#include <openssl/evp.h>
#if OPENSSL_VERSION_NUMBER < 0x1000000fL
-#error "OpenSSL 1.0.0 or higher required"
-#else
+# error "OpenSSL 1.0.0 or higher required"
+#else /* remainder of file */
#include "danessl.h"
#define DANE_R_SCTX_INIT 112
#ifndef OPENSSL_NO_ERR
-#define DANE_F_PLACEHOLDER 0 /* FIRST! Value TBD */
-static ERR_STRING_DATA dane_str_functs[] = {
+# define DANE_F_PLACEHOLDER 0 /* FIRST! Value TBD */
+static ERR_STRING_DATA dane_str_functs[] =
+{
{DANE_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */
{DANE_F_ADD_SKID, "add_skid"},
{DANE_F_CHECK_END_ENTITY, "check_end_entity"},
{DANE_F_WRAP_CERT, "wrap_cert"},
{0, NULL}
};
-static ERR_STRING_DATA dane_str_reasons[] = {
+static ERR_STRING_DATA dane_str_reasons[] =
+{
{DANE_R_BAD_CERT, "Bad TLSA record certificate"},
{DANE_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"},
{DANE_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"},
{DANE_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"},
{0, NULL}
};
-#endif
+#endif /*OPENSSL_NO_ERR*/
#define DANEerr(f, r) ERR_PUT_error(err_lib_dane, (f), (r), __FILE__, __LINE__)
static void (*cert_free)(void *) = (void (*)(void *)) X509_free;
static void (*pkey_free)(void *) = (void (*)(void *)) EVP_PKEY_free;
-typedef struct dane_list {
+typedef struct dane_list
+{
struct dane_list *next;
void *value;
} *dane_list;
#define LINSERT(h, e) do { (e)->next = (h); (h) = (e); } while (0)
-typedef struct DANE_HOST_LIST {
- struct DANE_HOST_LIST *next;
+typedef struct dane_host_list
+{
+ struct dane_host_list *next;
char *value;
-} *DANE_HOST_LIST;
+} *dane_host_list;
-typedef struct dane_data {
+typedef struct dane_data
+{
size_t datalen;
unsigned char data[0];
} *dane_data;
-typedef struct DANE_DATA_LIST {
- struct DANE_DATA_LIST *next;
+typedef struct dane_data_list
+{
+ struct dane_data_list *next;
dane_data value;
-} *DANE_DATA_LIST;
+} *dane_data_list;
-typedef struct dane_mtype {
+typedef struct dane_mtype
+{
int mdlen;
const EVP_MD *md;
- DANE_DATA_LIST data;
+ dane_data_list data;
} *dane_mtype;
-typedef struct DANE_MTYPE_LIST {
- struct DANE_MTYPE_LIST *next;
+typedef struct dane_mtype_list
+{
+ struct dane_mtype_list *next;
dane_mtype value;
-} *DANE_MTYPE_LIST;
+} *dane_mtype_list;
-typedef struct dane_selector {
+typedef struct dane_selector
+{
uint8_t selector;
- DANE_MTYPE_LIST mtype;
+ dane_mtype_list mtype;
} *dane_selector;
-typedef struct DANE_SELECTOR_LIST {
- struct DANE_SELECTOR_LIST *next;
+typedef struct dane_selector_list
+{
+ struct dane_selector_list *next;
dane_selector value;
-} *DANE_SELECTOR_LIST;
+} *dane_selector_list;
-typedef struct DANE_PKEY_LIST {
- struct DANE_PKEY_LIST *next;
+typedef struct dane_pkey_list
+{
+ struct dane_pkey_list *next;
EVP_PKEY *value;
-} *DANE_PKEY_LIST;
+} *dane_pkey_list;
-typedef struct DANE_CERT_LIST {
- struct DANE_CERT_LIST *next;
+typedef struct dane_cert_list
+{
+ struct dane_cert_list *next;
X509 *value;
-} *DANE_CERT_LIST;
+} *dane_cert_list;
-typedef struct SSL_DANE {
+typedef struct ssl_dane
+{
int (*verify)(X509_STORE_CTX *);
STACK_OF(X509) *roots;
STACK_OF(X509) *chain;
const char *thost; /* TLSA base domain */
char *mhost; /* Matched, peer name */
- DANE_PKEY_LIST pkeys;
- DANE_CERT_LIST certs;
- DANE_HOST_LIST hosts;
- DANE_SELECTOR_LIST selectors[SSL_DANE_USAGE_LAST + 1];
+ dane_pkey_list pkeys;
+ dane_cert_list certs;
+ dane_host_list hosts;
+ dane_selector_list selectors[SSL_DANE_USAGE_LAST + 1];
int depth;
int multi; /* Multi-label wildcards? */
int count; /* Number of TLSA records */
-} SSL_DANE;
+} ssl_dane;
#ifndef X509_V_ERR_HOSTNAME_MISMATCH
-#define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION
+# define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION
#endif
-static int match(DANE_SELECTOR_LIST slist, X509 *cert, int depth)
+static int
+match(dane_selector_list slist, X509 *cert, int depth)
{
- int matched;
+int matched;
- /*
- * Note, set_trust_anchor() needs to know whether the match was for a
- * pkey digest or a certificate digest. We return MATCHED_PKEY or
- * MATCHED_CERT accordingly.
- */
+/*
+ * Note, set_trust_anchor() needs to know whether the match was for a
+ * pkey digest or a certificate digest. We return MATCHED_PKEY or
+ * MATCHED_CERT accordingly.
+ */
#define MATCHED_CERT (SSL_DANE_SELECTOR_CERT + 1)
#define MATCHED_PKEY (SSL_DANE_SELECTOR_SPKI + 1)
+/*
+ * Loop over each selector, mtype, and associated data element looking
+ * for a match.
+ */
+for(matched = 0; !matched && slist; slist = slist->next)
+ {
+ dane_mtype_list m;
+ unsigned char mdbuf[EVP_MAX_MD_SIZE];
+ unsigned char *buf;
+ unsigned char *buf2;
+ unsigned int len;
+
+ /*
+ * Extract ASN.1 DER form of certificate or public key.
+ */
+ switch(slist->value->selector)
+ {
+ case SSL_DANE_SELECTOR_CERT:
+ len = i2d_X509(cert, NULL);
+ buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
+ if(buf) i2d_X509(cert, &buf2);
+ break;
+ case SSL_DANE_SELECTOR_SPKI:
+ len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL);
+ buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
+ if(buf) i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2);
+ break;
+ }
+
+ if(!buf)
+ {
+ DANEerr(DANE_F_MATCH, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+ OPENSSL_assert(buf2 - buf == len);
+
+ /*
+ * Loop over each mtype and data element
+ */
+ for(m = slist->value->mtype; !matched && m; m = m->next)
+ {
+ dane_data_list d;
+ unsigned char *cmpbuf = buf;
+ unsigned int cmplen = len;
+
/*
- * Loop over each selector, mtype, and associated data element looking
- * for a match.
+ * If it is a digest, compute the corresponding digest of the
+ * DER data for comparison, otherwise, use the full object.
*/
- for (matched = 0; !matched && slist; slist = slist->next) {
- DANE_MTYPE_LIST m;
- unsigned char mdbuf[EVP_MAX_MD_SIZE];
- unsigned char *buf;
- unsigned char *buf2;
- unsigned int len;
-
- /*
- * Extract ASN.1 DER form of certificate or public key.
- */
- switch (slist->value->selector) {
- case SSL_DANE_SELECTOR_CERT:
- len = i2d_X509(cert, NULL);
- buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
- if (buf)
- i2d_X509(cert, &buf2);
- break;
- case SSL_DANE_SELECTOR_SPKI:
- len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL);
- buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
- if (buf)
- i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2);
- break;
- }
-
- if (buf == NULL) {
- DANEerr(DANE_F_MATCH, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- OPENSSL_assert(buf2 - buf == len);
-
- /*
- * Loop over each mtype and data element
- */
- for (m = slist->value->mtype; !matched && m; m = m->next) {
- DANE_DATA_LIST d;
- unsigned char *cmpbuf = buf;
- unsigned int cmplen = len;
-
- /*
- * If it is a digest, compute the corresponding digest of the
- * DER data for comparison, otherwise, use the full object.
- */
- if (m->value->md) {
- cmpbuf = mdbuf;
- if (!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0))
- matched = -1;
- }
- for (d = m->value->data; !matched && d; d = d->next)
- if (cmplen == d->value->datalen &&
- memcmp(cmpbuf, d->value->data, cmplen) == 0)
- matched = slist->value->selector + 1;
- }
-
- OPENSSL_free(buf);
+ if(m->value->md)
+ {
+ cmpbuf = mdbuf;
+ if(!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0))
+ matched = -1;
+ }
+ for(d = m->value->data; !matched && d; d = d->next)
+ if( cmplen == d->value->datalen
+ && memcmp(cmpbuf, d->value->data, cmplen) == 0)
+ matched = slist->value->selector + 1;
}
- return matched;
-}
+ OPENSSL_free(buf);
+ }
-static int push_ext(X509 *cert, X509_EXTENSION *ext)
-{
- X509_EXTENSIONS *exts;
-
- if (ext) {
- if ((exts = cert->cert_info->extensions) == 0)
- exts = cert->cert_info->extensions = sk_X509_EXTENSION_new_null();
- if (exts && sk_X509_EXTENSION_push(exts, ext))
- return 1;
- X509_EXTENSION_free(ext);
- }
- DANEerr(DANE_F_PUSH_EXT, ERR_R_MALLOC_FAILURE);
- return 0;
+return matched;
}
-static int add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val)
+static int
+push_ext(X509 *cert, X509_EXTENSION *ext)
{
- X509V3_CTX v3ctx;
+X509_EXTENSIONS *exts;
- X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0);
- return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val));
+if(ext)
+ {
+ if(!(exts = cert->cert_info->extensions))
+ exts = cert->cert_info->extensions = sk_X509_EXTENSION_new_null();
+ if (exts && sk_X509_EXTENSION_push(exts, ext))
+ return 1;
+ X509_EXTENSION_free(ext);
+ }
+DANEerr(DANE_F_PUSH_EXT, ERR_R_MALLOC_FAILURE);
+return 0;
}
-static int set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject)
+static int
+add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val)
{
- int ret = 0;
- BIGNUM *bn;
-
- if (akid && akid->serial)
- return (X509_set_serialNumber(cert, akid->serial));
+X509V3_CTX v3ctx;
- /*
- * Add one to subject's serial to avoid collisions between TA serial and
- * serial of signing root.
- */
- if ((bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
- && BN_add_word(bn, 1)
- && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
- ret = 1;
-
- if (bn)
- BN_free(bn);
- return ret;
+X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0);
+return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val));
}
-static int add_akid(X509 *cert, AUTHORITY_KEYID *akid)
+static int
+set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject)
{
- int nid = NID_authority_key_identifier;
- ASN1_STRING *id;
- unsigned char c = 0;
- int ret = 0;
+int ret = 0;
+BIGNUM *bn;
+
+if(akid && akid->serial)
+ return (X509_set_serialNumber(cert, akid->serial));
+
+/*
+ * Add one to subject's serial to avoid collisions between TA serial and
+ * serial of signing root.
+ */
+if( (bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
+ && BN_add_word(bn, 1)
+ && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
+ ret = 1;
+
+if(bn)
+ BN_free(bn);
+return ret;
+}
- /*
- * 0 will never be our subject keyid from a SHA-1 hash, but it could be
- * our subject keyid if forced from child's akid. If so, set our
- * authority keyid to 1. This way we are never self-signed, and thus
- * exempt from any potential (off by default for now in OpenSSL)
- * self-signature checks!
- */
- id = (ASN1_STRING *) ((akid && akid->keyid) ? akid->keyid : 0);
- if (id && M_ASN1_STRING_length(id) == 1 && *M_ASN1_STRING_data(id) == c)
- c = 1;
-
- if ((akid = AUTHORITY_KEYID_new()) != 0
- && (akid->keyid = ASN1_OCTET_STRING_new()) != 0
- && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
- && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND))
- ret = 1;
- if (akid)
- AUTHORITY_KEYID_free(akid);
- return ret;
+static int
+add_akid(X509 *cert, AUTHORITY_KEYID *akid)
+{
+int nid = NID_authority_key_identifier;
+ASN1_STRING *id;
+unsigned char c = 0;
+int ret = 0;
+
+/*
+ * 0 will never be our subject keyid from a SHA-1 hash, but it could be
+ * our subject keyid if forced from child's akid. If so, set our
+ * authority keyid to 1. This way we are never self-signed, and thus
+ * exempt from any potential (off by default for now in OpenSSL)
+ * self-signature checks!
+ */
+id = (ASN1_STRING *) ((akid && akid->keyid) ? akid->keyid : 0);
+if(id && M_ASN1_STRING_length(id) == 1 && *M_ASN1_STRING_data(id) == c)
+ c = 1;
+
+if( (akid = AUTHORITY_KEYID_new()) != 0
+ && (akid->keyid = ASN1_OCTET_STRING_new()) != 0
+ && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
+ && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND))
+ ret = 1;
+if(akid)
+ AUTHORITY_KEYID_free(akid);
+return ret;
}
-static int add_skid(X509 *cert, AUTHORITY_KEYID *akid)
+static int
+add_skid(X509 *cert, AUTHORITY_KEYID *akid)
{
- int nid = NID_subject_key_identifier;
+int nid = NID_subject_key_identifier;
- if (!akid || !akid->keyid)
- return add_ext(0, cert, nid, "hash");
- return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0;
+if(!akid || !akid->keyid)
+ return add_ext(0, cert, nid, "hash");
+return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0;
}
-static X509_NAME *akid_issuer_name(AUTHORITY_KEYID *akid)
+static X509_NAME *
+akid_issuer_name(AUTHORITY_KEYID *akid)
{
- if (akid && akid->issuer) {
- int i;
- GENERAL_NAMES *gens = akid->issuer;
+if(akid && akid->issuer)
+ {
+ int i;
+ GENERAL_NAMES *gens = akid->issuer;
- for (i = 0; i < sk_GENERAL_NAME_num(gens); ++i) {
- GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
+ for(i = 0; i < sk_GENERAL_NAME_num(gens); ++i)
+ {
+ GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
- if (gn->type == GEN_DIRNAME)
- return (gn->d.dirn);
- }
+ if(gn->type == GEN_DIRNAME)
+ return (gn->d.dirn);
}
- return 0;
+ }
+return 0;
}
-static int set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid)
+static int
+set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid)
{
- X509_NAME *name = akid_issuer_name(akid);
-
- /*
- * If subject's akid specifies an authority key identifer issuer name, we
- * must use that.
- */
- if (name)
- return X509_set_issuer_name(cert, name);
- return X509_set_issuer_name(cert, X509_get_subject_name(cert));
+X509_NAME *name = akid_issuer_name(akid);
+
+/*
+ * If subject's akid specifies an authority key identifer issuer name, we
+ * must use that.
+ */
+return X509_set_issuer_name(cert,
+ name ? name : X509_get_subject_name(cert));
}
-static int grow_chain(SSL_DANE *dane, int trusted, X509 *cert)
+static int
+grow_chain(ssl_dane *dane, int trusted, X509 *cert)
{
- STACK_OF(X509) **xs = trusted ? &dane->roots : &dane->chain;
- static ASN1_OBJECT *serverAuth = 0;
+STACK_OF(X509) **xs = trusted ? &dane->roots : &dane->chain;
+static ASN1_OBJECT *serverAuth = 0;
#define UNTRUSTED 0
#define TRUSTED 1
- if (trusted && serverAuth == 0 &&
- (serverAuth = OBJ_nid2obj(NID_server_auth)) == 0) {
- DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- if (!*xs && (*xs = sk_X509_new_null()) == 0) {
- DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
- return 0;
- }
-
- if (cert) {
- if (trusted && !X509_add1_trust_object(cert, serverAuth))
- return 0;
- CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
- if (!sk_X509_push(*xs, cert)) {
- X509_free(cert);
- DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
- return 0;
- }
+if( trusted && !serverAuth
+ && !(serverAuth = OBJ_nid2obj(NID_server_auth)))
+ {
+ DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+if(!*xs && !(*xs = sk_X509_new_null()))
+ {
+ DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+
+if(cert)
+ {
+ if(trusted && !X509_add1_trust_object(cert, serverAuth))
+ return 0;
+ CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
+ if (!sk_X509_push(*xs, cert))
+ {
+ X509_free(cert);
+ DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
+ return 0;
}
- return 1;
+ }
+return 1;
}
-static int wrap_issuer(
- SSL_DANE *dane,
- EVP_PKEY *key,
- X509 *subject,
- int depth,
- int top
-)
+static int
+wrap_issuer(ssl_dane *dane, EVP_PKEY *key, X509 *subject, int depth, int top)
{
- int ret = 1;
- X509 *cert = 0;
- AUTHORITY_KEYID *akid;
- X509_NAME *name = X509_get_issuer_name(subject);
- EVP_PKEY *newkey = key ? key : X509_get_pubkey(subject);
+int ret = 1;
+X509 *cert = 0;
+AUTHORITY_KEYID *akid;
+X509_NAME *name = X509_get_issuer_name(subject);
+EVP_PKEY *newkey = key ? key : X509_get_pubkey(subject);
#define WRAP_MID 0 /* Ensure intermediate. */
#define WRAP_TOP 1 /* Ensure self-signed. */
- if (name == 0 || newkey == 0 || (cert = X509_new()) == 0)
- return 0;
-
- /*
- * Record the depth of the trust-anchor certificate.
- */
- if (dane->depth < 0)
- dane->depth = depth + 1;
-
- /*
- * XXX: Uncaught error condition:
- *
- * The return value is NULL both when the extension is missing, and when
- * OpenSSL rans out of memory while parsing the extension.
- */
- ERR_clear_error();
- akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0);
- /* XXX: Should we peek at the error stack here??? */
-
- /*
- * If top is true generate a self-issued root CA, otherwise an
- * intermediate CA and possibly its self-signed issuer.
- *
- * CA cert valid for +/- 30 days
- */
- if (!X509_set_version(cert, 2)
- || !set_serial(cert, akid, subject)
- || !X509_set_subject_name(cert, name)
- || !set_issuer_name(cert, akid)
- || !X509_gmtime_adj(X509_get_notBefore(cert), -30 * 86400L)
- || !X509_gmtime_adj(X509_get_notAfter(cert), 30 * 86400L)
- || !X509_set_pubkey(cert, newkey)
- || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
- || (!top && !add_akid(cert, akid))
- || !add_skid(cert, akid)
- || (!top && wrap_to_root &&
- !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP))) {
- ret = 0;
- }
- if (akid)
- AUTHORITY_KEYID_free(akid);
- if (!key)
- EVP_PKEY_free(newkey);
- if (ret) {
- if (!top && wrap_to_root)
- ret = grow_chain(dane, UNTRUSTED, cert);
- else
- ret = grow_chain(dane, TRUSTED, cert);
- }
- if (cert)
- X509_free(cert);
- return ret;
+if(!name || !newkey || !(cert = X509_new()))
+ return 0;
+
+/*
+ * Record the depth of the trust-anchor certificate.
+ */
+if(dane->depth < 0)
+ dane->depth = depth + 1;
+
+/*
+ * XXX: Uncaught error condition:
+ *
+ * The return value is NULL both when the extension is missing, and when
+ * OpenSSL rans out of memory while parsing the extension.
+ */
+ERR_clear_error();
+akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0);
+/* XXX: Should we peek at the error stack here??? */
+
+/*
+ * If top is true generate a self-issued root CA, otherwise an
+ * intermediate CA and possibly its self-signed issuer.
+ *
+ * CA cert valid for +/- 30 days
+ */
+if( !X509_set_version(cert, 2)
+ || !set_serial(cert, akid, subject)
+ || !X509_set_subject_name(cert, name)
+ || !set_issuer_name(cert, akid)
+ || !X509_gmtime_adj(X509_get_notBefore(cert), -30 * 86400L)
+ || !X509_gmtime_adj(X509_get_notAfter(cert), 30 * 86400L)
+ || !X509_set_pubkey(cert, newkey)
+ || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
+ || (!top && !add_akid(cert, akid))
+ || !add_skid(cert, akid)
+ || ( !top && wrap_to_root
+ && !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP)))
+ ret = 0;
+
+if(akid)
+ AUTHORITY_KEYID_free(akid);
+if(!key)
+ EVP_PKEY_free(newkey);
+if(ret)
+ ret = grow_chain(dane, !top && wrap_to_root ? UNTRUSTED : TRUSTED, cert);
+if(cert)
+ X509_free(cert);
+return ret;
}
-static int wrap_cert(SSL_DANE *dane, X509 *tacert, int depth)
+static int
+wrap_cert(ssl_dane *dane, X509 *tacert, int depth)
{
- if (dane->depth < 0)
- dane->depth = depth + 1;
-
- /*
- * If the TA certificate is self-issued, or need not be, use it directly.
- * Otherwise, synthesize requisuite ancestors.
- */
- if (!wrap_to_root
- || X509_check_issued(tacert, tacert) == X509_V_OK)
- return grow_chain(dane, TRUSTED, tacert);
-
- if (wrap_issuer(dane, 0, tacert, depth, WRAP_MID))
- return grow_chain(dane, UNTRUSTED, tacert);
- return 0;
+if(dane->depth < 0)
+ dane->depth = depth + 1;
+
+/*
+ * If the TA certificate is self-issued, or need not be, use it directly.
+ * Otherwise, synthesize requisuite ancestors.
+ */
+if( !wrap_to_root
+ || X509_check_issued(tacert, tacert) == X509_V_OK)
+ return grow_chain(dane, TRUSTED, tacert);
+
+if(wrap_issuer(dane, 0, tacert, depth, WRAP_MID))
+ return grow_chain(dane, UNTRUSTED, tacert);
+return 0;
}
-static int ta_signed(SSL_DANE *dane, X509 *cert, int depth)
+static int
+ta_signed(ssl_dane *dane, X509 *cert, int depth)
{
- DANE_CERT_LIST x;
- DANE_PKEY_LIST k;
- EVP_PKEY *pk;
- int done = 0;
-
- /*
- * First check whether issued and signed by a TA cert, this is cheaper
- * than the bare-public key checks below, since we can determine whether
- * the candidate TA certificate issued the certificate to be checked
- * first (name comparisons), before we bother with signature checks
- * (public key operations).
- */
- for (x = dane->certs; !done && x; x = x->next) {
- if (X509_check_issued(x->value, cert) == X509_V_OK) {
- if ((pk = X509_get_pubkey(x->value)) == 0) {
- /*
- * The cert originally contained a valid pkey, which does
- * not just vanish, so this is most likely a memory error.
- */
- done = -1;
- break;
- }
- /* Check signature, since some other TA may work if not this. */
- if (X509_verify(cert, pk) > 0)
- done = wrap_cert(dane, x->value, depth) ? 1 : -1;
- EVP_PKEY_free(pk);
- }
+dane_cert_list x;
+dane_pkey_list k;
+EVP_PKEY *pk;
+int done = 0;
+
+/*
+ * First check whether issued and signed by a TA cert, this is cheaper
+ * than the bare-public key checks below, since we can determine whether
+ * the candidate TA certificate issued the certificate to be checked
+ * first (name comparisons), before we bother with signature checks
+ * (public key operations).
+ */
+for (x = dane->certs; !done && x; x = x->next)
+ {
+ if(X509_check_issued(x->value, cert) == X509_V_OK)
+ {
+ if(!(pk = X509_get_pubkey(x->value)))
+ {
+ /*
+ * The cert originally contained a valid pkey, which does
+ * not just vanish, so this is most likely a memory error.
+ */
+ done = -1;
+ break;
+ }
+ /* Check signature, since some other TA may work if not this. */
+ if(X509_verify(cert, pk) > 0)
+ done = wrap_cert(dane, x->value, depth) ? 1 : -1;
+ EVP_PKEY_free(pk);
}
+ }
+
+/*
+ * With bare TA public keys, we can't check whether the trust chain is
+ * issued by the key, but we can determine whether it is signed by the
+ * key, so we go with that.
+ *
+ * Ideally, the corresponding certificate was presented in the chain, and we
+ * matched it by its public key digest one level up. This code is here
+ * to handle adverse conditions imposed by sloppy administrators of
+ * receiving systems with poorly constructed chains.
+ *
+ * We'd like to optimize out keys that should not match when the cert's
+ * authority key id does not match the key id of this key computed via
+ * the RFC keyid algorithm (SHA-1 digest of public key bit-string sans
+ * ASN1 tag and length thus also excluding the unused bits field that is
+ * logically part of the length). However, some CAs have a non-standard
+ * authority keyid, so we lose. Too bad.
+ *
+ * This may push errors onto the stack when the certificate signature is
+ * not of the right type or length, throw these away,
+ */
+for(k = dane->pkeys; !done && k; k = k->next)
+ if(X509_verify(cert, k->value) > 0)
+ done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1;
+ else
+ ERR_clear_error();
- /*
- * With bare TA public keys, we can't check whether the trust chain is
- * issued by the key, but we can determine whether it is signed by the
- * key, so we go with that.
- *
- * Ideally, the corresponding certificate was presented in the chain, and we
- * matched it by its public key digest one level up. This code is here
- * to handle adverse conditions imposed by sloppy administrators of
- * receiving systems with poorly constructed chains.
- *
- * We'd like to optimize out keys that should not match when the cert's
- * authority key id does not match the key id of this key computed via
- * the RFC keyid algorithm (SHA-1 digest of public key bit-string sans
- * ASN1 tag and length thus also excluding the unused bits field that is
- * logically part of the length). However, some CAs have a non-standard
- * authority keyid, so we lose. Too bad.
- *
- * This may push errors onto the stack when the certificate signature is
- * not of the right type or length, throw these away,
- */
- for (k = dane->pkeys; !done && k; k = k->next)
- if (X509_verify(cert, k->value) > 0)
- done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1;
- else
- ERR_clear_error();
-
- return done;
+return done;
}
-static int set_trust_anchor(X509_STORE_CTX *ctx, SSL_DANE *dane, X509 *cert)
+static int
+set_trust_anchor(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
{
- int matched = 0;
- int n;
- int i;
- int depth = 0;
- EVP_PKEY *takey;
- X509 *ca;
- STACK_OF(X509) *in = ctx->untrusted; /* XXX: Accessor? */
-
- if (!grow_chain(dane, UNTRUSTED, 0))
- return -1;
-
- /*
- * Accept a degenerate case: depth 0 self-signed trust-anchor.
- */
- if (X509_check_issued(cert, cert) == X509_V_OK) {
- dane->depth = 0;
- matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], cert, 0);
- if (matched > 0 && !grow_chain(dane, TRUSTED, cert))
- matched = -1;
- return matched;
+int matched = 0;
+int n;
+int i;
+int depth = 0;
+EVP_PKEY *takey;
+X509 *ca;
+STACK_OF(X509) *in = ctx->untrusted; /* XXX: Accessor? */
+
+if(!grow_chain(dane, UNTRUSTED, 0))
+ return -1;
+
+/*
+ * Accept a degenerate case: depth 0 self-signed trust-anchor.
+ */
+if(X509_check_issued(cert, cert) == X509_V_OK)
+ {
+ dane->depth = 0;
+ matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], cert, 0);
+ if(matched > 0 && !grow_chain(dane, TRUSTED, cert))
+ matched = -1;
+ return matched;
+ }
+
+/* Make a shallow copy of the input untrusted chain. */
+if(!(in = sk_X509_dup(in)))
+ {
+ DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
+ return -1;
+ }
+
+/*
+ * At each iteration we consume the issuer of the current cert. This
+ * reduces the length of the "in" chain by one. If no issuer is found,
+ * we are done. We also stop when a certificate matches a TA in the
+ * peer's TLSA RRset.
+ *
+ * Caller ensures that the initial certificate is not self-signed.
+ */
+for(n = sk_X509_num(in); n > 0; --n, ++depth)
+ {
+ for(i = 0; i < n; ++i)
+ if(X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
+ break;
+
+ /*
+ * Final untrusted element with no issuer in the peer's chain, it may
+ * however be signed by a pkey or cert obtained via a TLSA RR.
+ */
+ if(i == n)
+ break;
+
+ /* Peer's chain contains an issuer ca. */
+ ca = sk_X509_delete(in, i);
+
+ /* If not a trust anchor, record untrusted ca and continue. */
+ if((matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], ca, depth+1))
+ == 0)
+ {
+ if(grow_chain(dane, UNTRUSTED, ca))
+ {
+ if(!X509_check_issued(ca, ca) == X509_V_OK)
+ {
+ /* Restart with issuer as subject */
+ cert = ca;
+ continue;
+ }
+ /* Final self-signed element, skip ta_signed() check. */
+ cert = 0;
+ }
+ else
+ matched = -1;
}
-
- /* Make a shallow copy of the input untrusted chain. */
- if ((in = sk_X509_dup(in)) == 0) {
- DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
- return -1;
+ else if(matched == MATCHED_CERT)
+ {
+ if(!wrap_cert(dane, ca, depth))
+ matched = -1;
}
-
- /*
- * At each iteration we consume the issuer of the current cert. This
- * reduces the length of the "in" chain by one. If no issuer is found,
- * we are done. We also stop when a certificate matches a TA in the
- * peer's TLSA RRset.
- *
- * Caller ensures that the initial certificate is not self-signed.
- */
- for (n = sk_X509_num(in); n > 0; --n, ++depth) {
- for (i = 0; i < n; ++i)
- if (X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
- break;
-
- /*
- * Final untrusted element with no issuer in the peer's chain, it may
- * however be signed by a pkey or cert obtained via a TLSA RR.
- */
- if (i == n)
- break;
-
- /* Peer's chain contains an issuer ca. */
- ca = sk_X509_delete(in, i);
-
- /* If not a trust anchor, record untrusted ca and continue. */
- if ((matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], ca,
- depth + 1)) == 0) {
- if (grow_chain(dane, UNTRUSTED, ca)) {
- if (!X509_check_issued(ca, ca) == X509_V_OK) {
- /* Restart with issuer as subject */
- cert = ca;
- continue;
- }
- /* Final self-signed element, skip ta_signed() check. */
- cert = 0;
- } else
- matched = -1;
- } else if (matched == MATCHED_CERT) {
- if (!wrap_cert(dane, ca, depth))
- matched = -1;
- } else if (matched == MATCHED_PKEY) {
- if ((takey = X509_get_pubkey(ca)) == 0 ||
- !wrap_issuer(dane, takey, cert, depth, WRAP_MID)) {
- if (takey)
- EVP_PKEY_free(takey);
- else
- DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
- matched = -1;
- }
- }
- break;
+ else if(matched == MATCHED_PKEY)
+ {
+ if( !(takey = X509_get_pubkey(ca))
+ || !wrap_issuer(dane, takey, cert, depth, WRAP_MID))
+ {
+ if(takey)
+ EVP_PKEY_free(takey);
+ else
+ DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
+ matched = -1;
+ }
}
+ break;
+ }
- /* Shallow free the duplicated input untrusted chain. */
- sk_X509_free(in);
+/* Shallow free the duplicated input untrusted chain. */
+sk_X509_free(in);
- /*
- * When the loop exits, if "cert" is set, it is not self-signed and has
- * no issuer in the chain, we check for a possible signature via a DNS
- * obtained TA cert or public key.
- */
- if (matched == 0 && cert)
- matched = ta_signed(dane, cert, depth);
+/*
+ * When the loop exits, if "cert" is set, it is not self-signed and has
+ * no issuer in the chain, we check for a possible signature via a DNS
+ * obtained TA cert or public key.
+ */
+if(matched == 0 && cert)
+ matched = ta_signed(dane, cert, depth);
- return matched;
+return matched;
}
-static int check_end_entity(X509_STORE_CTX *ctx, SSL_DANE *dane, X509 *cert)
+static int
+check_end_entity(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
{
- int matched;
-
- matched = match(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF], cert, 0);
- if (matched > 0) {
- if (ctx->chain == 0) {
- if ((ctx->chain = sk_X509_new_null()) != 0 &&
- sk_X509_push(ctx->chain, cert)) {
- CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
- } else {
- DANEerr(DANE_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE);
- return -1;
- }
- }
- }
- return matched;
+int matched;
+
+matched = match(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF], cert, 0);
+if(matched > 0)
+ if(!ctx->chain)
+ if( (ctx->chain = sk_X509_new_null())
+ && sk_X509_push(ctx->chain, cert))
+ CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
+ else
+ {
+ DANEerr(DANE_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE);
+ return -1;
+ }
+return matched;
}
-static int match_name(const char *certid, SSL_DANE *dane)
+static int
+match_name(const char *certid, ssl_dane *dane)
{
- int multi = dane->multi;
- DANE_HOST_LIST hosts = dane->hosts;
-
- for (/* NOP */; hosts; hosts = hosts->next) {
- int match_subdomain = 0;
- const char *domain = hosts->value;
- const char *parent;
- int idlen;
- int domlen;
-
- if (*domain == '.' && domain[1] != '\0') {
- ++domain;
- match_subdomain = 1;
- }
-
- /*
- * Sub-domain match: certid is any sub-domain of hostname.
- */
- if (match_subdomain) {
- if ((idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
- && certid[idlen - domlen - 1] == '.'
- && !strcasecmp(certid + (idlen - domlen), domain))
- return 1;
- else
- continue;
- }
-
- /*
- * Exact match and initial "*" match. The initial "*" in a certid
- * matches one (if multi is false) or more hostname components under
- * the condition that the certid contains multiple hostname components.
- */
- if (!strcasecmp(certid, domain)
- || (certid[0] == '*' && certid[1] == '.' && certid[2] != 0
- && (parent = strchr(domain, '.')) != 0
- && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
- && strcasecmp(multi ? parent + domlen - idlen : parent,
- certid + 1) == 0))
- return 1;
+int multi = dane->multi;
+dane_host_list hosts;
+
+for(hosts = dane->hosts; hosts; hosts = hosts->next)
+ {
+ int match_subdomain = 0;
+ const char *domain = hosts->value;
+ const char *parent;
+ int idlen;
+ int domlen;
+
+ if(*domain == '.' && domain[1] != '\0')
+ {
+ ++domain;
+ match_subdomain = 1;
}
- return 0;
+
+ /*
+ * Sub-domain match: certid is any sub-domain of hostname.
+ */
+ if(match_subdomain)
+ if( (idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
+ && certid[idlen - domlen - 1] == '.'
+ && !strcasecmp(certid + (idlen - domlen), domain))
+ return 1;
+ else
+ continue;
+
+ /*
+ * Exact match and initial "*" match. The initial "*" in a certid
+ * matches one (if multi is false) or more hostname components under
+ * the condition that the certid contains multiple hostname components.
+ */
+ if( !strcasecmp(certid, domain)
+ || ( certid[0] == '*' && certid[1] == '.' && certid[2] != 0
+ && (parent = strchr(domain, '.')) != 0
+ && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
+ && strcasecmp(multi ? parent + domlen - idlen : parent, certid+1) == 0))
+ return 1;
+ }
+return 0;
}
-static char *check_name(char *name, int len)
+static char *
+check_name(char *name, int len)
{
- register char *cp = name + len;
-
- while (len > 0 && *--cp == 0)
- --len; /* Ignore trailing NULs */
- if (len <= 0)
- return 0;
- for (cp = name; *cp; cp++) {
- register char c = *cp;
- if (!((c >= 'a' && c <= 'z') ||
- (c >= '0' && c <= '9') ||
- (c >= 'A' && c <= 'Z') ||
- (c == '.' || c == '-') ||
- (c == '*')))
- return 0; /* Only LDH, '.' and '*' */
- }
- if (cp - name != len) /* Guard against internal NULs */
- return 0;
- return name;
+char *cp = name + len;
+
+while(len > 0 && !*--cp)
+ --len; /* Ignore trailing NULs */
+if(len <= 0)
+ return 0;
+for(cp = name; *cp; cp++)
+ {
+ char c = *cp;
+ if (!((c >= 'a' && c <= 'z') ||
+ (c >= '0' && c <= '9') ||
+ (c >= 'A' && c <= 'Z') ||
+ (c == '.' || c == '-') ||
+ (c == '*')))
+ return 0; /* Only LDH, '.' and '*' */
+ }
+if(cp - name != len) /* Guard against internal NULs */
+ return 0;
+return name;
}
-static char *parse_dns_name(const GENERAL_NAME *gn)
+static char *
+parse_dns_name(const GENERAL_NAME *gn)
{
- if (gn->type != GEN_DNS)
- return 0;
- if (ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING)
- return 0;
- return check_name((char *) ASN1_STRING_data(gn->d.ia5),
- ASN1_STRING_length(gn->d.ia5));
+if(gn->type != GEN_DNS)
+ return 0;
+if(ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING)
+ return 0;
+return check_name((char *) ASN1_STRING_data(gn->d.ia5),
+ ASN1_STRING_length(gn->d.ia5));
}
-static char *parse_subject_name(X509 *cert)
+static char *
+parse_subject_name(X509 *cert)
{
- X509_NAME *name = X509_get_subject_name(cert);
- X509_NAME_ENTRY *entry;
- ASN1_STRING *entry_str;
- unsigned char *namebuf;
- int nid = NID_commonName;
- int len;
- int i;
-
- if (name == 0 || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0)
- return 0;
- if ((entry = X509_NAME_get_entry(name, i)) == 0)
- return 0;
- if ((entry_str = X509_NAME_ENTRY_get_data(entry)) == 0)
- return 0;
-
- if ((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0)
- return 0;
- if (len <= 0 || check_name((char *) namebuf, len) == 0) {
- OPENSSL_free(namebuf);
- return 0;
- }
- return (char *) namebuf;
+X509_NAME *name = X509_get_subject_name(cert);
+X509_NAME_ENTRY *entry;
+ASN1_STRING *entry_str;
+unsigned char *namebuf;
+int nid = NID_commonName;
+int len;
+int i;
+
+if(!name || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0)
+ return 0;
+if(!(entry = X509_NAME_get_entry(name, i)))
+ return 0;
+if(!(entry_str = X509_NAME_ENTRY_get_data(entry)))
+ return 0;
+
+if((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0)
+ return 0;
+if(len <= 0 || check_name((char *) namebuf, len) == 0)
+ {
+ OPENSSL_free(namebuf);
+ return 0;
+ }
+return (char *) namebuf;
}
-static int name_check(SSL_DANE *dane, X509 *cert)
+static int
+name_check(ssl_dane *dane, X509 *cert)
{
- int matched = 0;
- int got_altname = 0;
- GENERAL_NAMES *gens;
-
- gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0);
- if (gens) {
- int n = sk_GENERAL_NAME_num(gens);
- int i;
-
- for (i = 0; i < n; ++i) {
- const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
- const char *certid;
-
- if (gn->type != GEN_DNS)
- continue;
- got_altname = 1;
- certid = parse_dns_name(gn);
- if (certid && *certid) {
- if ((matched = match_name(certid, dane)) == 0)
- continue;
- if ((dane->mhost = OPENSSL_strdup(certid)) == 0)
- matched = -1;
- break;
- }
- }
- GENERAL_NAMES_free(gens);
- }
-
- /*
- * XXX: Should the subjectName be skipped when *any* altnames are present,
- * or only when DNS altnames are present?
- */
- if (got_altname == 0) {
- char *certid = parse_subject_name(cert);
- if (certid != 0 && *certid && (matched = match_name(certid, dane)) != 0)
- dane->mhost = certid; /* Already a copy */
+int matched = 0;
+BOOL got_altname = FALSE;
+GENERAL_NAMES *gens;
+
+gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0);
+if(gens)
+ {
+ int n = sk_GENERAL_NAME_num(gens);
+ int i;
+
+ for(i = 0; i < n; ++i)
+ {
+ const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
+ const char *certid;
+
+ if(gn->type != GEN_DNS)
+ continue;
+ got_altname = TRUE;
+ certid = parse_dns_name(gn);
+ if(certid && *certid)
+ {
+ if((matched = match_name(certid, dane)) == 0)
+ continue;
+ if(!(dane->mhost = OPENSSL_strdup(certid)))
+ matched = -1;
+ break;
+ }
}
- return matched;
+ GENERAL_NAMES_free(gens);
+ }
+
+/*
+ * XXX: Should the subjectName be skipped when *any* altnames are present,
+ * or only when DNS altnames are present?
+ */
+if(got_altname)
+ {
+ char *certid = parse_subject_name(cert);
+ if(certid != 0 && *certid && (matched = match_name(certid, dane)) != 0)
+ dane->mhost = certid; /* Already a copy */
+ }
+return matched;
}
-static int verify_chain(X509_STORE_CTX *ctx)
+static int
+verify_chain(X509_STORE_CTX *ctx)
{
- DANE_SELECTOR_LIST issuer_rrs;
- DANE_SELECTOR_LIST leaf_rrs;
- int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
- int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
- SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
- SSL_DANE *dane = SSL_get_ex_data(ssl, dane_idx);
- X509 *cert = ctx->cert; /* XXX: accessor? */
- int matched = 0;
- int chain_length = sk_X509_num(ctx->chain);
-
- issuer_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_ISSUER];
- leaf_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_LEAF];
- ctx->verify = dane->verify;
-
- if ((matched = name_check(dane, cert)) < 0) {
- X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
- return 0;
+dane_selector_list issuer_rrs;
+dane_selector_list leaf_rrs;
+int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
+int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
+SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
+ssl_dane *dane = SSL_get_ex_data(ssl, dane_idx);
+X509 *cert = ctx->cert; /* XXX: accessor? */
+int matched = 0;
+int chain_length = sk_X509_num(ctx->chain);
+
+issuer_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_ISSUER];
+leaf_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_LEAF];
+ctx->verify = dane->verify;
+
+if((matched = name_check(dane, cert)) < 0)
+ {
+ X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
+ return 0;
+ }
+
+if(!matched)
+ {
+ ctx->error_depth = 0;
+ ctx->current_cert = cert;
+ X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH);
+ if(!cb(0, ctx))
+ return 0;
+ }
+matched = 0;
+
+/*
+ * Satisfy at least one usage 0 or 1 constraint, unless we've already
+ * matched a usage 2 trust anchor.
+ *
+ * XXX: internal_verify() doesn't callback with top certs that are not
+ * self-issued. This should be fixed in a future OpenSSL.
+ */
+if(dane->roots && sk_X509_num(dane->roots))
+ {
+#ifndef NO_CALLBACK_WORKAROUND
+ X509 *top = sk_X509_value(ctx->chain, dane->depth);
+
+ if(X509_check_issued(top, top) != X509_V_OK)
+ {
+ ctx->error_depth = dane->depth;
+ ctx->current_cert = top;
+ if(!cb(1, ctx))
+ return 0;
+ }
+#endif
+ /* Pop synthetic trust-anchor ancestors off the chain! */
+ while (--chain_length > dane->depth)
+ X509_free(sk_X509_pop(ctx->chain));
+ }
+else if(issuer_rrs || leaf_rrs)
+ {
+ int n = chain_length;
+
+ /*
+ * Check for an EE match, then a CA match at depths > 0, and
+ * finally, if the EE cert is self-issued, for a depth 0 CA match.
+ */
+ if(leaf_rrs)
+ matched = match(leaf_rrs, cert, 0);
+ while(!matched && issuer_rrs && --n >= 0)
+ {
+ X509 *xn = sk_X509_value(ctx->chain, n);
+
+ if(n > 0 || X509_check_issued(xn, xn) == X509_V_OK)
+ matched = match(issuer_rrs, xn, n);
}
- if (!matched) {
- ctx->error_depth = 0;
- ctx->current_cert = cert;
- X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH);
- if (!cb(0, ctx))
- return 0;
+ if(matched < 0)
+ {
+ X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
+ return 0;
}
- matched = 0;
- /*
- * Satisfy at least one usage 0 or 1 constraint, unless we've already
- * matched a usage 2 trust anchor.
- *
- * XXX: internal_verify() doesn't callback with top certs that are not
- * self-issued. This should be fixed in a future OpenSSL.
- */
- if (dane->roots && sk_X509_num(dane->roots)) {
-#ifndef NO_CALLBACK_WORKAROUND
- X509 *top = sk_X509_value(ctx->chain, dane->depth);
-
- if (X509_check_issued(top, top) != X509_V_OK) {
- ctx->error_depth = dane->depth;
- ctx->current_cert = top;
- if (!cb(1, ctx))
- return 0;
- }
-#endif
- /* Pop synthetic trust-anchor ancestors off the chain! */
- while (--chain_length > dane->depth)
- X509_free(sk_X509_pop(ctx->chain));
- } else if (issuer_rrs || leaf_rrs) {
- int n = chain_length;
-
- /*
- * Check for an EE match, then a CA match at depths > 0, and
- * finally, if the EE cert is self-issued, for a depth 0 CA match.
- */
- if (leaf_rrs)
- matched = match(leaf_rrs, cert, 0);
- while (!matched && issuer_rrs && --n >= 0) {
- X509 *xn = sk_X509_value(ctx->chain, n);
-
- if (n > 0 || X509_check_issued(xn, xn) == X509_V_OK)
- matched = match(issuer_rrs, xn, n);
- }
-
- if (matched < 0) {
- X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
- return 0;
- }
-
- if (!matched) {
- ctx->current_cert = cert;
- ctx->error_depth = 0;
- X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED);
- if (!cb(0, ctx))
- return 0;
- }
+ if(!matched)
+ {
+ ctx->current_cert = cert;
+ ctx->error_depth = 0;
+ X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED);
+ if(!cb(0, ctx))
+ return 0;
}
+ }
- return ctx->verify(ctx);
+return ctx->verify(ctx);
}
-static int verify_cert(X509_STORE_CTX *ctx, void *unused_ctx)
+static int
+verify_cert(X509_STORE_CTX *ctx, void *unused_ctx)
{
- static int ssl_idx = -1;
- SSL *ssl;
- SSL_DANE *dane;
- int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
- int matched;
- X509 *cert = ctx->cert; /* XXX: accessor? */
-
- if (ssl_idx < 0)
- ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
- if (dane_idx < 0) {
- DANEerr(DANE_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
- return -1;
+static int ssl_idx = -1;
+SSL *ssl;
+ssl_dane *dane;
+int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
+int matched;
+X509 *cert = ctx->cert; /* XXX: accessor? */
+
+if(ssl_idx < 0)
+ ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
+if(dane_idx < 0)
+ {
+ DANEerr(DANE_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
+ return -1;
+ }
+
+ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
+if(!(dane = SSL_get_ex_data(ssl, dane_idx)) || !cert)
+ return X509_verify_cert(ctx);
+
+if(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF])
+ {
+ if((matched = check_end_entity(ctx, dane, cert)) > 0)
+ {
+ ctx->error_depth = 0;
+ ctx->current_cert = cert;
+ return cb(1, ctx);
}
-
- ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
- if ((dane = SSL_get_ex_data(ssl, dane_idx)) == 0 || cert == 0)
- return X509_verify_cert(ctx);
-
- if (dane->selectors[SSL_DANE_USAGE_FIXED_LEAF]) {
- if ((matched = check_end_entity(ctx, dane, cert)) > 0) {
- ctx->error_depth = 0;
- ctx->current_cert = cert;
- return cb(1, ctx);
- }
- if (matched < 0) {
- X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
- return -1;
- }
+ if(matched < 0)
+ {
+ X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
+ return -1;
}
+ }
- if (dane->selectors[SSL_DANE_USAGE_TRUSTED_CA]) {
- if ((matched = set_trust_anchor(ctx, dane, cert)) < 0) {
- X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
- return -1;
- }
- if (matched) {
- /*
- * Check that setting the untrusted chain updates the expected
- * structure member at the expected offset.
- */
- X509_STORE_CTX_trusted_stack(ctx, dane->roots);
- X509_STORE_CTX_set_chain(ctx, dane->chain);
- OPENSSL_assert(ctx->untrusted == dane->chain);
- }
+if(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA])
+ {
+ if((matched = set_trust_anchor(ctx, dane, cert)) < 0)
+ {
+ X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
+ return -1;
}
-
+ if(matched)
+ {
/*
- * Name checks and usage 0/1 constraint enforcement are delayed until
- * X509_verify_cert() builds the full chain and calls our verify_chain()
- * wrapper.
+ * Check that setting the untrusted chain updates the expected
+ * structure member at the expected offset.
*/
- dane->verify = ctx->verify;
- ctx->verify = verify_chain;
+ X509_STORE_CTX_trusted_stack(ctx, dane->roots);
+ X509_STORE_CTX_set_chain(ctx, dane->chain);
+ OPENSSL_assert(ctx->untrusted == dane->chain);
+ }
+ }
- return X509_verify_cert(ctx);
+/*
+ * Name checks and usage 0/1 constraint enforcement are delayed until
+ * X509_verify_cert() builds the full chain and calls our verify_chain()
+ * wrapper.
+ */
+dane->verify = ctx->verify;
+ctx->verify = verify_chain;
+
+return X509_verify_cert(ctx);
}
-static dane_list list_alloc(size_t vsize)
+static dane_list
+list_alloc(size_t vsize)
{
- void *value = (void *) OPENSSL_malloc(vsize);
- dane_list l;
-
- if (value == 0) {
- DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- if ((l = (dane_list) OPENSSL_malloc(sizeof(*l))) == 0) {
- OPENSSL_free(value);
- DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- l->next = 0;
- l->value = value;
- return l;
+void *value = (void *) OPENSSL_malloc(vsize);
+dane_list l;
+
+if(!value)
+ {
+ DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+if(!(l = (dane_list) OPENSSL_malloc(sizeof(*l))))
+ {
+ OPENSSL_free(value);
+ DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+l->next = 0;
+l->value = value;
+return l;
}
-static void list_free(void *list, void (*f)(void *))
+static void
+list_free(void *list, void (*f)(void *))
{
- dane_list head = (dane_list) list;
- dane_list next;
-
- for (/* NOP */; head; head = next) {
- next = head->next;
- if (f && head->value)
- f(head->value);
- OPENSSL_free(head);
- }
+dane_list head;
+dane_list next;
+
+for(head = (dane_list) list; head; head = next)
+ {
+ next = head->next;
+ if (f && head->value)
+ f(head->value);
+ OPENSSL_free(head);
+ }
}
-static void dane_mtype_free(void *p)
+static void
+dane_mtype_free(void *p)
{
- list_free(((dane_mtype) p)->data, OPENSSL_freeFunc);
- OPENSSL_free(p);
+list_free(((dane_mtype) p)->data, OPENSSL_freeFunc);
+OPENSSL_free(p);
}
-static void dane_selector_free(void *p)
+static void
+dane_selector_free(void *p)
{
- list_free(((dane_selector) p)->mtype, dane_mtype_free);
- OPENSSL_free(p);
+list_free(((dane_selector) p)->mtype, dane_mtype_free);
+OPENSSL_free(p);
}
-void DANESSL_cleanup(SSL *ssl)
+void
+DANESSL_cleanup(SSL *ssl)
{
- SSL_DANE *dane;
- int u;
-
- if (dane_idx < 0 || (dane = SSL_get_ex_data(ssl, dane_idx)) == 0)
- return;
- (void) SSL_set_ex_data(ssl, dane_idx, 0);
-
- if (dane->hosts)
- list_free(dane->hosts, OPENSSL_freeFunc);
- if (dane->mhost)
- OPENSSL_free(dane->mhost);
- for (u = 0; u <= SSL_DANE_USAGE_LAST; ++u)
- if (dane->selectors[u])
- list_free(dane->selectors[u], dane_selector_free);
- if (dane->pkeys)
- list_free(dane->pkeys, pkey_free);
- if (dane->certs)
- list_free(dane->certs, cert_free);
- if (dane->roots)
- sk_X509_pop_free(dane->roots, X509_free);
- if (dane->chain)
- sk_X509_pop_free(dane->chain, X509_free);
- OPENSSL_free(dane);
+ssl_dane *dane;
+int u;
+
+if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
+ return;
+(void) SSL_set_ex_data(ssl, dane_idx, 0);
+
+if(dane->hosts)
+ list_free(dane->hosts, OPENSSL_freeFunc);
+if(dane->mhost)
+ OPENSSL_free(dane->mhost);
+for(u = 0; u <= SSL_DANE_USAGE_LAST; ++u)
+ if(dane->selectors[u])
+ list_free(dane->selectors[u], dane_selector_free);
+if(dane->pkeys)
+ list_free(dane->pkeys, pkey_free);
+if(dane->certs)
+ list_free(dane->certs, cert_free);
+if(dane->roots)
+ sk_X509_pop_free(dane->roots, X509_free);
+if(dane->chain)
+ sk_X509_pop_free(dane->chain, X509_free);
+OPENSSL_free(dane);
}
-static DANE_HOST_LIST host_list_init(const char **src)
+static dane_host_list
+host_list_init(const char **src)
{
- DANE_HOST_LIST head = 0;
-
- while (*src) {
- DANE_HOST_LIST elem = (DANE_HOST_LIST) OPENSSL_malloc(sizeof(*elem));
- if (elem == 0) {
- list_free(head, OPENSSL_freeFunc);
- return 0;
- }
- elem->value = OPENSSL_strdup(*src++);
- LINSERT(head, elem);
+dane_host_list head = NULL;
+
+while(*src)
+ {
+ dane_host_list elem = (dane_host_list) OPENSSL_malloc(sizeof(*elem));
+ if(!elem)
+ {
+ list_free(head, OPENSSL_freeFunc);
+ return 0;
}
- return head;
+ elem->value = OPENSSL_strdup(*src++);
+ LINSERT(head, elem);
+ }
+return head;
}
-int DANESSL_add_tlsa(
- SSL *ssl,
- uint8_t usage,
- uint8_t selector,
- const char *mdname,
- unsigned const char *data,
- size_t dlen
-)
+int
+DANESSL_add_tlsa(SSL *ssl, uint8_t usage, uint8_t selector, const char *mdname,
+ unsigned const char *data, size_t dlen)
{
- SSL_DANE *dane;
- DANE_SELECTOR_LIST s = 0;
- DANE_MTYPE_LIST m = 0;
- DANE_DATA_LIST d = 0;
- DANE_CERT_LIST xlist = 0;
- DANE_PKEY_LIST klist = 0;
- const EVP_MD *md = 0;
-
- if (dane_idx < 0 || (dane = SSL_get_ex_data(ssl, dane_idx)) == 0) {
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_DANE_INIT);
- return -1;
- }
-
- if (usage > SSL_DANE_USAGE_LAST) {
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_USAGE);
- return 0;
- }
- if (selector > SSL_DANE_SELECTOR_LAST) {
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_SELECTOR);
- return 0;
- }
- if (mdname && (md = EVP_get_digestbyname(mdname)) == 0) {
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DIGEST);
- return 0;
- }
- if (!data) {
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_NULL_DATA);
- return 0;
- }
- if (mdname && dlen != EVP_MD_size(md)) {
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DATA_LENGTH);
- return 0;
- }
-
- if (mdname == 0) {
- X509 *x = 0;
- EVP_PKEY *k = 0;
- const unsigned char *p = data;
+ssl_dane *dane;
+dane_selector_list s = 0;
+dane_mtype_list m = 0;
+dane_data_list d = 0;
+dane_cert_list xlist = 0;
+dane_pkey_list klist = 0;
+const EVP_MD *md = 0;
+
+if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
+ {
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_DANE_INIT);
+ return -1;
+ }
+
+if(usage > SSL_DANE_USAGE_LAST)
+ {
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_USAGE);
+ return 0;
+ }
+if(selector > SSL_DANE_SELECTOR_LAST)
+ {
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_SELECTOR);
+ return 0;
+ }
+if(mdname && !(md = EVP_get_digestbyname(mdname)))
+ {
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DIGEST);
+ return 0;
+ }
+if(!data)
+ {
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_NULL_DATA);
+ return 0;
+ }
+if(mdname && dlen != EVP_MD_size(md))
+ {
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DATA_LENGTH);
+ return 0;
+ }
+
+if(!mdname)
+ {
+ X509 *x = 0;
+ EVP_PKEY *k = 0;
+ const unsigned char *p = data;
#define xklistinit(lvar, ltype, var, freeFunc) do { \
- (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \
- if ((lvar) == 0) { \
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, ERR_R_MALLOC_FAILURE); \
- freeFunc((var)); \
- return 0; \
- } \
- (lvar)->next = 0; \
- lvar->value = var; \
- } while (0)
+ (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \
+ if (!(lvar)) { \
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, ERR_R_MALLOC_FAILURE); \
+ freeFunc((var)); \
+ return 0; \
+ } \
+ (lvar)->next = 0; \
+ lvar->value = var; \
+ } while (0)
#define xkfreeret(ret) do { \
- if (xlist) list_free(xlist, cert_free); \
- if (klist) list_free(klist, pkey_free); \
- return (ret); \
- } while (0)
-
- switch (selector) {
- case SSL_DANE_SELECTOR_CERT:
- if (!d2i_X509(&x, &p, dlen) || dlen != p - data) {
- if (x)
- X509_free(x);
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT);
- return 0;
- }
- k = X509_get_pubkey(x);
- EVP_PKEY_free(k);
- if (k == 0) {
- X509_free(x);
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT_PKEY);
- return 0;
- }
- if (usage == SSL_DANE_USAGE_TRUSTED_CA)
- xklistinit(xlist, DANE_CERT_LIST, x, X509_free);
- break;
-
- case SSL_DANE_SELECTOR_SPKI:
- if (!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data) {
- if (k)
- EVP_PKEY_free(k);
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_PKEY);
- return 0;
- }
- if (usage == SSL_DANE_USAGE_TRUSTED_CA)
- xklistinit(klist, DANE_PKEY_LIST, k, EVP_PKEY_free);
- break;
- }
+ if (xlist) list_free(xlist, cert_free); \
+ if (klist) list_free(klist, pkey_free); \
+ return (ret); \
+ } while (0)
+
+ switch(selector)
+ {
+ case SSL_DANE_SELECTOR_CERT:
+ if(!d2i_X509(&x, &p, dlen) || dlen != p - data)
+ {
+ if (x)
+ X509_free(x);
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT);
+ return 0;
+ }
+ k = X509_get_pubkey(x);
+ EVP_PKEY_free(k);
+ if(!k)
+ {
+ X509_free(x);
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT_PKEY);
+ return 0;
+ }
+ if(usage == SSL_DANE_USAGE_TRUSTED_CA)
+ xklistinit(xlist, dane_cert_list, x, X509_free);
+ break;
+
+ case SSL_DANE_SELECTOR_SPKI:
+ if(!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data)
+ {
+ if(k)
+ EVP_PKEY_free(k);
+ DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_PKEY);
+ return 0;
+ }
+ if(usage == SSL_DANE_USAGE_TRUSTED_CA)
+ xklistinit(klist, dane_pkey_list, k, EVP_PKEY_free);
+ break;
}
-
- /* Find insertion point and don't add duplicate elements. */
- for (s = dane->selectors[usage]; s; s = s->next)
- if (s->value->selector == selector)
- for (m = s->value->mtype; m; m = m->next)
- if (m->value->md == md)
- for (d = m->value->data; d; d = d->next)
- if (d->value->datalen == dlen &&
- memcmp(d->value->data, data, dlen) == 0)
- xkfreeret(1);
-
- if ((d = (DANE_DATA_LIST) list_alloc(sizeof(*d->value) + dlen)) == 0)
- xkfreeret(0);
- d->value->datalen = dlen;
- memcpy(d->value->data, data, dlen);
- if (!m) {
- if ((m = (DANE_MTYPE_LIST) list_alloc(sizeof(*m->value))) == 0) {
- list_free(d, OPENSSL_freeFunc);
- xkfreeret(0);
- }
- m->value->data = 0;
- if ((m->value->md = md) != 0)
- m->value->mdlen = dlen;
- if (!s) {
- if ((s = (DANE_SELECTOR_LIST) list_alloc(sizeof(*s->value))) == 0) {
- list_free(m, dane_mtype_free);
- xkfreeret(0);
- }
- s->value->mtype = 0;
- s->value->selector = selector;
- LINSERT(dane->selectors[usage], s);
- }
- LINSERT(s->value->mtype, m);
+ }
+
+/* Find insertion point and don't add duplicate elements. */
+for(s = dane->selectors[usage]; s; s = s->next)
+ if(s->value->selector == selector)
+ for(m = s->value->mtype; m; m = m->next)
+ if(m->value->md == md)
+ for(d = m->value->data; d; d = d->next)
+ if( d->value->datalen == dlen
+ && memcmp(d->value->data, data, dlen) == 0)
+ xkfreeret(1);
+
+if(!(d = (dane_data_list) list_alloc(sizeof(*d->value) + dlen)))
+ xkfreeret(0);
+d->value->datalen = dlen;
+memcpy(d->value->data, data, dlen);
+if(!m)
+ {
+ if(!(m = (dane_mtype_list) list_alloc(sizeof(*m->value))))
+ {
+ list_free(d, OPENSSL_freeFunc);
+ xkfreeret(0);
}
- LINSERT(m->value->data, d);
-
- if (xlist)
- LINSERT(dane->certs, xlist);
- else if (klist)
- LINSERT(dane->pkeys, klist);
- ++dane->count;
- return 1;
+ m->value->data = 0;
+ if((m->value->md = md) != 0)
+ m->value->mdlen = dlen;
+ if(!s)
+ {
+ if(!(s = (dane_selector_list) list_alloc(sizeof(*s->value))))
+ {
+ list_free(m, dane_mtype_free);
+ xkfreeret(0);
+ }
+ s->value->mtype = 0;
+ s->value->selector = selector;
+ LINSERT(dane->selectors[usage], s);
+ }
+ LINSERT(s->value->mtype, m);
+ }
+LINSERT(m->value->data, d);
+
+if(xlist)
+ LINSERT(dane->certs, xlist);
+else if(klist)
+ LINSERT(dane->pkeys, klist);
+++dane->count;
+return 1;
}
-int DANESSL_init(SSL *ssl, const char *sni_domain, const char **hostnames)
+int
+DANESSL_init(SSL *ssl, const char *sni_domain, const char **hostnames)
{
- SSL_DANE *dane;
- int i;
+ssl_dane *dane;
+int i;
#ifdef OPENSSL_INTERNAL
- SSL_CTX *sctx = SSL_get_SSL_CTX(ssl);
+SSL_CTX *sctx = SSL_get_SSL_CTX(ssl);
- if (sctx->app_verify_callback != verify_cert) {
- DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_SCTX_INIT);
- return -1;
- }
+if(sctx->app_verify_callback != verify_cert)
+ {
+ DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_SCTX_INIT);
+ return -1;
+ }
#else
- if (dane_idx < 0) {
- DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_LIBRARY_INIT);
- return -1;
- }
+if(dane_idx < 0)
+ {
+ DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_LIBRARY_INIT);
+ return -1;
+ }
#endif
- if (sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain))
- return 0;
-
- if ((dane = (SSL_DANE *) OPENSSL_malloc(sizeof(SSL_DANE))) == 0) {
- DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
- return 0;
- }
- if (!SSL_set_ex_data(ssl, dane_idx, dane)) {
- DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
- OPENSSL_free(dane);
- return 0;
- }
-
- dane->pkeys = 0;
- dane->certs = 0;
- dane->chain = 0;
- dane->roots = 0;
- dane->depth = -1;
- dane->mhost = 0; /* Future SSL control interface */
- dane->multi = 0; /* Future SSL control interface */
- dane->count = 0;
-
- for (i = 0; i <= SSL_DANE_USAGE_LAST; ++i)
- dane->selectors[i] = 0;
-
- if (hostnames && (dane->hosts = host_list_init(hostnames)) == 0) {
- DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
- DANESSL_cleanup(ssl);
- return 0;
- }
+if(sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain))
+ return 0;
- return 1;
+if(!(dane = (ssl_dane *) OPENSSL_malloc(sizeof(ssl_dane))))
+ {
+ DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+if(!SSL_set_ex_data(ssl, dane_idx, dane))
+ {
+ DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
+ OPENSSL_free(dane);
+ return 0;
+ }
+
+dane->pkeys = 0;
+dane->certs = 0;
+dane->chain = 0;
+dane->roots = 0;
+dane->depth = -1;
+dane->mhost = 0; /* Future SSL control interface */
+dane->multi = 0; /* Future SSL control interface */
+dane->count = 0;
+
+for(i = 0; i <= SSL_DANE_USAGE_LAST; ++i)
+ dane->selectors[i] = 0;
+
+if(hostnames && !(dane->hosts = host_list_init(hostnames)))
+ {
+ DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
+ DANESSL_cleanup(ssl);
+ return 0;
+ }
+
+return 1;
}
-int DANESSL_CTX_init(SSL_CTX *ctx)
+int
+DANESSL_CTX_init(SSL_CTX *ctx)
{
- if (dane_idx >= 0) {
- SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0);
- return 1;
- }
- DANEerr(DANE_F_SSL_CTX_DANE_INIT, DANE_R_LIBRARY_INIT);
- return -1;
+if(dane_idx >= 0)
+ {
+ SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0);
+ return 1;
+ }
+DANEerr(DANE_F_SSL_CTX_DANE_INIT, DANE_R_LIBRARY_INIT);
+return -1;
}
-static int init_once(
- volatile int *value,
- int (*init)(void),
- void (*postinit)(void)
-)
+static int
+init_once(volatile int *value, int (*init)(void), void (*postinit)(void))
{
- int wlock = 0;
-
- CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
- if (*value < 0) {
- CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
- CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
- wlock = 1;
- if (*value < 0) {
- *value = init();
- if (postinit)
- postinit();
- }
+int wlock = 0;
+
+CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
+if(*value < 0)
+ {
+ CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
+ CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
+ wlock = 1;
+ if(*value < 0)
+ {
+ *value = init();
+ if(postinit)
+ postinit();
}
- if (wlock)
- CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
- else
- CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
- return *value;
+ }
+if (wlock)
+ CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
+else
+ CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
+return *value;
}
-static void dane_init(void)
+static void
+dane_init(void)
{
- /*
- * Store library id in zeroth function slot, used to locate the library
- * name. This must be done before we load the error strings.
- */
+/*
+ * Store library id in zeroth function slot, used to locate the library
+ * name. This must be done before we load the error strings.
+ */
#ifndef OPENSSL_NO_ERR
- dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0);
- ERR_load_strings(err_lib_dane, dane_str_functs);
- ERR_load_strings(err_lib_dane, dane_str_reasons);
+dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0);
+ERR_load_strings(err_lib_dane, dane_str_functs);
+ERR_load_strings(err_lib_dane, dane_str_reasons);
#endif
- /*
- * Register SHA-2 digests, if implemented and not already registered.
- */
+/*
+ * Register SHA-2 digests, if implemented and not already registered.
+ */
#if defined(LN_sha256) && defined(NID_sha256) && !defined(OPENSSL_NO_SHA256)
- if (!EVP_get_digestbyname(LN_sha224))
- EVP_add_digest(EVP_sha224());
- if (!EVP_get_digestbyname(LN_sha256))
- EVP_add_digest(EVP_sha256());
+if(!EVP_get_digestbyname(LN_sha224)) EVP_add_digest(EVP_sha224());
+if(!EVP_get_digestbyname(LN_sha256)) EVP_add_digest(EVP_sha256());
#endif
#if defined(LN_sha512) && defined(NID_sha512) && !defined(OPENSSL_NO_SHA512)
- if (!EVP_get_digestbyname(LN_sha384))
- EVP_add_digest(EVP_sha384());
- if (!EVP_get_digestbyname(LN_sha512))
- EVP_add_digest(EVP_sha512());
+if(!EVP_get_digestbyname(LN_sha384)) EVP_add_digest(EVP_sha384());
+if(!EVP_get_digestbyname(LN_sha512)) EVP_add_digest(EVP_sha512());
#endif
- /*
- * Register an SSL index for the connection-specific SSL_DANE structure.
- * Using a separate index makes it possible to add DANE support to
- * existing OpenSSL releases that don't have a suitable pointer in the
- * SSL structure.
- */
- dane_idx = SSL_get_ex_new_index(0, 0, 0, 0, 0);
+/*
+ * Register an SSL index for the connection-specific ssl_dane structure.
+ * Using a separate index makes it possible to add DANE support to
+ * existing OpenSSL releases that don't have a suitable pointer in the
+ * SSL structure.
+ */
+dane_idx = SSL_get_ex_new_index(0, 0, 0, 0, 0);
}
-int DANESSL_library_init(void)
+int
+DANESSL_library_init(void)
{
- if (err_lib_dane < 0)
- init_once(&err_lib_dane, ERR_get_next_error_library, dane_init);
+if(err_lib_dane < 0)
+ init_once(&err_lib_dane, ERR_get_next_error_library, dane_init);
#if defined(LN_sha256)
- /* No DANE without SHA256 support */
- if (dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0)
- return 1;
+/* No DANE without SHA256 support */
+if(dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0)
+ return 1;
#endif
- DANEerr(DANE_F_SSL_DANE_LIBRARY_INIT, DANE_R_DANE_SUPPORT);
- return 0;
+
+DANEerr(DANE_F_SSL_DANE_LIBRARY_INIT, DANE_R_DANE_SUPPORT);
+return 0;
}
#endif /* OPENSSL_VERSION_NUMBER */
+/* vi: aw ai sw=2
+*/