthrough_addr.message;
1407 switch(cutthrough_response('2', &cutthrough_addr.message))
1410 delivery_log(LOG_MAIN, &cutthrough_addr, (int)'>', NULL);
1411 close_cutthrough_connection("delivered");
1415 delivery_log(LOG_MAIN, &cutthrough_addr, 0, US"tmp-reject from cutthrough after DATA:");
1419 delivery_log(LOG_MAIN|LOG_REJECT, &cutthrough_addr, 0, US"rejected after DATA:");
1425 return cutthrough_addr.message;
1430 /*************************************************
1431 * Copy error to toplevel address *
1432 *************************************************/
1434 /* This function is used when a verify fails or defers, to ensure that the
1435 failure or defer information is in the original toplevel address. This applies
1436 when an address is redirected to a single new address, and the failure or
1437 deferral happens to the child address.
1440 vaddr the verify address item
1441 addr the final address item
1444 Returns: the value of YIELD
1448 copy_error(address_item *vaddr, address_item *addr, int yield)
1452 vaddr->message = addr->message;
1453 vaddr->user_message = addr->user_message;
1454 vaddr->basic_errno = addr->basic_errno;
1455 vaddr->more_errno = addr->more_errno;
1456 vaddr->p.address_data = addr->p.address_data;
1457 copyflag(vaddr, addr, af_pass_message);
1465 /**************************************************
1466 * printf that automatically handles TLS if needed *
1467 ***************************************************/
1469 /* This function is used by verify_address() as a substitute for all fprintf()
1470 calls; a direct fprintf() will not produce output in a TLS SMTP session, such
1471 as a response to an EXPN command. smtp_in.c makes smtp_printf available but
1472 that assumes that we always use the smtp_out FILE* when not using TLS or the
1473 ssl buffer when we are. Instead we take a FILE* parameter and check to see if
1474 that is smtp_out; if so, smtp_printf() with TLS support, otherwise regular
1478 f the candidate FILE* to write to
1479 format format string
1480 ... optional arguments
1486 static void PRINTF_FUNCTION(2,3)
1487 respond_printf(FILE *f, const char *format, ...)
1491 va_start(ap, format);
1492 if (smtp_out && (f == smtp_out))
1493 smtp_vprintf(format, ap);
1495 vfprintf(f, format, ap);
1501 /*************************************************
1502 * Verify an email address *
1503 *************************************************/
1505 /* This function is used both for verification (-bv and at other times) and
1506 address testing (-bt), which is indicated by address_test_mode being set.
1509 vaddr contains the address to verify; the next field in this block
1511 f if not NULL, write the result to this file
1512 options various option bits:
1513 vopt_fake_sender => this sender verify is not for the real
1514 sender (it was verify=sender=xxxx or an address from a
1515 header line) - rewriting must not change sender_address
1516 vopt_is_recipient => this is a recipient address, otherwise
1517 it's a sender address - this affects qualification and
1518 rewriting and messages from callouts
1519 vopt_qualify => qualify an unqualified address; else error
1520 vopt_expn => called from SMTP EXPN command
1521 vopt_success_on_redirect => when a new address is generated
1522 the verification instantly succeeds
1524 These ones are used by do_callout() -- the options variable
1527 vopt_callout_fullpm => if postmaster check, do full one
1528 vopt_callout_no_cache => don't use callout cache
1529 vopt_callout_random => do the "random" thing
1530 vopt_callout_recipsender => use real sender for recipient
1531 vopt_callout_recippmaster => use postmaster for recipient
1533 callout if > 0, specifies that callout is required, and gives timeout
1534 for individual commands
1535 callout_overall if > 0, gives overall timeout for the callout function;
1536 if < 0, a default is used (see do_callout())
1537 callout_connect the connection timeout for callouts
1538 se_mailfrom when callout is requested to verify a sender, use this
1539 in MAIL FROM; NULL => ""
1540 pm_mailfrom when callout is requested, if non-NULL, do the postmaster
1541 thing and use this as the sender address (may be "")
1543 routed if not NULL, set TRUE if routing succeeded, so we can
1544 distinguish between routing failed and callout failed
1546 Returns: OK address verified
1547 FAIL address failed to verify
1548 DEFER can't tell at present
1552 verify_address(address_item *vaddr, FILE *f, int options, int callout,
1553 int callout_overall, int callout_connect, uschar *se_mailfrom,
1554 uschar *pm_mailfrom, BOOL *routed)
1557 BOOL full_info = (f == NULL)? FALSE : (debug_selector != 0);
1558 BOOL is_recipient = (options & vopt_is_recipient) != 0;
1559 BOOL expn = (options & vopt_expn) != 0;
1560 BOOL success_on_redirect = (options & vopt_success_on_redirect) != 0;
1563 int verify_type = expn? v_expn :
1564 address_test_mode? v_none :
1565 is_recipient? v_recipient : v_sender;
1566 address_item *addr_list;
1567 address_item *addr_new = NULL;
1568 address_item *addr_remote = NULL;
1569 address_item *addr_local = NULL;
1570 address_item *addr_succeed = NULL;
1571 uschar **failure_ptr = is_recipient?
1572 &recipient_verify_failure : &sender_verify_failure;
1573 uschar *ko_prefix, *cr;
1574 uschar *address = vaddr->address;
1575 uschar *save_sender;
1576 uschar null_sender[] = { 0 }; /* Ensure writeable memory */
1578 /* Clear, just in case */
1580 *failure_ptr = NULL;
1582 /* Set up a prefix and suffix for error message which allow us to use the same
1583 output statements both in EXPN mode (where an SMTP response is needed) and when
1584 debugging with an output file. */
1588 ko_prefix = US"553 ";
1591 else ko_prefix = cr = US"";
1593 /* Add qualify domain if permitted; otherwise an unqualified address fails. */
1595 if (parse_find_at(address) == NULL)
1597 if ((options & vopt_qualify) == 0)
1600 respond_printf(f, "%sA domain is required for \"%s\"%s\n",
1601 ko_prefix, address, cr);
1602 *failure_ptr = US"qualify";
1605 address = rewrite_address_qualify(address, is_recipient);
1610 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
1611 debug_printf("%s %s\n", address_test_mode? "Testing" : "Verifying", address);
1614 /* Rewrite and report on it. Clear the domain and local part caches - these
1615 may have been set by domains and local part tests during an ACL. */
1617 if (global_rewrite_rules != NULL)
1619 uschar *old = address;
1620 address = rewrite_address(address, is_recipient, FALSE,
1621 global_rewrite_rules, rewrite_existflags);
1624 for (i = 0; i < (MAX_NAMED_LIST * 2)/32; i++) vaddr->localpart_cache[i] = 0;
1625 for (i = 0; i < (MAX_NAMED_LIST * 2)/32; i++) vaddr->domain_cache[i] = 0;
1626 if (f != NULL && !expn) fprintf(f, "Address rewritten as: %s\n", address);
1630 /* If this is the real sender address, we must update sender_address at
1631 this point, because it may be referred to in the routers. */
1633 if ((options & (vopt_fake_sender|vopt_is_recipient)) == 0)
1634 sender_address = address;
1636 /* If the address was rewritten to <> no verification can be done, and we have
1637 to return OK. This rewriting is permitted only for sender addresses; for other
1638 addresses, such rewriting fails. */
1640 if (address[0] == 0) return OK;
1642 /* Flip the legacy TLS-related variables over to the outbound set in case
1643 they're used in the context of a transport used by verification. Reset them
1644 at exit from this routine. */
1646 tls_modify_variables(&tls_out);
1648 /* Save a copy of the sender address for re-instating if we change it to <>
1649 while verifying a sender address (a nice bit of self-reference there). */
1651 save_sender = sender_address;
1653 /* Update the address structure with the possibly qualified and rewritten
1654 address. Set it up as the starting address on the chain of new addresses. */
1656 vaddr->address = address;
1659 /* We need a loop, because an address can generate new addresses. We must also
1660 cope with generated pipes and files at the top level. (See also the code and
1661 comment in deliver.c.) However, it is usually the case that the router for
1662 user's .forward files has its verify flag turned off.
1664 If an address generates more than one child, the loop is used only when
1665 full_info is set, and this can only be set locally. Remote enquiries just get
1666 information about the top level address, not anything that it generated. */
1668 while (addr_new != NULL)
1671 address_item *addr = addr_new;
1673 addr_new = addr->next;
1678 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
1679 debug_printf("Considering %s\n", addr->address);
1682 /* Handle generated pipe, file or reply addresses. We don't get these
1683 when handling EXPN, as it does only one level of expansion. */
1685 if (testflag(addr, af_pfr))
1692 if (addr->address[0] == '>')
1694 allow = testflag(addr, af_allow_reply);
1695 fprintf(f, "%s -> mail %s", addr->parent->address, addr->address + 1);
1699 allow = (addr->address[0] == '|')?
1700 testflag(addr, af_allow_pipe) : testflag(addr, af_allow_file);
1701 fprintf(f, "%s -> %s", addr->parent->address, addr->address);
1704 if (addr->basic_errno == ERRNO_BADTRANSPORT)
1705 fprintf(f, "\n*** Error in setting up pipe, file, or autoreply:\n"
1706 "%s\n", addr->message);
1708 fprintf(f, "\n transport = %s\n", addr->transport->name);
1710 fprintf(f, " *** forbidden ***\n");
1715 /* Just in case some router parameter refers to it. */
1717 return_path = (addr->p.errors_address != NULL)?
1718 addr->p.errors_address : sender_address;
1720 /* Split the address into domain and local part, handling the %-hack if
1721 necessary, and then route it. While routing a sender address, set
1722 $sender_address to <> because that is what it will be if we were trying to
1723 send a bounce to the sender. */
1725 if (routed != NULL) *routed = FALSE;
1726 if ((rc = deliver_split_address(addr)) == OK)
1728 if (!is_recipient) sender_address = null_sender;
1729 rc = route_address(addr, &addr_local, &addr_remote, &addr_new,
1730 &addr_succeed, verify_type);
1731 sender_address = save_sender; /* Put back the real sender */
1734 /* If routing an address succeeded, set the flag that remembers, for use when
1735 an ACL cached a sender verify (in case a callout fails). Then if routing set
1736 up a list of hosts or the transport has a host list, and the callout option
1737 is set, and we aren't in a host checking run, do the callout verification,
1738 and set another flag that notes that a callout happened. */
1742 if (routed != NULL) *routed = TRUE;
1745 host_item *host_list = addr->host_list;
1747 /* Make up some data for use in the case where there is no remote
1750 transport_feedback tf = {
1751 NULL, /* interface (=> any) */
1752 US"smtp", /* port */
1753 US"smtp", /* protocol */
1755 US"$smtp_active_hostname", /* helo_data */
1756 FALSE, /* hosts_override */
1757 FALSE, /* hosts_randomize */
1758 FALSE, /* gethostbyname */
1759 TRUE, /* qualify_single */
1760 FALSE /* search_parents */
1763 /* If verification yielded a remote transport, we want to use that
1764 transport's options, so as to mimic what would happen if we were really
1765 sending a message to this address. */
1767 if (addr->transport != NULL && !addr->transport->info->local)
1769 (void)(addr->transport->setup)(addr->transport, addr, &tf, 0, 0, NULL);
1771 /* If the transport has hosts and the router does not, or if the
1772 transport is configured to override the router's hosts, we must build a
1773 host list of the transport's hosts, and find the IP addresses */
1775 if (tf.hosts != NULL && (host_list == NULL || tf.hosts_override))
1778 uschar *save_deliver_domain = deliver_domain;
1779 uschar *save_deliver_localpart = deliver_localpart;
1781 host_list = NULL; /* Ignore the router's hosts */
1783 deliver_domain = addr->domain;
1784 deliver_localpart = addr->local_part;
1785 s = expand_string(tf.hosts);
1786 deliver_domain = save_deliver_domain;
1787 deliver_localpart = save_deliver_localpart;
1791 log_write(0, LOG_MAIN|LOG_PANIC, "failed to expand list of hosts "
1792 "\"%s\" in %s transport for callout: %s", tf.hosts,
1793 addr->transport->name, expand_string_message);
1798 uschar *canonical_name;
1799 host_item *host, *nexthost;
1800 host_build_hostlist(&host_list, s, tf.hosts_randomize);
1802 /* Just ignore failures to find a host address. If we don't manage
1803 to find any addresses, the callout will defer. Note that more than
1804 one address may be found for a single host, which will result in
1805 additional host items being inserted into the chain. Hence we must
1806 save the next host first. */
1808 flags = HOST_FIND_BY_A;
1809 if (tf.qualify_single) flags |= HOST_FIND_QUALIFY_SINGLE;
1810 if (tf.search_parents) flags |= HOST_FIND_SEARCH_PARENTS;
1812 for (host = host_list; host != NULL; host = nexthost)
1814 nexthost = host->next;
1815 if (tf.gethostbyname ||
1816 string_is_ip_address(host->name, NULL) != 0)
1817 (void)host_find_byname(host, NULL, flags, &canonical_name, TRUE);
1820 uschar * d_request = NULL, * d_require = NULL;
1821 if (Ustrcmp(addr->transport->driver_name, "smtp") == 0)
1823 smtp_transport_options_block * ob =
1824 (smtp_transport_options_block *)
1825 addr->transport->options_block;
1826 d_request = ob->dnssec_request_domains;
1827 d_require = ob->dnssec_require_domains;
1830 (void)host_find_bydns(host, NULL, flags, NULL, NULL, NULL,
1831 d_request, d_require, &canonical_name, NULL);
1838 /* Can only do a callout if we have at least one host! If the callout
1839 fails, it will have set ${sender,recipient}_verify_failure. */
1841 if (host_list != NULL)
1843 HDEBUG(D_verify) debug_printf("Attempting full verification using callout\n");
1844 if (host_checking && !host_checking_callout)
1847 debug_printf("... callout omitted by default when host testing\n"
1848 "(Use -bhc if you want the callouts to happen.)\n");
1853 deliver_set_expansions(addr);
1855 rc = do_callout(addr, host_list, &tf, callout, callout_overall,
1856 callout_connect, options, se_mailfrom, pm_mailfrom);
1861 HDEBUG(D_verify) debug_printf("Cannot do callout: neither router nor "
1862 "transport provided a host list\n");
1867 /* Otherwise, any failure is a routing failure */
1869 else *failure_ptr = US"route";
1871 /* A router may return REROUTED if it has set up a child address as a result
1872 of a change of domain name (typically from widening). In this case we always
1873 want to continue to verify the new child. */
1875 if (rc == REROUTED) continue;
1877 /* Handle hard failures */
1884 address_item *p = addr->parent;
1886 respond_printf(f, "%s%s %s", ko_prefix,
1887 full_info? addr->address : address,
1888 address_test_mode? "is undeliverable" : "failed to verify");
1889 if (!expn && admin_user)
1891 if (addr->basic_errno > 0)
1892 respond_printf(f, ": %s", strerror(addr->basic_errno));
1893 if (addr->message != NULL)
1894 respond_printf(f, ": %s", addr->message);
1897 /* Show parents iff doing full info */
1899 if (full_info) while (p != NULL)
1901 respond_printf(f, "%s\n <-- %s", cr, p->address);
1904 respond_printf(f, "%s\n", cr);
1906 cancel_cutthrough_connection("routing hard fail");
1910 yield = copy_error(vaddr, addr, FAIL);
1918 else if (rc == DEFER)
1923 address_item *p = addr->parent;
1924 respond_printf(f, "%s%s cannot be resolved at this time", ko_prefix,
1925 full_info? addr->address : address);
1926 if (!expn && admin_user)
1928 if (addr->basic_errno > 0)
1929 respond_printf(f, ": %s", strerror(addr->basic_errno));
1930 if (addr->message != NULL)
1931 respond_printf(f, ": %s", addr->message);
1932 else if (addr->basic_errno <= 0)
1933 respond_printf(f, ": unknown error");
1936 /* Show parents iff doing full info */
1938 if (full_info) while (p != NULL)
1940 respond_printf(f, "%s\n <-- %s", cr, p->address);
1943 respond_printf(f, "%s\n", cr);
1945 cancel_cutthrough_connection("routing soft fail");
1949 yield = copy_error(vaddr, addr, DEFER);
1952 else if (yield == OK) yield = DEFER;
1955 /* If we are handling EXPN, we do not want to continue to route beyond
1956 the top level (whose address is in "address"). */
1960 uschar *ok_prefix = US"250-";
1961 if (addr_new == NULL)
1963 if (addr_local == NULL && addr_remote == NULL)
1964 respond_printf(f, "250 mail to <%s> is discarded\r\n", address);
1966 respond_printf(f, "250 <%s>\r\n", address);
1968 else while (addr_new != NULL)
1970 address_item *addr2 = addr_new;
1971 addr_new = addr2->next;
1972 if (addr_new == NULL) ok_prefix = US"250 ";
1973 respond_printf(f, "%s<%s>\r\n", ok_prefix, addr2->address);
1979 /* Successful routing other than EXPN. */
1983 /* Handle successful routing when short info wanted. Otherwise continue for
1984 other (generated) addresses. Short info is the operational case. Full info
1985 can be requested only when debug_selector != 0 and a file is supplied.
1987 There is a conflict between the use of aliasing as an alternate email
1988 address, and as a sort of mailing list. If an alias turns the incoming
1989 address into just one address (e.g. J.Caesar->jc44) you may well want to
1990 carry on verifying the generated address to ensure it is valid when
1991 checking incoming mail. If aliasing generates multiple addresses, you
1992 probably don't want to do this. Exim therefore treats the generation of
1993 just a single new address as a special case, and continues on to verify the
1994 generated address. */
1996 if (!full_info && /* Stop if short info wanted AND */
1997 (((addr_new == NULL || /* No new address OR */
1998 addr_new->next != NULL || /* More than one new address OR */
1999 testflag(addr_new, af_pfr))) /* New address is pfr */
2001 (addr_new != NULL && /* At least one new address AND */
2002 success_on_redirect))) /* success_on_redirect is set */
2004 if (f != NULL) fprintf(f, "%s %s\n", address,
2005 address_test_mode? "is deliverable" : "verified");
2007 /* If we have carried on to verify a child address, we want the value
2008 of $address_data to be that of the child */
2010 vaddr->p.address_data = addr->p.address_data;
2015 } /* Loop for generated addresses */
2017 /* Display the full results of the successful routing, including any generated
2018 addresses. Control gets here only when full_info is set, which requires f not
2019 to be NULL, and this occurs only when a top-level verify is called with the
2020 debugging switch on.
2022 If there are no local and no remote addresses, and there were no pipes, files,
2023 or autoreplies, and there were no errors or deferments, the message is to be
2024 discarded, usually because of the use of :blackhole: in an alias file. */
2026 if (allok && addr_local == NULL && addr_remote == NULL)
2028 fprintf(f, "mail to %s is discarded\n", address);
2032 for (addr_list = addr_local, i = 0; i < 2; addr_list = addr_remote, i++)
2034 while (addr_list != NULL)
2036 address_item *addr = addr_list;
2037 address_item *p = addr->parent;
2038 addr_list = addr->next;
2040 fprintf(f, "%s", CS addr->address);
2041 #ifdef EXPERIMENTAL_SRS
2042 if(addr->p.srs_sender)
2043 fprintf(f, " [srs = %s]", addr->p.srs_sender);
2046 /* If the address is a duplicate, show something about it. */
2048 if (!testflag(addr, af_pfr))
2051 if ((tnode = tree_search(tree_duplicates, addr->unique)) != NULL)
2052 fprintf(f, " [duplicate, would not be delivered]");
2053 else tree_add_duplicate(addr->unique, addr);
2056 /* Now show its parents */
2060 fprintf(f, "\n <-- %s", p->address);
2065 /* Show router, and transport */
2067 fprintf(f, "router = %s, ", addr->router->name);
2068 fprintf(f, "transport = %s\n", (addr->transport == NULL)? US"unset" :
2069 addr->transport->name);
2071 /* Show any hosts that are set up by a router unless the transport
2072 is going to override them; fiddle a bit to get a nice format. */
2074 if (addr->host_list != NULL && addr->transport != NULL &&
2075 !addr->transport->overrides_hosts)
2080 for (h = addr->host_list; h != NULL; h = h->next)
2082 int len = Ustrlen(h->name);
2083 if (len > maxlen) maxlen = len;
2084 len = (h->address != NULL)? Ustrlen(h->address) : 7;
2085 if (len > maxaddlen) maxaddlen = len;
2087 for (h = addr->host_list; h != NULL; h = h->next)
2089 int len = Ustrlen(h->name);
2090 fprintf(f, " host %s ", h->name);
2091 while (len++ < maxlen) fprintf(f, " ");
2092 if (h->address != NULL)
2094 fprintf(f, "[%s] ", h->address);
2095 len = Ustrlen(h->address);
2097 else if (!addr->transport->info->local) /* Omit [unknown] for local */
2099 fprintf(f, "[unknown] ");
2103 while (len++ < maxaddlen) fprintf(f," ");
2104 if (h->mx >= 0) fprintf(f, "MX=%d", h->mx);
2105 if (h->port != PORT_NONE) fprintf(f, " port=%d", h->port);
2106 if (h->status == hstatus_unusable) fprintf(f, " ** unusable **");
2113 /* Yield will be DEFER or FAIL if any one address has, only for full_info (which is
2114 the -bv or -bt case). */
2117 tls_modify_variables(&tls_in);
2125 /*************************************************
2126 * Check headers for syntax errors *
2127 *************************************************/
2129 /* This function checks those header lines that contain addresses, and verifies
2130 that all the addresses therein are syntactially correct.
2133 msgptr where to put an error message
2140 verify_check_headers(uschar **msgptr)
2146 for (h = header_list; h != NULL && yield == OK; h = h->next)
2148 if (h->type != htype_from &&
2149 h->type != htype_reply_to &&
2150 h->type != htype_sender &&
2151 h->type != htype_to &&
2152 h->type != htype_cc &&
2153 h->type != htype_bcc)
2156 colon = Ustrchr(h->text, ':');
2158 while (isspace(*s)) s++;
2160 /* Loop for multiple addresses in the header, enabling group syntax. Note
2161 that we have to reset this after the header has been scanned. */
2163 parse_allow_group = TRUE;
2167 uschar *ss = parse_find_address_end(s, FALSE);
2168 uschar *recipient, *errmess;
2169 int terminator = *ss;
2170 int start, end, domain;
2172 /* Temporarily terminate the string at this point, and extract the
2173 operative address within, allowing group syntax. */
2176 recipient = parse_extract_address(s,&errmess,&start,&end,&domain,FALSE);
2179 /* Permit an unqualified address only if the message is local, or if the
2180 sending host is configured to be permitted to send them. */
2182 if (recipient != NULL && domain == 0)
2184 if (h->type == htype_from || h->type == htype_sender)
2186 if (!allow_unqualified_sender) recipient = NULL;
2190 if (!allow_unqualified_recipient) recipient = NULL;
2192 if (recipient == NULL) errmess = US"unqualified address not permitted";
2195 /* It's an error if no address could be extracted, except for the special
2196 case of an empty address. */
2198 if (recipient == NULL && Ustrcmp(errmess, "empty address") != 0)
2200 uschar *verb = US"is";
2205 /* Arrange not to include any white space at the end in the
2206 error message or the header name. */
2208 while (t > s && isspace(t[-1])) t--;
2209 while (tt > h->text && isspace(tt[-1])) tt--;
2211 /* Add the address that failed to the error message, since in a
2212 header with very many addresses it is sometimes hard to spot
2213 which one is at fault. However, limit the amount of address to
2214 quote - cases have been seen where, for example, a missing double
2215 quote in a humungous To: header creates an "address" that is longer
2216 than string_sprintf can handle. */
2225 *msgptr = string_printing(
2226 string_sprintf("%s: failing address in \"%.*s:\" header %s: %.*s",
2227 errmess, tt - h->text, h->text, verb, len, s));
2230 break; /* Out of address loop */
2233 /* Advance to the next address */
2235 s = ss + (terminator? 1:0);
2236 while (isspace(*s)) s++;
2237 } /* Next address */
2239 parse_allow_group = FALSE;
2240 parse_found_group = FALSE;
2241 } /* Next header unless yield has been set FALSE */
2247 /*************************************************
2248 * Check header names for 8-bit characters *
2249 *************************************************/
2251 /* This function checks for invalid charcters in header names. See
2252 RFC 5322, 2.2. and RFC 6532, 3.
2255 msgptr where to put an error message
2262 verify_check_header_names_ascii(uschar **msgptr)
2267 for (h = header_list; h != NULL; h = h->next)
2269 colon = Ustrchr(h->text, ':');
2270 for(s = h->text; s < colon; s++)
2272 if ((*s < 33) || (*s > 126))
2274 *msgptr = string_sprintf("Invalid character in header \"%.*s\" found",
2275 colon - h->text, h->text);
2283 /*************************************************
2284 * Check for blind recipients *
2285 *************************************************/
2287 /* This function checks that every (envelope) recipient is mentioned in either
2288 the To: or Cc: header lines, thus detecting blind carbon copies.
2290 There are two ways of scanning that could be used: either scan the header lines
2291 and tick off the recipients, or scan the recipients and check the header lines.
2292 The original proposed patch did the former, but I have chosen to do the latter,
2293 because (a) it requires no memory and (b) will use fewer resources when there
2294 are many addresses in To: and/or Cc: and only one or two envelope recipients.
2297 Returns: OK if there are no blind recipients
2298 FAIL if there is at least one blind recipient
2302 verify_check_notblind(void)
2305 for (i = 0; i < recipients_count; i++)
2309 uschar *address = recipients_list[i].address;
2311 for (h = header_list; !found && h != NULL; h = h->next)
2315 if (h->type != htype_to && h->type != htype_cc) continue;
2317 colon = Ustrchr(h->text, ':');
2319 while (isspace(*s)) s++;
2321 /* Loop for multiple addresses in the header, enabling group syntax. Note
2322 that we have to reset this after the header has been scanned. */
2324 parse_allow_group = TRUE;
2328 uschar *ss = parse_find_address_end(s, FALSE);
2329 uschar *recipient,*errmess;
2330 int terminator = *ss;
2331 int start, end, domain;
2333 /* Temporarily terminate the string at this point, and extract the
2334 operative address within, allowing group syntax. */
2337 recipient = parse_extract_address(s,&errmess,&start,&end,&domain,FALSE);
2340 /* If we found a valid recipient that has a domain, compare it with the
2341 envelope recipient. Local parts are compared case-sensitively, domains
2342 case-insensitively. By comparing from the start with length "domain", we
2343 include the "@" at the end, which ensures that we are comparing the whole
2344 local part of each address. */
2346 if (recipient != NULL && domain != 0)
2348 found = Ustrncmp(recipient, address, domain) == 0 &&
2349 strcmpic(recipient + domain, address + domain) == 0;
2353 /* Advance to the next address */
2355 s = ss + (terminator? 1:0);
2356 while (isspace(*s)) s++;
2357 } /* Next address */
2359 parse_allow_group = FALSE;
2360 parse_found_group = FALSE;
2361 } /* Next header (if found is false) */
2363 if (!found) return FAIL;
2364 } /* Next recipient */
2371 /*************************************************
2372 * Find if verified sender *
2373 *************************************************/
2375 /* Usually, just a single address is verified as the sender of the message.
2376 However, Exim can be made to verify other addresses as well (often related in
2377 some way), and this is useful in some environments. There may therefore be a
2378 chain of such addresses that have previously been tested. This function finds
2379 whether a given address is on the chain.
2381 Arguments: the address to be verified
2382 Returns: pointer to an address item, or NULL
2386 verify_checked_sender(uschar *sender)
2389 for (addr = sender_verified_list; addr != NULL; addr = addr->next)
2390 if (Ustrcmp(sender, addr->address) == 0) break;
2398 /*************************************************
2399 * Get valid header address *
2400 *************************************************/
2402 /* Scan the originator headers of the message, looking for an address that
2403 verifies successfully. RFC 822 says:
2405 o The "Sender" field mailbox should be sent notices of
2406 any problems in transport or delivery of the original
2407 messages. If there is no "Sender" field, then the
2408 "From" field mailbox should be used.
2410 o If the "Reply-To" field exists, then the reply should
2411 go to the addresses indicated in that field and not to
2412 the address(es) indicated in the "From" field.
2414 So we check a Sender field if there is one, else a Reply_to field, else a From
2415 field. As some strange messages may have more than one of these fields,
2416 especially if they are resent- fields, check all of them if there is more than
2420 user_msgptr points to where to put a user error message
2421 log_msgptr points to where to put a log error message
2422 callout timeout for callout check (passed to verify_address())
2423 callout_overall overall callout timeout (ditto)
2424 callout_connect connect callout timeout (ditto)
2425 se_mailfrom mailfrom for verify; NULL => ""
2426 pm_mailfrom sender for pm callout check (passed to verify_address())
2427 options callout options (passed to verify_address())
2428 verrno where to put the address basic_errno
2430 If log_msgptr is set to something without setting user_msgptr, the caller
2431 normally uses log_msgptr for both things.
2433 Returns: result of the verification attempt: OK, FAIL, or DEFER;
2434 FAIL is given if no appropriate headers are found
2438 verify_check_header_address(uschar **user_msgptr, uschar **log_msgptr,
2439 int callout, int callout_overall, int callout_connect, uschar *se_mailfrom,
2440 uschar *pm_mailfrom, int options, int *verrno)
2442 static int header_types[] = { htype_sender, htype_reply_to, htype_from };
2447 for (i = 0; i < 3 && !done; i++)
2450 for (h = header_list; h != NULL && !done; h = h->next)
2452 int terminator, new_ok;
2453 uschar *s, *ss, *endname;
2455 if (h->type != header_types[i]) continue;
2456 s = endname = Ustrchr(h->text, ':') + 1;
2458 /* Scan the addresses in the header, enabling group syntax. Note that we
2459 have to reset this after the header has been scanned. */
2461 parse_allow_group = TRUE;
2465 address_item *vaddr;
2467 while (isspace(*s) || *s == ',') s++;
2468 if (*s == 0) break; /* End of header */
2470 ss = parse_find_address_end(s, FALSE);
2472 /* The terminator is a comma or end of header, but there may be white
2473 space preceding it (including newline for the last address). Move back
2474 past any white space so we can check against any cached envelope sender
2475 address verifications. */
2477 while (isspace(ss[-1])) ss--;
2481 HDEBUG(D_verify) debug_printf("verifying %.*s header address %s\n",
2482 (int)(endname - h->text), h->text, s);
2484 /* See if we have already verified this address as an envelope sender,
2485 and if so, use the previous answer. */
2487 vaddr = verify_checked_sender(s);
2489 if (vaddr != NULL && /* Previously checked */
2490 (callout <= 0 || /* No callout needed; OR */
2491 vaddr->special_action > 256)) /* Callout was done */
2493 new_ok = vaddr->special_action & 255;
2494 HDEBUG(D_verify) debug_printf("previously checked as envelope sender\n");
2495 *ss = terminator; /* Restore shortened string */
2498 /* Otherwise we run the verification now. We must restore the shortened
2499 string before running the verification, so the headers are correct, in
2500 case there is any rewriting. */
2504 int start, end, domain;
2505 uschar *address = parse_extract_address(s, log_msgptr, &start, &end,
2510 /* If we found an empty address, just carry on with the next one, but
2511 kill the message. */
2513 if (address == NULL && Ustrcmp(*log_msgptr, "empty address") == 0)
2520 /* If verification failed because of a syntax error, fail this
2521 function, and ensure that the failing address gets added to the error
2524 if (address == NULL)
2527 while (ss > s && isspace(ss[-1])) ss--;
2528 *log_msgptr = string_sprintf("syntax error in '%.*s' header when "
2529 "scanning for sender: %s in \"%.*s\"",
2530 endname - h->text, h->text, *log_msgptr, ss - s, s);
2536 /* Else go ahead with the sender verification. But it isn't *the*
2537 sender of the message, so set vopt_fake_sender to stop sender_address
2538 being replaced after rewriting or qualification. */
2542 vaddr = deliver_make_addr(address, FALSE);
2543 new_ok = verify_address(vaddr, NULL, options | vopt_fake_sender,
2544 callout, callout_overall, callout_connect, se_mailfrom,
2549 /* We now have the result, either newly found, or cached. If we are
2550 giving out error details, set a specific user error. This means that the
2551 last of these will be returned to the user if all three fail. We do not
2552 set a log message - the generic one below will be used. */
2556 *verrno = vaddr->basic_errno;
2557 if (smtp_return_error_details)
2559 *user_msgptr = string_sprintf("Rejected after DATA: "
2560 "could not verify \"%.*s\" header address\n%s: %s",
2561 endname - h->text, h->text, vaddr->address, vaddr->message);
2565 /* Success or defer */
2574 if (new_ok == DEFER) yield = DEFER;
2576 /* Move on to any more addresses in the header */
2579 } /* Next address */
2581 parse_allow_group = FALSE;
2582 parse_found_group = FALSE;
2583 } /* Next header, unless done */
2584 } /* Next header type unless done */
2586 if (yield == FAIL && *log_msgptr == NULL)
2587 *log_msgptr = US"there is no valid sender in any header line";
2589 if (yield == DEFER && *log_msgptr == NULL)
2590 *log_msgptr = US"all attempts to verify a sender in a header line deferred";
2598 /*************************************************
2599 * Get RFC 1413 identification *
2600 *************************************************/
2602 /* Attempt to get an id from the sending machine via the RFC 1413 protocol. If
2603 the timeout is set to zero, then the query is not done. There may also be lists
2604 of hosts and nets which are exempt. To guard against malefactors sending
2605 non-printing characters which could, for example, disrupt a message's headers,
2606 make sure the string consists of printing characters only.
2609 port the port to connect to; usually this is IDENT_PORT (113), but when
2610 running in the test harness with -bh a different value is used.
2614 Side effect: any received ident value is put in sender_ident (NULL otherwise)
2618 verify_get_ident(int port)
2620 int sock, host_af, qlen;
2621 int received_sender_port, received_interface_port, n;
2623 uschar buffer[2048];
2625 /* Default is no ident. Check whether we want to do an ident check for this
2628 sender_ident = NULL;
2629 if (rfc1413_query_timeout <= 0 || verify_check_host(&rfc1413_hosts) != OK)
2632 DEBUG(D_ident) debug_printf("doing ident callback\n");
2634 /* Set up a connection to the ident port of the remote host. Bind the local end
2635 to the incoming interface address. If the sender host address is an IPv6
2636 address, the incoming interface address will also be IPv6. */
2638 host_af = (Ustrchr(sender_host_address, ':') == NULL)? AF_INET : AF_INET6;
2639 sock = ip_socket(SOCK_STREAM, host_af);
2640 if (sock < 0) return;
2642 if (ip_bind(sock, host_af, interface_address, 0) < 0)
2644 DEBUG(D_ident) debug_printf("bind socket for ident failed: %s\n",
2649 if (ip_connect(sock, host_af, sender_host_address, port, rfc1413_query_timeout)
2652 if (errno == ETIMEDOUT && (log_extra_selector & LX_ident_timeout) != 0)
2654 log_write(0, LOG_MAIN, "ident connection to %s timed out",
2655 sender_host_address);
2659 DEBUG(D_ident) debug_printf("ident connection to %s failed: %s\n",
2660 sender_host_address, strerror(errno));
2665 /* Construct and send the query. */
2667 sprintf(CS buffer, "%d , %d\r\n", sender_host_port, interface_port);
2668 qlen = Ustrlen(buffer);
2669 if (send(sock, buffer, qlen, 0) < 0)
2671 DEBUG(D_ident) debug_printf("ident send failed: %s\n", strerror(errno));
2675 /* Read a response line. We put it into the rest of the buffer, using several
2676 recv() calls if necessary. */
2684 int size = sizeof(buffer) - (p - buffer);
2686 if (size <= 0) goto END_OFF; /* Buffer filled without seeing \n. */
2687 count = ip_recv(sock, p, size, rfc1413_query_timeout);
2688 if (count <= 0) goto END_OFF; /* Read error or EOF */
2690 /* Scan what we just read, to see if we have reached the terminating \r\n. Be
2691 generous, and accept a plain \n terminator as well. The only illegal
2694 for (pp = p; pp < p + count; pp++)
2696 if (*pp == 0) goto END_OFF; /* Zero octet not allowed */
2699 if (pp[-1] == '\r') pp--;
2701 goto GOT_DATA; /* Break out of both loops */
2705 /* Reached the end of the data without finding \n. Let the loop continue to
2706 read some more, if there is room. */
2713 /* We have received a line of data. Check it carefully. It must start with the
2714 same two port numbers that we sent, followed by data as defined by the RFC. For
2717 12345 , 25 : USERID : UNIX :root
2719 However, the amount of white space may be different to what we sent. In the
2720 "osname" field there may be several sub-fields, comma separated. The data we
2721 actually want to save follows the third colon. Some systems put leading spaces
2722 in it - we discard those. */
2724 if (sscanf(CS buffer + qlen, "%d , %d%n", &received_sender_port,
2725 &received_interface_port, &n) != 2 ||
2726 received_sender_port != sender_host_port ||
2727 received_interface_port != interface_port)
2730 p = buffer + qlen + n;
2731 while(isspace(*p)) p++;
2732 if (*p++ != ':') goto END_OFF;
2733 while(isspace(*p)) p++;
2734 if (Ustrncmp(p, "USERID", 6) != 0) goto END_OFF;
2736 while(isspace(*p)) p++;
2737 if (*p++ != ':') goto END_OFF;
2738 while (*p != 0 && *p != ':') p++;
2739 if (*p++ == 0) goto END_OFF;
2740 while(isspace(*p)) p++;
2741 if (*p == 0) goto END_OFF;
2743 /* The rest of the line is the data we want. We turn it into printing
2744 characters when we save it, so that it cannot mess up the format of any logging
2745 or Received: lines into which it gets inserted. We keep a maximum of 127
2748 sender_ident = string_printing(string_copyn(p, 127));
2749 DEBUG(D_ident) debug_printf("sender_ident = %s\n", sender_ident);
2759 /*************************************************
2760 * Match host to a single host-list item *
2761 *************************************************/
2763 /* This function compares a host (name or address) against a single item
2764 from a host list. The host name gets looked up if it is needed and is not
2765 already known. The function is called from verify_check_this_host() via
2766 match_check_list(), which is why most of its arguments are in a single block.
2769 arg the argument block (see below)
2770 ss the host-list item
2771 valueptr where to pass back looked up data, or NULL
2772 error for error message when returning ERROR
2775 host_name (a) the host name, or
2776 (b) NULL, implying use sender_host_name and
2777 sender_host_aliases, looking them up if required, or
2778 (c) the empty string, meaning that only IP address matches
2780 host_address the host address
2781 host_ipv4 the IPv4 address taken from an IPv6 one
2785 DEFER lookup deferred
2786 ERROR (a) failed to find the host name or IP address, or
2787 (b) unknown lookup type specified, or
2788 (c) host name encountered when only IP addresses are
2793 check_host(void *arg, uschar *ss, uschar **valueptr, uschar **error)
2795 check_host_block *cb = (check_host_block *)arg;
2798 BOOL iplookup = FALSE;
2799 BOOL isquery = FALSE;
2800 BOOL isiponly = cb->host_name != NULL && cb->host_name[0] == 0;
2805 /* Optimize for the special case when the pattern is "*". */
2807 if (*ss == '*' && ss[1] == 0) return OK;
2809 /* If the pattern is empty, it matches only in the case when there is no host -
2810 this can occur in ACL checking for SMTP input using the -bs option. In this
2811 situation, the host address is the empty string. */
2813 if (cb->host_address[0] == 0) return (*ss == 0)? OK : FAIL;
2814 if (*ss == 0) return FAIL;
2816 /* If the pattern is precisely "@" then match against the primary host name,
2817 provided that host name matching is permitted; if it's "@[]" match against the
2818 local host's IP addresses. */
2824 if (isiponly) return ERROR;
2825 ss = primary_hostname;
2827 else if (Ustrcmp(ss, "@[]") == 0)
2829 ip_address_item *ip;
2830 for (ip = host_find_interfaces(); ip != NULL; ip = ip->next)
2831 if (Ustrcmp(ip->address, cb->host_address) == 0) return OK;
2836 /* If the pattern is an IP address, optionally followed by a bitmask count, do
2837 a (possibly masked) comparision with the current IP address. */
2839 if (string_is_ip_address(ss, &maskoffset) != 0)
2840 return (host_is_in_net(cb->host_address, ss, maskoffset)? OK : FAIL);
2842 /* The pattern is not an IP address. A common error that people make is to omit
2843 one component of an IPv4 address, either by accident, or believing that, for
2844 example, 1.2.3/24 is the same as 1.2.3.0/24, or 1.2.3 is the same as 1.2.3.0,
2845 which it isn't. (Those applications that do accept 1.2.3 as an IP address
2846 interpret it as 1.2.0.3 because the final component becomes 16-bit - this is an
2847 ancient specification.) To aid in debugging these cases, we give a specific
2848 error if the pattern contains only digits and dots or contains a slash preceded
2849 only by digits and dots (a slash at the start indicates a file name and of
2850 course slashes may be present in lookups, but not preceded only by digits and
2853 for (t = ss; isdigit(*t) || *t == '.'; t++);
2854 if (*t == 0 || (*t == '/' && t != ss))
2856 *error = US"malformed IPv4 address or address mask";
2860 /* See if there is a semicolon in the pattern */
2862 semicolon = Ustrchr(ss, ';');
2864 /* If we are doing an IP address only match, then all lookups must be IP
2865 address lookups, even if there is no "net-". */
2869 iplookup = semicolon != NULL;
2872 /* Otherwise, if the item is of the form net[n]-lookup;<file|query> then it is
2873 a lookup on a masked IP network, in textual form. We obey this code even if we
2874 have already set iplookup, so as to skip over the "net-" prefix and to set the
2875 mask length. The net- stuff really only applies to single-key lookups where the
2876 key is implicit. For query-style lookups the key is specified in the query.
2877 From release 4.30, the use of net- for query style is no longer needed, but we
2878 retain it for backward compatibility. */
2880 if (Ustrncmp(ss, "net", 3) == 0 && semicolon != NULL)
2883 for (t = ss + 3; isdigit(*t); t++) mlen = mlen * 10 + *t - '0';
2884 if (mlen == 0 && t == ss+3) mlen = -1; /* No mask supplied */
2885 iplookup = (*t++ == '-');
2889 /* Do the IP address lookup if that is indeed what we have */
2897 uschar *filename, *key, *result;
2900 /* Find the search type */
2902 search_type = search_findtype(t, semicolon - t);
2904 if (search_type < 0) log_write(0, LOG_MAIN|LOG_PANIC_DIE, "%s",
2905 search_error_message);
2907 /* Adjust parameters for the type of lookup. For a query-style lookup, there
2908 is no file name, and the "key" is just the query. For query-style with a file
2909 name, we have to fish the file off the start of the query. For a single-key
2910 lookup, the key is the current IP address, masked appropriately, and
2911 reconverted to text form, with the mask appended. For IPv6 addresses, specify
2912 dot separators instead of colons, except when the lookup type is "iplsearch".
2915 if (mac_islookup(search_type, lookup_absfilequery))
2917 filename = semicolon + 1;
2919 while (*key != 0 && !isspace(*key)) key++;
2920 filename = string_copyn(filename, key - filename);
2921 while (isspace(*key)) key++;
2923 else if (mac_islookup(search_type, lookup_querystyle))
2926 key = semicolon + 1;
2928 else /* Single-key style */
2930 int sep = (Ustrcmp(lookup_list[search_type]->name, "iplsearch") == 0)?
2932 insize = host_aton(cb->host_address, incoming);
2933 host_mask(insize, incoming, mlen);
2934 (void)host_nmtoa(insize, incoming, mlen, buffer, sep);
2936 filename = semicolon + 1;
2939 /* Now do the actual lookup; note that there is no search_close() because
2940 of the caching arrangements. */
2942 handle = search_open(filename, search_type, 0, NULL, NULL);
2943 if (handle == NULL) log_write(0, LOG_MAIN|LOG_PANIC_DIE, "%s",
2944 search_error_message);
2945 result = search_find(handle, filename, key, -1, NULL, 0, 0, NULL);
2946 if (valueptr != NULL) *valueptr = result;
2947 return (result != NULL)? OK : search_find_defer? DEFER: FAIL;
2950 /* The pattern is not an IP address or network reference of any kind. That is,
2951 it is a host name pattern. If this is an IP only match, there's an error in the
2956 *error = US"cannot match host name in match_ip list";
2960 /* Check the characters of the pattern to see if they comprise only letters,
2961 digits, full stops, and hyphens (the constituents of domain names). Allow
2962 underscores, as they are all too commonly found. Sigh. Also, if
2963 allow_utf8_domains is set, allow top-bit characters. */
2965 for (t = ss; *t != 0; t++)
2966 if (!isalnum(*t) && *t != '.' && *t != '-' && *t != '_' &&
2967 (!allow_utf8_domains || *t < 128)) break;
2969 /* If the pattern is a complete domain name, with no fancy characters, look up
2970 its IP address and match against that. Note that a multi-homed host will add
2971 items to the chain. */
2982 rc = host_find_byname(&h, NULL, HOST_FIND_QUALIFY_SINGLE, NULL, FALSE);
2983 if (rc == HOST_FOUND || rc == HOST_FOUND_LOCAL)
2986 for (hh = &h; hh != NULL; hh = hh->next)
2988 if (host_is_in_net(hh->address, cb->host_address, 0)) return OK;
2992 if (rc == HOST_FIND_AGAIN) return DEFER;
2993 *error = string_sprintf("failed to find IP address for %s", ss);
2997 /* Almost all subsequent comparisons require the host name, and can be done
2998 using the general string matching function. When this function is called for
2999 outgoing hosts, the name is always given explicitly. If it is NULL, it means we
3000 must use sender_host_name and its aliases, looking them up if necessary. */
3002 if (cb->host_name != NULL) /* Explicit host name given */
3003 return match_check_string(cb->host_name, ss, -1, TRUE, TRUE, TRUE,
3006 /* Host name not given; in principle we need the sender host name and its
3007 aliases. However, for query-style lookups, we do not need the name if the
3008 query does not contain $sender_host_name. From release 4.23, a reference to
3009 $sender_host_name causes it to be looked up, so we don't need to do the lookup
3012 if ((semicolon = Ustrchr(ss, ';')) != NULL)
3015 int partial, affixlen, starflags, id;
3018 id = search_findtype_partial(ss, &partial, &affix, &affixlen, &starflags);
3021 if (id < 0) /* Unknown lookup type */
3023 log_write(0, LOG_MAIN|LOG_PANIC, "%s in host list item \"%s\"",
3024 search_error_message, ss);
3027 isquery = mac_islookup(id, lookup_querystyle|lookup_absfilequery);
3032 switch(match_check_string(US"", ss, -1, TRUE, TRUE, TRUE, valueptr))
3035 case DEFER: return DEFER;
3036 default: return FAIL;
3040 /* Not a query-style lookup; must ensure the host name is present, and then we
3041 do a check on the name and all its aliases. */
3043 if (sender_host_name == NULL)
3045 HDEBUG(D_host_lookup)
3046 debug_printf("sender host name required, to match against %s\n", ss);
3047 if (host_lookup_failed || host_name_lookup() != OK)
3049 *error = string_sprintf("failed to find host name for %s",
3050 sender_host_address);;
3053 host_build_sender_fullhost();
3056 /* Match on the sender host name, using the general matching function */
3058 switch(match_check_string(sender_host_name, ss, -1, TRUE, TRUE, TRUE,
3062 case DEFER: return DEFER;
3065 /* If there are aliases, try matching on them. */
3067 aliases = sender_host_aliases;
3068 while (*aliases != NULL)
3070 switch(match_check_string(*aliases++, ss, -1, TRUE, TRUE, TRUE, valueptr))
3073 case DEFER: return DEFER;
3082 /*************************************************
3083 * Check a specific host matches a host list *
3084 *************************************************/
3086 /* This function is passed a host list containing items in a number of
3087 different formats and the identity of a host. Its job is to determine whether
3088 the given host is in the set of hosts defined by the list. The host name is
3089 passed as a pointer so that it can be looked up if needed and not already
3090 known. This is commonly the case when called from verify_check_host() to check
3091 an incoming connection. When called from elsewhere the host name should usually
3094 This function is now just a front end to match_check_list(), which runs common
3095 code for scanning a list. We pass it the check_host() function to perform a
3099 listptr pointer to the host list
3100 cache_bits pointer to cache for named lists, or NULL
3101 host_name the host name or NULL, implying use sender_host_name and
3102 sender_host_aliases, looking them up if required
3103 host_address the IP address
3104 valueptr if not NULL, data from a lookup is passed back here
3106 Returns: OK if the host is in the defined set
3107 FAIL if the host is not in the defined set,
3108 DEFER if a data lookup deferred (not a host lookup)
3110 If the host name was needed in order to make a comparison, and could not be
3111 determined from the IP address, the result is FAIL unless the item
3112 "+allow_unknown" was met earlier in the list, in which case OK is returned. */
3115 verify_check_this_host(uschar **listptr, unsigned int *cache_bits,
3116 uschar *host_name, uschar *host_address, uschar **valueptr)
3119 unsigned int *local_cache_bits = cache_bits;
3120 uschar *save_host_address = deliver_host_address;
3121 check_host_block cb;
3122 cb.host_name = host_name;
3123 cb.host_address = host_address;
3125 if (valueptr != NULL) *valueptr = NULL;
3127 /* If the host address starts off ::ffff: it is an IPv6 address in
3128 IPv4-compatible mode. Find the IPv4 part for checking against IPv4
3131 cb.host_ipv4 = (Ustrncmp(host_address, "::ffff:", 7) == 0)?
3132 host_address + 7 : host_address;
3134 /* During the running of the check, put the IP address into $host_address. In
3135 the case of calls from the smtp transport, it will already be there. However,
3136 in other calls (e.g. when testing ignore_target_hosts), it won't. Just to be on
3137 the safe side, any existing setting is preserved, though as I write this
3138 (November 2004) I can't see any cases where it is actually needed. */
3140 deliver_host_address = host_address;
3141 rc = match_check_list(
3142 listptr, /* the list */
3143 0, /* separator character */
3144 &hostlist_anchor, /* anchor pointer */
3145 &local_cache_bits, /* cache pointer */
3146 check_host, /* function for testing */
3147 &cb, /* argument for function */
3148 MCL_HOST, /* type of check */
3149 (host_address == sender_host_address)?
3150 US"host" : host_address, /* text for debugging */
3151 valueptr); /* where to pass back data */
3152 deliver_host_address = save_host_address;
3159 /*************************************************
3160 * Check the remote host matches a list *
3161 *************************************************/
3163 /* This is a front end to verify_check_this_host(), created because checking
3164 the remote host is a common occurrence. With luck, a good compiler will spot
3165 the tail recursion and optimize it. If there's no host address, this is
3166 command-line SMTP input - check against an empty string for the address.
3169 listptr pointer to the host list
3171 Returns: the yield of verify_check_this_host(),
3172 i.e. OK, FAIL, or DEFER
3176 verify_check_host(uschar **listptr)
3178 return verify_check_this_host(listptr, sender_host_cache, NULL,
3179 (sender_host_address == NULL)? US"" : sender_host_address, NULL);
3186 /*************************************************
3187 * Invert an IP address *
3188 *************************************************/
3190 /* Originally just used for DNS xBL lists, now also used for the
3191 reverse_ip expansion operator.
3194 buffer where to put the answer
3195 address the address to invert
3199 invert_address(uschar *buffer, uschar *address)
3202 uschar *bptr = buffer;
3204 /* If this is an IPv4 address mapped into IPv6 format, adjust the pointer
3205 to the IPv4 part only. */
3207 if (Ustrncmp(address, "::ffff:", 7) == 0) address += 7;
3209 /* Handle IPv4 address: when HAVE_IPV6 is false, the result of host_aton() is
3212 if (host_aton(address, bin) == 1)
3216 for (i = 0; i < 4; i++)
3218 sprintf(CS bptr, "%d.", x & 255);
3219 while (*bptr) bptr++;
3224 /* Handle IPv6 address. Actually, as far as I know, there are no IPv6 addresses
3225 in any DNS black lists, and the format in which they will be looked up is
3226 unknown. This is just a guess. */
3232 for (j = 3; j >= 0; j--)
3235 for (i = 0; i < 8; i++)
3237 sprintf(CS bptr, "%x.", x & 15);
3238 while (*bptr) bptr++;
3245 /* Remove trailing period -- this is needed so that both arbitrary
3246 dnsbl keydomains and inverted addresses may be combined with the
3247 same format string, "%s.%s" */
3254 /*************************************************
3255 * Perform a single dnsbl lookup *
3256 *************************************************/
3258 /* This function is called from verify_check_dnsbl() below. It is also called
3259 recursively from within itself when domain and domain_txt are different
3260 pointers, in order to get the TXT record from the alternate domain.
3263 domain the outer dnsbl domain
3264 domain_txt alternate domain to lookup TXT record on success; when the
3265 same domain is to be used, domain_txt == domain (that is,
3266 the pointers must be identical, not just the text)
3267 keydomain the current keydomain (for debug message)
3268 prepend subdomain to lookup (like keydomain, but
3269 reversed if IP address)
3270 iplist the list of matching IP addresses, or NULL for "any"
3271 bitmask true if bitmask matching is wanted
3272 match_type condition for 'succeed' result
3273 0 => Any RR in iplist (=)
3274 1 => No RR in iplist (!=)
3275 2 => All RRs in iplist (==)
3276 3 => Some RRs not in iplist (!==)
3277 the two bits are defined as MT_NOT and MT_ALL
3278 defer_return what to return for a defer
3280 Returns: OK if lookup succeeded
3285 one_check_dnsbl(uschar *domain, uschar *domain_txt, uschar *keydomain,
3286 uschar *prepend, uschar *iplist, BOOL bitmask, int match_type,
3292 dnsbl_cache_block *cb;
3293 int old_pool = store_pool;
3294 uschar query[256]; /* DNS domain max length */
3296 /* Construct the specific query domainname */
3298 if (!string_format(query, sizeof(query), "%s.%s", prepend, domain))
3300 log_write(0, LOG_MAIN|LOG_PANIC, "dnslist query is too long "
3301 "(ignored): %s...", query);
3305 /* Look for this query in the cache. */
3307 t = tree_search(dnsbl_cache, query);
3309 /* If not cached from a previous lookup, we must do a DNS lookup, and
3310 cache the result in permanent memory. */
3314 store_pool = POOL_PERM;
3316 /* Set up a tree entry to cache the lookup */
3318 t = store_get(sizeof(tree_node) + Ustrlen(query));
3319 Ustrcpy(t->name, query);
3320 t->data.ptr = cb = store_get(sizeof(dnsbl_cache_block));
3321 (void)tree_insertnode(&dnsbl_cache, t);
3323 /* Do the DNS loopup . */
3325 HDEBUG(D_dnsbl) debug_printf("new DNS lookup for %s\n", query);
3326 cb->rc = dns_basic_lookup(&dnsa, query, T_A);
3327 cb->text_set = FALSE;
3331 /* If the lookup succeeded, cache the RHS address. The code allows for
3332 more than one address - this was for complete generality and the possible
3333 use of A6 records. However, A6 records have been reduced to experimental
3334 status (August 2001) and may die out. So they may never get used at all,
3335 let alone in dnsbl records. However, leave the code here, just in case.
3337 Quite apart from one A6 RR generating multiple addresses, there are DNS
3338 lists that return more than one A record, so we must handle multiple
3339 addresses generated in that way as well. */
3341 if (cb->rc == DNS_SUCCEED)
3344 dns_address **addrp = &(cb->rhs);
3345 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
3347 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
3349 if (rr->type == T_A)
3351 dns_address *da = dns_address_from_rr(&dnsa, rr);
3355 while (da->next != NULL) da = da->next;
3356 addrp = &(da->next);
3361 /* If we didn't find any A records, change the return code. This can
3362 happen when there is a CNAME record but there are no A records for what
3365 if (cb->rhs == NULL) cb->rc = DNS_NODATA;
3368 store_pool = old_pool;
3371 /* Previous lookup was cached */
3375 HDEBUG(D_dnsbl) debug_printf("using result of previous DNS lookup\n");
3379 /* We now have the result of the DNS lookup, either newly done, or cached
3380 from a previous call. If the lookup succeeded, check against the address
3381 list if there is one. This may be a positive equality list (introduced by
3382 "="), a negative equality list (introduced by "!="), a positive bitmask
3383 list (introduced by "&"), or a negative bitmask list (introduced by "!&").*/
3385 if (cb->rc == DNS_SUCCEED)
3387 dns_address *da = NULL;
3388 uschar *addlist = cb->rhs->address;
3390 /* For A and AAAA records, there may be multiple addresses from multiple
3391 records. For A6 records (currently not expected to be used) there may be
3392 multiple addresses from a single record. */
3394 for (da = cb->rhs->next; da != NULL; da = da->next)
3395 addlist = string_sprintf("%s, %s", addlist, da->address);
3397 HDEBUG(D_dnsbl) debug_printf("DNS lookup for %s succeeded (yielding %s)\n",
3400 /* Address list check; this can be either for equality, or via a bitmask.
3401 In the latter case, all the bits must match. */
3405 for (da = cb->rhs; da != NULL; da = da->next)
3409 uschar *ptr = iplist;
3412 /* Handle exact matching */
3416 while ((res = string_nextinlist(&ptr, &ipsep, ip, sizeof(ip))) != NULL)
3418 if (Ustrcmp(CS da->address, ip) == 0) break;
3422 /* Handle bitmask matching */
3429 /* At present, all known DNS blocking lists use A records, with
3430 IPv4 addresses on the RHS encoding the information they return. I
3431 wonder if this will linger on as the last vestige of IPv4 when IPv6
3432 is ubiquitous? Anyway, for now we use paranoia code to completely
3433 ignore IPv6 addresses. The default mask is 0, which always matches.
3434 We change this only for IPv4 addresses in the list. */
3436 if (host_aton(da->address, address) == 1) mask = address[0];
3438 /* Scan the returned addresses, skipping any that are IPv6 */
3440 while ((res = string_nextinlist(&ptr, &ipsep, ip, sizeof(ip))) != NULL)
3442 if (host_aton(ip, address) != 1) continue;
3443 if ((address[0] & mask) == address[0]) break;
3449 (a) An IP address in an any ('=') list matched, or
3450 (b) No IP address in an all ('==') list matched
3452 then we're done searching. */
3454 if (((match_type & MT_ALL) != 0) == (res == NULL)) break;
3457 /* If da == NULL, either
3459 (a) No IP address in an any ('=') list matched, or
3460 (b) An IP address in an all ('==') list didn't match
3462 so behave as if the DNSBL lookup had not succeeded, i.e. the host is not on
3465 if ((match_type == MT_NOT || match_type == MT_ALL) != (da == NULL))
3473 res = US"was no match";
3476 res = US"was an exclude match";
3479 res = US"was an IP address that did not match";
3482 res = US"were no IP addresses that did not match";
3485 debug_printf("=> but we are not accepting this block class because\n");
3486 debug_printf("=> there %s for %s%c%s\n",
3488 ((match_type & MT_ALL) == 0)? "" : "=",
3489 bitmask? '&' : '=', iplist);
3495 /* Either there was no IP list, or the record matched, implying that the
3496 domain is on the list. We now want to find a corresponding TXT record. If an
3497 alternate domain is specified for the TXT record, call this function
3498 recursively to look that up; this has the side effect of re-checking that
3499 there is indeed an A record at the alternate domain. */
3501 if (domain_txt != domain)
3502 return one_check_dnsbl(domain_txt, domain_txt, keydomain, prepend, NULL,
3503 FALSE, match_type, defer_return);
3505 /* If there is no alternate domain, look up a TXT record in the main domain
3506 if it has not previously been cached. */
3510 cb->text_set = TRUE;
3511 if (dns_basic_lookup(&dnsa, query, T_TXT) == DNS_SUCCEED)
3514 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
3516 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
3517 if (rr->type == T_TXT) break;
3520 int len = (rr->data)[0];
3521 if (len > 511) len = 127;
3522 store_pool = POOL_PERM;
3523 cb->text = string_sprintf("%.*s", len, (const uschar *)(rr->data+1));
3524 store_pool = old_pool;
3529 dnslist_value = addlist;
3530 dnslist_text = cb->text;
3534 /* There was a problem with the DNS lookup */
3536 if (cb->rc != DNS_NOMATCH && cb->rc != DNS_NODATA)
3538 log_write(L_dnslist_defer, LOG_MAIN,
3539 "DNS list lookup defer (probably timeout) for %s: %s", query,
3540 (defer_return == OK)? US"assumed in list" :
3541 (defer_return == FAIL)? US"assumed not in list" :
3542 US"returned DEFER");
3543 return defer_return;
3546 /* No entry was found in the DNS; continue for next domain */
3550 debug_printf("DNS lookup for %s failed\n", query);
3551 debug_printf("=> that means %s is not listed at %s\n",
3561 /*************************************************
3562 * Check host against DNS black lists *
3563 *************************************************/
3565 /* This function runs checks against a list of DNS black lists, until one
3566 matches. Each item on the list can be of the form
3568 domain=ip-address/key
3570 The domain is the right-most domain that is used for the query, for example,
3571 blackholes.mail-abuse.org. If the IP address is present, there is a match only
3572 if the DNS lookup returns a matching IP address. Several addresses may be
3573 given, comma-separated, for example: x.y.z=127.0.0.1,127.0.0.2.
3575 If no key is given, what is looked up in the domain is the inverted IP address
3576 of the current client host. If a key is given, it is used to construct the
3577 domain for the lookup. For example:
3579 dsn.rfc-ignorant.org/$sender_address_domain
3581 After finding a match in the DNS, the domain is placed in $dnslist_domain, and
3582 then we check for a TXT record for an error message, and if found, save its
3583 value in $dnslist_text. We also cache everything in a tree, to optimize
3586 The TXT record is normally looked up in the same domain as the A record, but
3587 when many lists are combined in a single DNS domain, this will not be a very
3588 specific message. It is possible to specify a different domain for looking up
3589 TXT records; this is given before the main domain, comma-separated. For
3592 dnslists = http.dnsbl.sorbs.net,dnsbl.sorbs.net=127.0.0.2 : \
3593 socks.dnsbl.sorbs.net,dnsbl.sorbs.net=127.0.0.3
3595 The caching ensures that only one lookup in dnsbl.sorbs.net is done.
3597 Note: an address for testing RBL is 192.203.178.39
3598 Note: an address for testing DUL is 192.203.178.4
3599 Note: a domain for testing RFCI is example.tld.dsn.rfc-ignorant.org
3602 listptr the domain/address/data list
3604 Returns: OK successful lookup (i.e. the address is on the list), or
3605 lookup deferred after +include_unknown
3606 FAIL name not found, or no data found for the given type, or
3607 lookup deferred after +exclude_unknown (default)
3608 DEFER lookup failure, if +defer_unknown was set
3612 verify_check_dnsbl(uschar **listptr)
3615 int defer_return = FAIL;
3616 uschar *list = *listptr;
3619 uschar buffer[1024];
3620 uschar revadd[128]; /* Long enough for IPv6 address */
3622 /* Indicate that the inverted IP address is not yet set up */
3626 /* In case this is the first time the DNS resolver is being used. */
3628 dns_init(FALSE, FALSE, FALSE); /*XXX dnssec? */
3630 /* Loop through all the domains supplied, until something matches */
3632 while ((domain = string_nextinlist(&list, &sep, buffer, sizeof(buffer))) != NULL)
3635 BOOL bitmask = FALSE;
3642 HDEBUG(D_dnsbl) debug_printf("DNS list check: %s\n", domain);
3644 /* Deal with special values that change the behaviour on defer */
3646 if (domain[0] == '+')
3648 if (strcmpic(domain, US"+include_unknown") == 0) defer_return = OK;
3649 else if (strcmpic(domain, US"+exclude_unknown") == 0) defer_return = FAIL;
3650 else if (strcmpic(domain, US"+defer_unknown") == 0) defer_return = DEFER;
3652 log_write(0, LOG_MAIN|LOG_PANIC, "unknown item in dnslist (ignored): %s",
3657 /* See if there's explicit data to be looked up */
3659 key = Ustrchr(domain, '/');
3660 if (key != NULL) *key++ = 0;
3662 /* See if there's a list of addresses supplied after the domain name. This is
3663 introduced by an = or a & character; if preceded by = we require all matches
3664 and if preceded by ! we invert the result. */
3666 iplist = Ustrchr(domain, '=');
3670 iplist = Ustrchr(domain, '&');
3673 if (iplist != NULL) /* Found either = or & */
3675 if (iplist > domain && iplist[-1] == '!') /* Handle preceding ! */
3677 match_type |= MT_NOT;
3681 *iplist++ = 0; /* Terminate domain, move on */
3683 /* If we found = (bitmask == FALSE), check for == or =& */
3685 if (!bitmask && (*iplist == '=' || *iplist == '&'))
3687 bitmask = *iplist++ == '&';
3688 match_type |= MT_ALL;
3692 /* If there is a comma in the domain, it indicates that a second domain for
3693 looking up TXT records is provided, before the main domain. Otherwise we must
3694 set domain_txt == domain. */
3696 domain_txt = domain;
3697 comma = Ustrchr(domain, ',');
3704 /* Check that what we have left is a sensible domain name. There is no reason
3705 why these domains should in fact use the same syntax as hosts and email
3706 domains, but in practice they seem to. However, there is little point in
3707 actually causing an error here, because that would no doubt hold up incoming
3708 mail. Instead, I'll just log it. */
3710 for (s = domain; *s != 0; s++)
3712 if (!isalnum(*s) && *s != '-' && *s != '.' && *s != '_')
3714 log_write(0, LOG_MAIN, "dnslists domain \"%s\" contains "
3715 "strange characters - is this right?", domain);
3720 /* Check the alternate domain if present */
3722 if (domain_txt != domain) for (s = domain_txt; *s != 0; s++)
3724 if (!isalnum(*s) && *s != '-' && *s != '.' && *s != '_')
3726 log_write(0, LOG_MAIN, "dnslists domain \"%s\" contains "
3727 "strange characters - is this right?", domain_txt);
3732 /* If there is no key string, construct the query by adding the domain name
3733 onto the inverted host address, and perform a single DNS lookup. */
3737 if (sender_host_address == NULL) return FAIL; /* can never match */
3738 if (revadd[0] == 0) invert_address(revadd, sender_host_address);
3739 rc = one_check_dnsbl(domain, domain_txt, sender_host_address, revadd,
3740 iplist, bitmask, match_type, defer_return);
3743 dnslist_domain = string_copy(domain_txt);
3744 dnslist_matched = string_copy(sender_host_address);
3745 HDEBUG(D_dnsbl) debug_printf("=> that means %s is listed at %s\n",
3746 sender_host_address, dnslist_domain);
3748 if (rc != FAIL) return rc; /* OK or DEFER */
3751 /* If there is a key string, it can be a list of domains or IP addresses to
3752 be concatenated with the main domain. */
3759 uschar keybuffer[256];
3760 uschar keyrevadd[128];
3762 while ((keydomain = string_nextinlist(&key, &keysep, keybuffer,
3763 sizeof(keybuffer))) != NULL)
3765 uschar *prepend = keydomain;
3767 if (string_is_ip_address(keydomain, NULL) != 0)
3769 invert_address(keyrevadd, keydomain);
3770 prepend = keyrevadd;
3773 rc = one_check_dnsbl(domain, domain_txt, keydomain, prepend, iplist,
3774 bitmask, match_type, defer_return);
3778 dnslist_domain = string_copy(domain_txt);
3779 dnslist_matched = string_copy(keydomain);
3780 HDEBUG(D_dnsbl) debug_printf("=> that means %s is listed at %s\n",
3781 keydomain, dnslist_domain);
3785 /* If the lookup deferred, remember this fact. We keep trying the rest
3786 of the list to see if we get a useful result, and if we don't, we return
3787 DEFER at the end. */
3789 if (rc == DEFER) defer = TRUE;
3790 } /* continue with next keystring domain/address */
3792 if (defer) return DEFER;
3794 } /* continue with next dnsdb outer domain */
3801 /* End of verify.c */