1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2018 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* The main code for delivering a message. */
12 #include "transports/smtp.h"
17 /* Data block for keeping track of subprocesses for parallel remote
20 typedef struct pardata {
21 address_item *addrlist; /* chain of addresses */
22 address_item *addr; /* next address data expected for */
23 pid_t pid; /* subprocess pid */
24 int fd; /* pipe fd for getting result from subprocess */
25 int transport_count; /* returned transport count value */
26 BOOL done; /* no more data needed */
27 uschar *msg; /* error message */
28 uschar *return_path; /* return_path for these addresses */
31 /* Values for the process_recipients variable */
33 enum { RECIP_ACCEPT, RECIP_IGNORE, RECIP_DEFER,
34 RECIP_FAIL, RECIP_FAIL_FILTER, RECIP_FAIL_TIMEOUT,
37 /* Mutually recursive functions for marking addresses done. */
39 static void child_done(address_item *, uschar *);
40 static void address_done(address_item *, uschar *);
42 /* Table for turning base-62 numbers into binary */
44 static uschar tab62[] =
45 {0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, /* 0-9 */
46 0,10,11,12,13,14,15,16,17,18,19,20, /* A-K */
47 21,22,23,24,25,26,27,28,29,30,31,32, /* L-W */
48 33,34,35, 0, 0, 0, 0, 0, /* X-Z */
49 0,36,37,38,39,40,41,42,43,44,45,46, /* a-k */
50 47,48,49,50,51,52,53,54,55,56,57,58, /* l-w */
54 /*************************************************
55 * Local static variables *
56 *************************************************/
58 /* addr_duplicate is global because it needs to be seen from the Envelope-To
61 static address_item *addr_defer = NULL;
62 static address_item *addr_failed = NULL;
63 static address_item *addr_fallback = NULL;
64 static address_item *addr_local = NULL;
65 static address_item *addr_new = NULL;
66 static address_item *addr_remote = NULL;
67 static address_item *addr_route = NULL;
68 static address_item *addr_succeed = NULL;
69 static address_item *addr_dsntmp = NULL;
70 static address_item *addr_senddsn = NULL;
72 static FILE *message_log = NULL;
73 static BOOL update_spool;
74 static BOOL remove_journal;
75 static int parcount = 0;
76 static pardata *parlist = NULL;
77 static int return_count;
78 static uschar *frozen_info = US"";
79 static uschar *used_return_path = NULL;
83 /*************************************************
84 * read as much as requested *
85 *************************************************/
87 /* The syscall read(2) doesn't always returns as much as we want. For
88 several reasons it might get less. (Not talking about signals, as syscalls
89 are restartable). When reading from a network or pipe connection the sender
90 might send in smaller chunks, with delays between these chunks. The read(2)
91 may return such a chunk.
93 The more the writer writes and the smaller the pipe between write and read is,
94 the more we get the chance of reading leass than requested. (See bug 2130)
96 This function read(2)s until we got all the data we *requested*.
98 Note: This function may block. Use it only if you're sure about the
99 amount of data you will get.
102 fd the file descriptor to read from
103 buffer pointer to a buffer of size len
104 len the requested(!) amount of bytes
106 Returns: the amount of bytes read
109 readn(int fd, void * buffer, size_t len)
111 void * next = buffer;
112 void * end = buffer + len;
116 ssize_t got = read(fd, next, end - next);
118 /* I'm not sure if there are signals that can interrupt us,
119 for now I assume the worst */
120 if (got == -1 && errno == EINTR) continue;
121 if (got <= 0) return next - buffer;
129 /*************************************************
130 * Make a new address item *
131 *************************************************/
133 /* This function gets the store and initializes with default values. The
134 transport_return value defaults to DEFER, so that any unexpected failure to
135 deliver does not wipe out the message. The default unique string is set to a
136 copy of the address, so that its domain can be lowercased.
139 address the RFC822 address string
140 copy force a copy of the address
142 Returns: a pointer to an initialized address_item
146 deliver_make_addr(uschar *address, BOOL copy)
148 address_item *addr = store_get(sizeof(address_item));
149 *addr = address_defaults;
150 if (copy) address = string_copy(address);
151 addr->address = address;
152 addr->unique = string_copy(address);
159 /*************************************************
160 * Set expansion values for an address *
161 *************************************************/
163 /* Certain expansion variables are valid only when handling an address or
164 address list. This function sets them up or clears the values, according to its
168 addr the address in question, or NULL to clear values
173 deliver_set_expansions(address_item *addr)
177 const uschar ***p = address_expansions;
178 while (*p) **p++ = NULL;
182 /* Exactly what gets set depends on whether there is one or more addresses, and
183 what they contain. These first ones are always set, taking their values from
184 the first address. */
186 if (!addr->host_list)
188 deliver_host = deliver_host_address = US"";
189 deliver_host_port = 0;
193 deliver_host = addr->host_list->name;
194 deliver_host_address = addr->host_list->address;
195 deliver_host_port = addr->host_list->port;
198 deliver_recipients = addr;
199 deliver_address_data = addr->prop.address_data;
200 deliver_domain_data = addr->prop.domain_data;
201 deliver_localpart_data = addr->prop.localpart_data;
203 /* These may be unset for multiple addresses */
205 deliver_domain = addr->domain;
206 self_hostname = addr->self_hostname;
208 #ifdef EXPERIMENTAL_BRIGHTMAIL
209 bmi_deliver = 1; /* deliver by default */
210 bmi_alt_location = NULL;
211 bmi_base64_verdict = NULL;
212 bmi_base64_tracker_verdict = NULL;
215 /* If there's only one address we can set everything. */
219 address_item *addr_orig;
221 deliver_localpart = addr->local_part;
222 deliver_localpart_prefix = addr->prefix;
223 deliver_localpart_suffix = addr->suffix;
225 for (addr_orig = addr; addr_orig->parent; addr_orig = addr_orig->parent) ;
226 deliver_domain_orig = addr_orig->domain;
228 /* Re-instate any prefix and suffix in the original local part. In all
229 normal cases, the address will have a router associated with it, and we can
230 choose the caseful or caseless version accordingly. However, when a system
231 filter sets up a pipe, file, or autoreply delivery, no router is involved.
232 In this case, though, there won't be any prefix or suffix to worry about. */
234 deliver_localpart_orig = !addr_orig->router
235 ? addr_orig->local_part
236 : addr_orig->router->caseful_local_part
237 ? addr_orig->cc_local_part
238 : addr_orig->lc_local_part;
240 /* If there's a parent, make its domain and local part available, and if
241 delivering to a pipe or file, or sending an autoreply, get the local
242 part from the parent. For pipes and files, put the pipe or file string
243 into address_pipe and address_file. */
247 deliver_domain_parent = addr->parent->domain;
248 deliver_localpart_parent = !addr->parent->router
249 ? addr->parent->local_part
250 : addr->parent->router->caseful_local_part
251 ? addr->parent->cc_local_part
252 : addr->parent->lc_local_part;
254 /* File deliveries have their own flag because they need to be picked out
255 as special more often. */
257 if (testflag(addr, af_pfr))
259 if (testflag(addr, af_file)) address_file = addr->local_part;
260 else if (deliver_localpart[0] == '|') address_pipe = addr->local_part;
261 deliver_localpart = addr->parent->local_part;
262 deliver_localpart_prefix = addr->parent->prefix;
263 deliver_localpart_suffix = addr->parent->suffix;
267 #ifdef EXPERIMENTAL_BRIGHTMAIL
268 /* Set expansion variables related to Brightmail AntiSpam */
269 bmi_base64_verdict = bmi_get_base64_verdict(deliver_localpart_orig, deliver_domain_orig);
270 bmi_base64_tracker_verdict = bmi_get_base64_tracker_verdict(bmi_base64_verdict);
271 /* get message delivery status (0 - don't deliver | 1 - deliver) */
272 bmi_deliver = bmi_get_delivery_status(bmi_base64_verdict);
273 /* if message is to be delivered, get eventual alternate location */
274 if (bmi_deliver == 1)
275 bmi_alt_location = bmi_get_alt_location(bmi_base64_verdict);
280 /* For multiple addresses, don't set local part, and leave the domain and
281 self_hostname set only if it is the same for all of them. It is possible to
282 have multiple pipe and file addresses, but only when all addresses have routed
283 to the same pipe or file. */
288 if (testflag(addr, af_pfr))
290 if (testflag(addr, af_file)) address_file = addr->local_part;
291 else if (addr->local_part[0] == '|') address_pipe = addr->local_part;
293 for (addr2 = addr->next; addr2; addr2 = addr2->next)
295 if (deliver_domain && Ustrcmp(deliver_domain, addr2->domain) != 0)
296 deliver_domain = NULL;
298 && ( !addr2->self_hostname
299 || Ustrcmp(self_hostname, addr2->self_hostname) != 0
301 self_hostname = NULL;
302 if (!deliver_domain && !self_hostname) break;
310 /*************************************************
311 * Open a msglog file *
312 *************************************************/
314 /* This function is used both for normal message logs, and for files in the
315 msglog directory that are used to catch output from pipes. Try to create the
316 directory if it does not exist. From release 4.21, normal message logs should
317 be created when the message is received.
319 Called from deliver_message(), can be operating as root.
322 filename the file name
323 mode the mode required
324 error used for saying what failed
326 Returns: a file descriptor, or -1 (with errno set)
330 open_msglog_file(uschar *filename, int mode, uschar **error)
334 for (i = 2; i > 0; i--)
343 O_WRONLY|O_APPEND|O_CREAT, mode);
346 /* Set the close-on-exec flag and change the owner to the exim uid/gid (this
347 function is called as root). Double check the mode, because the group setting
348 doesn't always get set automatically. */
351 (void)fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
353 if (fchown(fd, exim_uid, exim_gid) < 0)
358 if (fchmod(fd, mode) < 0)
368 (void)directory_make(spool_directory,
369 spool_sname(US"msglog", message_subdir),
370 MSGLOG_DIRECTORY_MODE, TRUE);
380 /*************************************************
381 * Write to msglog if required *
382 *************************************************/
384 /* Write to the message log, if configured. This function may also be called
388 format a string format
394 deliver_msglog(const char *format, ...)
397 if (!message_logs) return;
398 va_start(ap, format);
399 vfprintf(message_log, format, ap);
407 /*************************************************
408 * Replicate status for batch *
409 *************************************************/
411 /* When a transport handles a batch of addresses, it may treat them
412 individually, or it may just put the status in the first one, and return FALSE,
413 requesting that the status be copied to all the others externally. This is the
414 replication function. As well as the status, it copies the transport pointer,
415 which may have changed if appendfile passed the addresses on to a different
418 Argument: pointer to the first address in a chain
423 replicate_status(address_item *addr)
426 for (addr2 = addr->next; addr2; addr2 = addr2->next)
428 addr2->transport = addr->transport;
429 addr2->transport_return = addr->transport_return;
430 addr2->basic_errno = addr->basic_errno;
431 addr2->more_errno = addr->more_errno;
432 addr2->delivery_usec = addr->delivery_usec;
433 addr2->special_action = addr->special_action;
434 addr2->message = addr->message;
435 addr2->user_message = addr->user_message;
441 /*************************************************
442 * Compare lists of hosts *
443 *************************************************/
445 /* This function is given two pointers to chains of host items, and it yields
446 TRUE if the lists refer to the same hosts in the same order, except that
448 (1) Multiple hosts with the same non-negative MX values are permitted to appear
449 in different orders. Round-robinning nameservers can cause this to happen.
451 (2) Multiple hosts with the same negative MX values less than MX_NONE are also
452 permitted to appear in different orders. This is caused by randomizing
455 This enables Exim to use a single SMTP transaction for sending to two entirely
456 different domains that happen to end up pointing at the same hosts.
459 one points to the first host list
460 two points to the second host list
462 Returns: TRUE if the lists refer to the same host set
466 same_hosts(host_item *one, host_item *two)
470 if (Ustrcmp(one->name, two->name) != 0)
473 host_item *end_one = one;
474 host_item *end_two = two;
476 /* Batch up only if there was no MX and the list was not randomized */
478 if (mx == MX_NONE) return FALSE;
480 /* Find the ends of the shortest sequence of identical MX values */
482 while ( end_one->next && end_one->next->mx == mx
483 && end_two->next && end_two->next->mx == mx)
485 end_one = end_one->next;
486 end_two = end_two->next;
489 /* If there aren't any duplicates, there's no match. */
491 if (end_one == one) return FALSE;
493 /* For each host in the 'one' sequence, check that it appears in the 'two'
494 sequence, returning FALSE if not. */
499 for (hi = two; hi != end_two->next; hi = hi->next)
500 if (Ustrcmp(one->name, hi->name) == 0) break;
501 if (hi == end_two->next) return FALSE;
502 if (one == end_one) break;
506 /* All the hosts in the 'one' sequence were found in the 'two' sequence.
507 Ensure both are pointing at the last host, and carry on as for equality. */
512 /* if the names matched but ports do not, mismatch */
513 else if (one->port != two->port)
522 /* True if both are NULL */
529 /*************************************************
530 * Compare header lines *
531 *************************************************/
533 /* This function is given two pointers to chains of header items, and it yields
534 TRUE if they are the same header texts in the same order.
537 one points to the first header list
538 two points to the second header list
540 Returns: TRUE if the lists refer to the same header set
544 same_headers(header_line *one, header_line *two)
546 for (;; one = one->next, two = two->next)
548 if (one == two) return TRUE; /* Includes the case where both NULL */
549 if (!one || !two) return FALSE;
550 if (Ustrcmp(one->text, two->text) != 0) return FALSE;
556 /*************************************************
557 * Compare string settings *
558 *************************************************/
560 /* This function is given two pointers to strings, and it returns
561 TRUE if they are the same pointer, or if the two strings are the same.
564 one points to the first string
565 two points to the second string
567 Returns: TRUE or FALSE
571 same_strings(uschar *one, uschar *two)
573 if (one == two) return TRUE; /* Includes the case where both NULL */
574 if (!one || !two) return FALSE;
575 return (Ustrcmp(one, two) == 0);
580 /*************************************************
581 * Compare uid/gid for addresses *
582 *************************************************/
584 /* This function is given a transport and two addresses. It yields TRUE if the
585 uid/gid/initgroups settings for the two addresses are going to be the same when
590 addr1 the first address
591 addr2 the second address
593 Returns: TRUE or FALSE
597 same_ugid(transport_instance *tp, address_item *addr1, address_item *addr2)
599 if ( !tp->uid_set && !tp->expand_uid
600 && !tp->deliver_as_creator
601 && ( testflag(addr1, af_uid_set) != testflag(addr2, af_gid_set)
602 || ( testflag(addr1, af_uid_set)
603 && ( addr1->uid != addr2->uid
604 || testflag(addr1, af_initgroups) != testflag(addr2, af_initgroups)
608 if ( !tp->gid_set && !tp->expand_gid
609 && ( testflag(addr1, af_gid_set) != testflag(addr2, af_gid_set)
610 || ( testflag(addr1, af_gid_set)
611 && addr1->gid != addr2->gid
621 /*************************************************
622 * Record that an address is complete *
623 *************************************************/
625 /* This function records that an address is complete. This is straightforward
626 for most addresses, where the unique address is just the full address with the
627 domain lower cased. For homonyms (addresses that are the same as one of their
628 ancestors) their are complications. Their unique addresses have \x\ prepended
629 (where x = 0, 1, 2...), so that de-duplication works correctly for siblings and
632 Exim used to record the unique addresses of homonyms as "complete". This,
633 however, fails when the pattern of redirection varies over time (e.g. if taking
634 unseen copies at only some times of day) because the prepended numbers may vary
635 from one delivery run to the next. This problem is solved by never recording
636 prepended unique addresses as complete. Instead, when a homonymic address has
637 actually been delivered via a transport, we record its basic unique address
638 followed by the name of the transport. This is checked in subsequent delivery
639 runs whenever an address is routed to a transport.
641 If the completed address is a top-level one (has no parent, which means it
642 cannot be homonymic) we also add the original address to the non-recipients
643 tree, so that it gets recorded in the spool file and therefore appears as
644 "done" in any spool listings. The original address may differ from the unique
645 address in the case of the domain.
647 Finally, this function scans the list of duplicates, marks as done any that
648 match this address, and calls child_done() for their ancestors.
651 addr address item that has been completed
652 now current time as a string
658 address_done(address_item *addr, uschar *now)
662 update_spool = TRUE; /* Ensure spool gets updated */
664 /* Top-level address */
668 tree_add_nonrecipient(addr->unique);
669 tree_add_nonrecipient(addr->address);
672 /* Homonymous child address */
674 else if (testflag(addr, af_homonym))
677 tree_add_nonrecipient(
678 string_sprintf("%s/%s", addr->unique + 3, addr->transport->name));
681 /* Non-homonymous child address */
683 else tree_add_nonrecipient(addr->unique);
685 /* Check the list of duplicate addresses and ensure they are now marked
688 for (dup = addr_duplicate; dup; dup = dup->next)
689 if (Ustrcmp(addr->unique, dup->unique) == 0)
691 tree_add_nonrecipient(dup->unique);
692 child_done(dup, now);
699 /*************************************************
700 * Decrease counts in parents and mark done *
701 *************************************************/
703 /* This function is called when an address is complete. If there is a parent
704 address, its count of children is decremented. If there are still other
705 children outstanding, the function exits. Otherwise, if the count has become
706 zero, address_done() is called to mark the parent and its duplicates complete.
707 Then loop for any earlier ancestors.
710 addr points to the completed address item
711 now the current time as a string, for writing to the message log
717 child_done(address_item *addr, uschar *now)
723 if (--addr->child_count > 0) return; /* Incomplete parent */
724 address_done(addr, now);
726 /* Log the completion of all descendents only when there is no ancestor with
727 the same original address. */
729 for (aa = addr->parent; aa; aa = aa->parent)
730 if (Ustrcmp(aa->address, addr->address) == 0) break;
733 deliver_msglog("%s %s: children all complete\n", now, addr->address);
734 DEBUG(D_deliver) debug_printf("%s: children all complete\n", addr->address);
740 /*************************************************
741 * Delivery logging support functions *
742 *************************************************/
744 /* The LOGGING() checks in d_log_interface() are complicated for backwards
745 compatibility. When outgoing interface logging was originally added, it was
746 conditional on just incoming_interface (which is off by default). The
747 outgoing_interface option is on by default to preserve this behaviour, but
748 you can enable incoming_interface and disable outgoing_interface to get I=
749 fields on incoming lines only.
753 addr The address to be logged
755 Returns: New value for s
759 d_log_interface(gstring * g)
761 if (LOGGING(incoming_interface) && LOGGING(outgoing_interface)
762 && sending_ip_address)
764 g = string_append(g, 2, US" I=[", sending_ip_address);
765 g = LOGGING(outgoing_port)
766 ? string_append(g, 2, US"]:", string_sprintf("%d", sending_port))
767 : string_catn(g, US"]", 1);
775 d_hostlog(gstring * g, address_item * addr)
777 host_item * h = addr->host_used;
779 g = string_append(g, 2, US" H=", h->name);
781 if (LOGGING(dnssec) && h->dnssec == DS_YES)
782 g = string_catn(g, US" DS", 3);
784 g = string_append(g, 3, US" [", h->address, US"]");
786 if (LOGGING(outgoing_port))
787 g = string_append(g, 2, US":", string_sprintf("%d", h->port));
790 if (LOGGING(proxy) && proxy_local_address)
792 g = string_append(g, 3, US" PRX=[", proxy_local_address, US"]");
793 if (LOGGING(outgoing_port))
794 g = string_append(g, 2, US":", string_sprintf("%d", proxy_local_port));
798 g = d_log_interface(g);
800 if (testflag(addr, af_tcp_fastopen))
801 g = string_catn(g, US" TFO", 4);
812 d_tlslog(gstring * s, address_item * addr)
814 if (LOGGING(tls_cipher) && addr->cipher)
815 s = string_append(s, 2, US" X=", addr->cipher);
816 if (LOGGING(tls_certificate_verified) && addr->cipher)
817 s = string_append(s, 2, US" CV=",
818 testflag(addr, af_cert_verified)
821 testflag(addr, af_dane_verified)
827 if (LOGGING(tls_peerdn) && addr->peerdn)
828 s = string_append(s, 3, US" DN=\"", string_printing(addr->peerdn), US"\"");
836 #ifndef DISABLE_EVENT
838 event_raise(uschar * action, const uschar * event, uschar * ev_data)
844 debug_printf("Event(%s): event_action=|%s| delivery_IP=%s\n",
846 action, deliver_host_address);
849 event_data = ev_data;
851 if (!(s = expand_string(action)) && *expand_string_message)
852 log_write(0, LOG_MAIN|LOG_PANIC,
853 "failed to expand event_action %s in %s: %s\n",
854 event, transport_name ? transport_name : US"main", expand_string_message);
856 event_name = event_data = NULL;
858 /* If the expansion returns anything but an empty string, flag for
859 the caller to modify his normal processing
864 debug_printf("Event(%s): event_action returned \"%s\"\n", event, s);
872 msg_event_raise(const uschar * event, const address_item * addr)
874 const uschar * save_domain = deliver_domain;
875 uschar * save_local = deliver_localpart;
876 const uschar * save_host = deliver_host;
877 const uschar * save_address = deliver_host_address;
878 const int save_port = deliver_host_port;
880 router_name = addr->router ? addr->router->name : NULL;
881 deliver_domain = addr->domain;
882 deliver_localpart = addr->local_part;
883 deliver_host = addr->host_used ? addr->host_used->name : NULL;
885 if (!addr->transport)
887 if (Ustrcmp(event, "msg:fail:delivery") == 0)
889 /* An address failed with no transport involved. This happens when
890 a filter was used which triggered a fail command (in such a case
891 a transport isn't needed). Convert it to an internal fail event. */
893 (void) event_raise(event_action, US"msg:fail:internal", addr->message);
898 transport_name = addr->transport->name;
900 (void) event_raise(addr->transport->event_action, event,
902 || Ustrcmp(addr->transport->driver_name, "smtp") == 0
903 || Ustrcmp(addr->transport->driver_name, "lmtp") == 0
904 || Ustrcmp(addr->transport->driver_name, "autoreply") == 0
905 ? addr->message : NULL);
908 deliver_host_port = save_port;
909 deliver_host_address = save_address;
910 deliver_host = save_host;
911 deliver_localpart = save_local;
912 deliver_domain = save_domain;
913 router_name = transport_name = NULL;
915 #endif /*DISABLE_EVENT*/
919 /******************************************************************************/
922 /*************************************************
923 * Generate local prt for logging *
924 *************************************************/
926 /* This function is a subroutine for use in string_log_address() below.
929 addr the address being logged
930 yield the current dynamic buffer pointer
932 Returns: the new value of the buffer pointer
936 string_get_localpart(address_item * addr, gstring * yield)
941 if (testflag(addr, af_include_affixes) && s)
944 if (testflag(addr, af_utf8_downcvt))
945 s = string_localpart_utf8_to_alabel(s, NULL);
947 yield = string_cat(yield, s);
950 s = addr->local_part;
952 if (testflag(addr, af_utf8_downcvt))
953 s = string_localpart_utf8_to_alabel(s, NULL);
955 yield = string_cat(yield, s);
958 if (testflag(addr, af_include_affixes) && s)
961 if (testflag(addr, af_utf8_downcvt))
962 s = string_localpart_utf8_to_alabel(s, NULL);
964 yield = string_cat(yield, s);
971 /*************************************************
972 * Generate log address list *
973 *************************************************/
975 /* This function generates a list consisting of an address and its parents, for
976 use in logging lines. For saved onetime aliased addresses, the onetime parent
977 field is used. If the address was delivered by a transport with rcpt_include_
978 affixes set, the af_include_affixes bit will be set in the address. In that
979 case, we include the affixes here too.
982 g points to growing-string struct
983 addr bottom (ultimate) address
984 all_parents if TRUE, include all parents
985 success TRUE for successful delivery
987 Returns: a growable string in dynamic store
991 string_log_address(gstring * g,
992 address_item *addr, BOOL all_parents, BOOL success)
994 BOOL add_topaddr = TRUE;
995 address_item *topaddr;
997 /* Find the ultimate parent */
999 for (topaddr = addr; topaddr->parent; topaddr = topaddr->parent) ;
1001 /* We start with just the local part for pipe, file, and reply deliveries, and
1002 for successful local deliveries from routers that have the log_as_local flag
1003 set. File deliveries from filters can be specified as non-absolute paths in
1004 cases where the transport is going to complete the path. If there is an error
1005 before this happens (expansion failure) the local part will not be updated, and
1006 so won't necessarily look like a path. Add extra text for this case. */
1008 if ( testflag(addr, af_pfr)
1010 && addr->router && addr->router->log_as_local
1011 && addr->transport && addr->transport->info->local
1014 if (testflag(addr, af_file) && addr->local_part[0] != '/')
1015 g = string_catn(g, CUS"save ", 5);
1016 g = string_get_localpart(addr, g);
1019 /* Other deliveries start with the full address. It we have split it into local
1020 part and domain, use those fields. Some early failures can happen before the
1021 splitting is done; in those cases use the original field. */
1025 uschar * cmp = g->s + g->ptr;
1027 if (addr->local_part)
1030 g = string_get_localpart(addr, g);
1031 g = string_catn(g, US"@", 1);
1034 if (testflag(addr, af_utf8_downcvt))
1035 s = string_localpart_utf8_to_alabel(s, NULL);
1037 g = string_cat(g, s);
1040 g = string_cat(g, addr->address);
1042 /* If the address we are going to print is the same as the top address,
1043 and all parents are not being included, don't add on the top address. First
1044 of all, do a caseless comparison; if this succeeds, do a caseful comparison
1045 on the local parts. */
1047 string_from_gstring(g); /* ensure nul-terminated */
1048 if ( strcmpic(cmp, topaddr->address) == 0
1049 && Ustrncmp(cmp, topaddr->address, Ustrchr(cmp, '@') - cmp) == 0
1050 && !addr->onetime_parent
1051 && (!all_parents || !addr->parent || addr->parent == topaddr)
1053 add_topaddr = FALSE;
1056 /* If all parents are requested, or this is a local pipe/file/reply, and
1057 there is at least one intermediate parent, show it in brackets, and continue
1058 with all of them if all are wanted. */
1060 if ( (all_parents || testflag(addr, af_pfr))
1062 && addr->parent != topaddr)
1065 address_item *addr2;
1066 for (addr2 = addr->parent; addr2 != topaddr; addr2 = addr2->parent)
1068 g = string_catn(g, s, 2);
1069 g = string_cat (g, addr2->address);
1070 if (!all_parents) break;
1073 g = string_catn(g, US")", 1);
1076 /* Add the top address if it is required */
1079 g = string_append(g, 3,
1081 addr->onetime_parent ? addr->onetime_parent : topaddr->address,
1090 timesince(struct timeval * diff, struct timeval * then)
1092 gettimeofday(diff, NULL);
1093 diff->tv_sec -= then->tv_sec;
1094 if ((diff->tv_usec -= then->tv_usec) < 0)
1097 diff->tv_usec += 1000*1000;
1104 string_timediff(struct timeval * diff)
1106 static uschar buf[sizeof("0.000s")];
1108 if (diff->tv_sec >= 5 || !LOGGING(millisec))
1109 return readconf_printtime((int)diff->tv_sec);
1111 sprintf(CS buf, "%u.%03us", (uint)diff->tv_sec, (uint)diff->tv_usec/1000);
1117 string_timesince(struct timeval * then)
1119 struct timeval diff;
1121 timesince(&diff, then);
1122 return string_timediff(&diff);
1125 /******************************************************************************/
1129 /* If msg is NULL this is a delivery log and logchar is used. Otherwise
1130 this is a nonstandard call; no two-character delivery flag is written
1131 but sender-host and sender are prefixed and "msg" is inserted in the log line.
1134 flags passed to log_write()
1137 delivery_log(int flags, address_item * addr, int logchar, uschar * msg)
1139 gstring * g; /* Used for a temporary, expanding buffer, for building log lines */
1140 void * reset_point; /* released afterwards. */
1142 /* Log the delivery on the main log. We use an extensible string to build up
1143 the log line, and reset the store afterwards. Remote deliveries should always
1144 have a pointer to the host item that succeeded; local deliveries can have a
1145 pointer to a single host item in their host list, for use by the transport. */
1147 #ifndef DISABLE_EVENT
1148 /* presume no successful remote delivery */
1149 lookup_dnssec_authenticated = NULL;
1152 g = reset_point = string_get(256);
1155 g = string_append(g, 2, host_and_ident(TRUE), US" ");
1158 g->s[0] = logchar; g->ptr = 1;
1159 g = string_catn(g, US"> ", 2);
1161 g = string_log_address(g, addr, LOGGING(all_parents), TRUE);
1163 if (LOGGING(sender_on_delivery) || msg)
1164 g = string_append(g, 3, US" F=<",
1166 testflag(addr, af_utf8_downcvt)
1167 ? string_address_utf8_to_alabel(sender_address, NULL)
1174 g = string_append(g, 2, US" Q=", queue_name);
1176 #ifdef EXPERIMENTAL_SRS
1177 if(addr->prop.srs_sender)
1178 g = string_append(g, 3, US" SRS=<", addr->prop.srs_sender, US">");
1181 /* You might think that the return path must always be set for a successful
1182 delivery; indeed, I did for some time, until this statement crashed. The case
1183 when it is not set is for a delivery to /dev/null which is optimised by not
1184 being run at all. */
1186 if (used_return_path && LOGGING(return_path_on_delivery))
1187 g = string_append(g, 3, US" P=<", used_return_path, US">");
1190 g = string_append(g, 2, US" ", msg);
1192 /* For a delivery from a system filter, there may not be a router */
1194 g = string_append(g, 2, US" R=", addr->router->name);
1196 g = string_append(g, 2, US" T=", addr->transport->name);
1198 if (LOGGING(delivery_size))
1199 g = string_append(g, 2, US" S=",
1200 string_sprintf("%d", transport_count));
1202 /* Local delivery */
1204 if (addr->transport->info->local)
1206 if (addr->host_list)
1207 g = string_append(g, 2, US" H=", addr->host_list->name);
1208 g = d_log_interface(g);
1209 if (addr->shadow_message)
1210 g = string_cat(g, addr->shadow_message);
1213 /* Remote delivery */
1217 if (addr->host_used)
1219 g = d_hostlog(g, addr);
1220 if (continue_sequence > 1)
1221 g = string_catn(g, US"*", 1);
1223 #ifndef DISABLE_EVENT
1224 deliver_host_address = addr->host_used->address;
1225 deliver_host_port = addr->host_used->port;
1226 deliver_host = addr->host_used->name;
1228 /* DNS lookup status */
1229 lookup_dnssec_authenticated = addr->host_used->dnssec==DS_YES ? US"yes"
1230 : addr->host_used->dnssec==DS_NO ? US"no"
1236 g = d_tlslog(g, addr);
1239 if (addr->authenticator)
1241 g = string_append(g, 2, US" A=", addr->authenticator);
1244 g = string_append(g, 2, US":", addr->auth_id);
1245 if (LOGGING(smtp_mailauth) && addr->auth_sndr)
1246 g = string_append(g, 2, US":", addr->auth_sndr);
1250 if (LOGGING(pipelining) && testflag(addr, af_pipelining))
1251 g = string_catn(g, US" L", 2);
1253 #ifndef DISABLE_PRDR
1254 if (testflag(addr, af_prdr_used))
1255 g = string_catn(g, US" PRDR", 5);
1258 if (testflag(addr, af_chunking_used))
1259 g = string_catn(g, US" K", 2);
1262 /* confirmation message (SMTP (host_used) and LMTP (driver_name)) */
1264 if ( LOGGING(smtp_confirmation)
1266 && (addr->host_used || Ustrcmp(addr->transport->driver_name, "lmtp") == 0)
1270 unsigned lim = big_buffer_size < 1024 ? big_buffer_size : 1024;
1271 uschar *p = big_buffer;
1272 uschar *ss = addr->message;
1274 for (i = 0; i < lim && ss[i] != 0; i++) /* limit logged amount */
1276 if (ss[i] == '\"' || ss[i] == '\\') *p++ = '\\'; /* quote \ and " */
1281 g = string_append(g, 2, US" C=", big_buffer);
1284 /* Time on queue and actual time taken to deliver */
1286 if (LOGGING(queue_time))
1287 g = string_append(g, 2, US" QT=",
1288 string_timesince(&received_time));
1290 if (LOGGING(deliver_time))
1292 struct timeval diff = {.tv_sec = addr->more_errno, .tv_usec = addr->delivery_usec};
1293 g = string_append(g, 2, US" DT=", string_timediff(&diff));
1296 /* string_cat() always leaves room for the terminator. Release the
1297 store we used to build the line after writing it. */
1299 log_write(0, flags, "%s", string_from_gstring(g));
1301 #ifndef DISABLE_EVENT
1302 if (!msg) msg_event_raise(US"msg:delivery", addr);
1305 store_reset(reset_point);
1312 deferral_log(address_item * addr, uschar * now,
1313 int logflags, uschar * driver_name, uschar * driver_kind)
1318 /* Build up the line that is used for both the message log and the main
1321 g = reset_point = string_get(256);
1323 /* Create the address string for logging. Must not do this earlier, because
1324 an OK result may be changed to FAIL when a pipe returns text. */
1326 g = string_log_address(g, addr, LOGGING(all_parents), FALSE);
1329 g = string_append(g, 2, US" Q=", queue_name);
1331 /* Either driver_name contains something and driver_kind contains
1332 " router" or " transport" (note the leading space), or driver_name is
1333 a null string and driver_kind contains "routing" without the leading
1334 space, if all routing has been deferred. When a domain has been held,
1335 so nothing has been done at all, both variables contain null strings. */
1339 if (driver_kind[1] == 't' && addr->router)
1340 g = string_append(g, 2, US" R=", addr->router->name);
1341 g = string_cat(g, string_sprintf(" %c=%s", toupper(driver_kind[1]), driver_name));
1343 else if (driver_kind)
1344 g = string_append(g, 2, US" ", driver_kind);
1346 /*XXX need an s+s+p sprintf */
1347 g = string_cat(g, string_sprintf(" defer (%d)", addr->basic_errno));
1349 if (addr->basic_errno > 0)
1350 g = string_append(g, 2, US": ",
1351 US strerror(addr->basic_errno));
1353 if (addr->host_used)
1355 g = string_append(g, 5,
1356 US" H=", addr->host_used->name,
1357 US" [", addr->host_used->address, US"]");
1358 if (LOGGING(outgoing_port))
1360 int port = addr->host_used->port;
1361 g = string_append(g, 2,
1362 US":", port == PORT_NONE ? US"25" : string_sprintf("%d", port));
1367 g = string_append(g, 2, US": ", addr->message);
1369 (void) string_from_gstring(g);
1371 /* Log the deferment in the message log, but don't clutter it
1372 up with retry-time defers after the first delivery attempt. */
1374 if (f.deliver_firsttime || addr->basic_errno > ERRNO_RETRY_BASE)
1375 deliver_msglog("%s %s\n", now, g->s);
1377 /* Write the main log and reset the store.
1378 For errors of the type "retry time not reached" (also remotes skipped
1379 on queue run), logging is controlled by L_retry_defer. Note that this kind
1380 of error number is negative, and all the retry ones are less than any
1384 log_write(addr->basic_errno <= ERRNO_RETRY_BASE ? L_retry_defer : 0, logflags,
1387 store_reset(reset_point);
1394 failure_log(address_item * addr, uschar * driver_kind, uschar * now)
1397 gstring * g = reset_point = string_get(256);
1399 #ifndef DISABLE_EVENT
1400 /* Message failures for which we will send a DSN get their event raised
1401 later so avoid doing it here. */
1403 if ( !addr->prop.ignore_error
1404 && !(addr->dsn_flags & (rf_dsnflags & ~rf_notify_failure))
1406 msg_event_raise(US"msg:fail:delivery", addr);
1409 /* Build up the log line for the message and main logs */
1411 /* Create the address string for logging. Must not do this earlier, because
1412 an OK result may be changed to FAIL when a pipe returns text. */
1414 g = string_log_address(g, addr, LOGGING(all_parents), FALSE);
1416 if (LOGGING(sender_on_delivery))
1417 g = string_append(g, 3, US" F=<", sender_address, US">");
1420 g = string_append(g, 2, US" Q=", queue_name);
1422 /* Return path may not be set if no delivery actually happened */
1424 if (used_return_path && LOGGING(return_path_on_delivery))
1425 g = string_append(g, 3, US" P=<", used_return_path, US">");
1428 g = string_append(g, 2, US" R=", addr->router->name);
1429 if (addr->transport)
1430 g = string_append(g, 2, US" T=", addr->transport->name);
1432 if (addr->host_used)
1433 g = d_hostlog(g, addr);
1436 g = d_tlslog(g, addr);
1439 if (addr->basic_errno > 0)
1440 g = string_append(g, 2, US": ", US strerror(addr->basic_errno));
1443 g = string_append(g, 2, US": ", addr->message);
1445 (void) string_from_gstring(g);
1447 /* Do the logging. For the message log, "routing failed" for those cases,
1448 just to make it clearer. */
1451 deliver_msglog("%s %s failed for %s\n", now, driver_kind, g->s);
1453 deliver_msglog("%s %s\n", now, g->s);
1455 log_write(0, LOG_MAIN, "** %s", g->s);
1457 store_reset(reset_point);
1463 /*************************************************
1464 * Actions at the end of handling an address *
1465 *************************************************/
1467 /* This is a function for processing a single address when all that can be done
1468 with it has been done.
1471 addr points to the address block
1472 result the result of the delivery attempt
1473 logflags flags for log_write() (LOG_MAIN and/or LOG_PANIC)
1474 driver_type indicates which type of driver (transport, or router) was last
1475 to process the address
1476 logchar '=' or '-' for use when logging deliveries with => or ->
1482 post_process_one(address_item *addr, int result, int logflags, int driver_type,
1485 uschar *now = tod_stamp(tod_log);
1486 uschar *driver_kind = NULL;
1487 uschar *driver_name = NULL;
1489 DEBUG(D_deliver) debug_printf("post-process %s (%d)\n", addr->address, result);
1491 /* Set up driver kind and name for logging. Disable logging if the router or
1492 transport has disabled it. */
1494 if (driver_type == EXIM_DTYPE_TRANSPORT)
1496 if (addr->transport)
1498 driver_name = addr->transport->name;
1499 driver_kind = US" transport";
1500 f.disable_logging = addr->transport->disable_logging;
1502 else driver_kind = US"transporting";
1504 else if (driver_type == EXIM_DTYPE_ROUTER)
1508 driver_name = addr->router->name;
1509 driver_kind = US" router";
1510 f.disable_logging = addr->router->disable_logging;
1512 else driver_kind = US"routing";
1515 /* If there's an error message set, ensure that it contains only printing
1516 characters - it should, but occasionally things slip in and this at least
1517 stops the log format from getting wrecked. We also scan the message for an LDAP
1518 expansion item that has a password setting, and flatten the password. This is a
1519 fudge, but I don't know a cleaner way of doing this. (If the item is badly
1520 malformed, it won't ever have gone near LDAP.) */
1524 const uschar * s = string_printing(addr->message);
1526 /* deconst cast ok as string_printing known to have alloc'n'copied */
1527 addr->message = expand_hide_passwords(US s);
1530 /* If we used a transport that has one of the "return_output" options set, and
1531 if it did in fact generate some output, then for return_output we treat the
1532 message as failed if it was not already set that way, so that the output gets
1533 returned to the sender, provided there is a sender to send it to. For
1534 return_fail_output, do this only if the delivery failed. Otherwise we just
1535 unlink the file, and remove the name so that if the delivery failed, we don't
1536 try to send back an empty or unwanted file. The log_output options operate only
1537 on a non-empty file.
1539 In any case, we close the message file, because we cannot afford to leave a
1540 file-descriptor for one address while processing (maybe very many) others. */
1542 if (addr->return_file >= 0 && addr->return_filename)
1544 BOOL return_output = FALSE;
1545 struct stat statbuf;
1546 (void)EXIMfsync(addr->return_file);
1548 /* If there is no output, do nothing. */
1550 if (fstat(addr->return_file, &statbuf) == 0 && statbuf.st_size > 0)
1552 transport_instance *tb = addr->transport;
1554 /* Handle logging options */
1557 || result == FAIL && tb->log_fail_output
1558 || result == DEFER && tb->log_defer_output
1562 FILE *f = Ufopen(addr->return_filename, "rb");
1564 log_write(0, LOG_MAIN|LOG_PANIC, "failed to open %s to log output "
1565 "from %s transport: %s", addr->return_filename, tb->name,
1568 if ((s = US Ufgets(big_buffer, big_buffer_size, f)))
1570 uschar *p = big_buffer + Ustrlen(big_buffer);
1572 while (p > big_buffer && isspace(p[-1])) p--;
1574 sp = string_printing(big_buffer);
1575 log_write(0, LOG_MAIN, "<%s>: %s transport output: %s",
1576 addr->address, tb->name, sp);
1581 /* Handle returning options, but only if there is an address to return
1584 if (sender_address[0] != 0 || addr->prop.errors_address)
1585 if (tb->return_output)
1587 addr->transport_return = result = FAIL;
1588 if (addr->basic_errno == 0 && !addr->message)
1589 addr->message = US"return message generated";
1590 return_output = TRUE;
1593 if (tb->return_fail_output && result == FAIL) return_output = TRUE;
1596 /* Get rid of the file unless it might be returned, but close it in
1601 Uunlink(addr->return_filename);
1602 addr->return_filename = NULL;
1603 addr->return_file = -1;
1606 (void)close(addr->return_file);
1609 /* The success case happens only after delivery by a transport. */
1613 addr->next = addr_succeed;
1614 addr_succeed = addr;
1616 /* Call address_done() to ensure that we don't deliver to this address again,
1617 and write appropriate things to the message log. If it is a child address, we
1618 call child_done() to scan the ancestors and mark them complete if this is the
1619 last child to complete. */
1621 address_done(addr, now);
1622 DEBUG(D_deliver) debug_printf("%s delivered\n", addr->address);
1625 deliver_msglog("%s %s: %s%s succeeded\n", now, addr->address,
1626 driver_name, driver_kind);
1629 deliver_msglog("%s %s <%s>: %s%s succeeded\n", now, addr->address,
1630 addr->parent->address, driver_name, driver_kind);
1631 child_done(addr, now);
1634 /* Certificates for logging (via events) */
1636 tls_out.ourcert = addr->ourcert;
1637 addr->ourcert = NULL;
1638 tls_out.peercert = addr->peercert;
1639 addr->peercert = NULL;
1641 tls_out.cipher = addr->cipher;
1642 tls_out.peerdn = addr->peerdn;
1643 tls_out.ocsp = addr->ocsp;
1644 # ifdef SUPPORT_DANE
1645 tls_out.dane_verified = testflag(addr, af_dane_verified);
1649 delivery_log(LOG_MAIN, addr, logchar, NULL);
1652 tls_free_cert(&tls_out.ourcert);
1653 tls_free_cert(&tls_out.peercert);
1654 tls_out.cipher = NULL;
1655 tls_out.peerdn = NULL;
1656 tls_out.ocsp = OCSP_NOT_REQ;
1657 # ifdef SUPPORT_DANE
1658 tls_out.dane_verified = FALSE;
1664 /* Soft failure, or local delivery process failed; freezing may be
1667 else if (result == DEFER || result == PANIC)
1669 if (result == PANIC) logflags |= LOG_PANIC;
1671 /* This puts them on the chain in reverse order. Do not change this, because
1672 the code for handling retries assumes that the one with the retry
1673 information is last. */
1675 addr->next = addr_defer;
1678 /* The only currently implemented special action is to freeze the
1679 message. Logging of this is done later, just before the -H file is
1682 if (addr->special_action == SPECIAL_FREEZE)
1684 f.deliver_freeze = TRUE;
1685 deliver_frozen_at = time(NULL);
1686 update_spool = TRUE;
1689 /* If doing a 2-stage queue run, we skip writing to either the message
1690 log or the main log for SMTP defers. */
1692 if (!f.queue_2stage || addr->basic_errno != 0)
1693 deferral_log(addr, now, logflags, driver_name, driver_kind);
1697 /* Hard failure. If there is an address to which an error message can be sent,
1698 put this address on the failed list. If not, put it on the deferred list and
1699 freeze the mail message for human attention. The latter action can also be
1700 explicitly requested by a router or transport. */
1704 /* If this is a delivery error, or a message for which no replies are
1705 wanted, and the message's age is greater than ignore_bounce_errors_after,
1706 force the af_ignore_error flag. This will cause the address to be discarded
1707 later (with a log entry). */
1709 if (!*sender_address && message_age >= ignore_bounce_errors_after)
1710 addr->prop.ignore_error = TRUE;
1712 /* Freeze the message if requested, or if this is a bounce message (or other
1713 message with null sender) and this address does not have its own errors
1714 address. However, don't freeze if errors are being ignored. The actual code
1715 to ignore occurs later, instead of sending a message. Logging of freezing
1716 occurs later, just before writing the -H file. */
1718 if ( !addr->prop.ignore_error
1719 && ( addr->special_action == SPECIAL_FREEZE
1720 || (sender_address[0] == 0 && !addr->prop.errors_address)
1723 frozen_info = addr->special_action == SPECIAL_FREEZE
1725 : f.sender_local && !f.local_error_message
1726 ? US" (message created with -f <>)"
1727 : US" (delivery error message)";
1728 f.deliver_freeze = TRUE;
1729 deliver_frozen_at = time(NULL);
1730 update_spool = TRUE;
1732 /* The address is put on the defer rather than the failed queue, because
1733 the message is being retained. */
1735 addr->next = addr_defer;
1739 /* Don't put the address on the nonrecipients tree yet; wait until an
1740 error message has been successfully sent. */
1744 addr->next = addr_failed;
1748 failure_log(addr, driver_name ? NULL : driver_kind, now);
1751 /* Ensure logging is turned on again in all cases */
1753 f.disable_logging = FALSE;
1759 /*************************************************
1760 * Address-independent error *
1761 *************************************************/
1763 /* This function is called when there's an error that is not dependent on a
1764 particular address, such as an expansion string failure. It puts the error into
1765 all the addresses in a batch, logs the incident on the main and panic logs, and
1766 clears the expansions. It is mostly called from local_deliver(), but can be
1767 called for a remote delivery via findugid().
1770 logit TRUE if (MAIN+PANIC) logging required
1771 addr the first of the chain of addresses
1773 format format string for error message, or NULL if already set in addr
1774 ... arguments for the format
1780 common_error(BOOL logit, address_item *addr, int code, uschar *format, ...)
1782 address_item *addr2;
1783 addr->basic_errno = code;
1789 va_start(ap, format);
1790 if (!string_vformat(buffer, sizeof(buffer), CS format, ap))
1791 log_write(0, LOG_MAIN|LOG_PANIC_DIE,
1792 "common_error expansion was longer than " SIZE_T_FMT, sizeof(buffer));
1794 addr->message = string_copy(buffer);
1797 for (addr2 = addr->next; addr2; addr2 = addr2->next)
1799 addr2->basic_errno = code;
1800 addr2->message = addr->message;
1803 if (logit) log_write(0, LOG_MAIN|LOG_PANIC, "%s", addr->message);
1804 deliver_set_expansions(NULL);
1810 /*************************************************
1811 * Check a "never users" list *
1812 *************************************************/
1814 /* This function is called to check whether a uid is on one of the two "never
1818 uid the uid to be checked
1819 nusers the list to be scanned; the first item in the list is the count
1821 Returns: TRUE if the uid is on the list
1825 check_never_users(uid_t uid, uid_t *nusers)
1828 if (!nusers) return FALSE;
1829 for (i = 1; i <= (int)(nusers[0]); i++) if (nusers[i] == uid) return TRUE;
1835 /*************************************************
1836 * Find uid and gid for a transport *
1837 *************************************************/
1839 /* This function is called for both local and remote deliveries, to find the
1840 uid/gid under which to run the delivery. The values are taken preferentially
1841 from the transport (either explicit or deliver_as_creator), then from the
1842 address (i.e. the router), and if nothing is set, the exim uid/gid are used. If
1843 the resulting uid is on the "never_users" or the "fixed_never_users" list, a
1844 panic error is logged, and the function fails (which normally leads to delivery
1848 addr the address (possibly a chain)
1850 uidp pointer to uid field
1851 gidp pointer to gid field
1852 igfp pointer to the use_initgroups field
1854 Returns: FALSE if failed - error has been set in address(es)
1858 findugid(address_item *addr, transport_instance *tp, uid_t *uidp, gid_t *gidp,
1862 BOOL gid_set = FALSE;
1864 /* Default initgroups flag comes from the transport */
1866 *igfp = tp->initgroups;
1868 /* First see if there's a gid on the transport, either fixed or expandable.
1869 The expanding function always logs failure itself. */
1876 else if (tp->expand_gid)
1878 if (!route_find_expanded_group(tp->expand_gid, tp->name, US"transport", gidp,
1881 common_error(FALSE, addr, ERRNO_GIDFAIL, NULL);
1887 /* If the transport did not set a group, see if the router did. */
1889 if (!gid_set && testflag(addr, af_gid_set))
1895 /* Pick up a uid from the transport if one is set. */
1897 if (tp->uid_set) *uidp = tp->uid;
1899 /* Otherwise, try for an expandable uid field. If it ends up as a numeric id,
1900 it does not provide a passwd value from which a gid can be taken. */
1902 else if (tp->expand_uid)
1905 if (!route_find_expanded_user(tp->expand_uid, tp->name, US"transport", &pw,
1906 uidp, &(addr->message)))
1908 common_error(FALSE, addr, ERRNO_UIDFAIL, NULL);
1918 /* If the transport doesn't set the uid, test the deliver_as_creator flag. */
1920 else if (tp->deliver_as_creator)
1922 *uidp = originator_uid;
1925 *gidp = originator_gid;
1930 /* Otherwise see if the address specifies the uid and if so, take it and its
1933 else if (testflag(addr, af_uid_set))
1936 *igfp = testflag(addr, af_initgroups);
1939 /* Nothing has specified the uid - default to the Exim user, and group if the
1952 /* If no gid is set, it is a disaster. We default to the Exim gid only if
1953 defaulting to the Exim uid. In other words, if the configuration has specified
1954 a uid, it must also provide a gid. */
1958 common_error(TRUE, addr, ERRNO_GIDFAIL, US"User set without group for "
1959 "%s transport", tp->name);
1963 /* Check that the uid is not on the lists of banned uids that may not be used
1964 for delivery processes. */
1966 nuname = check_never_users(*uidp, never_users)
1968 : check_never_users(*uidp, fixed_never_users)
1969 ? US"fixed_never_users"
1973 common_error(TRUE, addr, ERRNO_UIDFAIL, US"User %ld set for %s transport "
1974 "is on the %s list", (long int)(*uidp), tp->name, nuname);
1986 /*************************************************
1987 * Check the size of a message for a transport *
1988 *************************************************/
1990 /* Checks that the message isn't too big for the selected transport.
1991 This is called only when it is known that the limit is set.
1995 addr the (first) address being delivered
1998 DEFER expansion failed or did not yield an integer
1999 FAIL message too big
2003 check_message_size(transport_instance *tp, address_item *addr)
2008 deliver_set_expansions(addr);
2009 size_limit = expand_string_integer(tp->message_size_limit, TRUE);
2010 deliver_set_expansions(NULL);
2012 if (expand_string_message)
2015 addr->message = size_limit == -1
2016 ? string_sprintf("failed to expand message_size_limit "
2017 "in %s transport: %s", tp->name, expand_string_message)
2018 : string_sprintf("invalid message_size_limit "
2019 "in %s transport: %s", tp->name, expand_string_message);
2021 else if (size_limit > 0 && message_size > size_limit)
2025 string_sprintf("message is too big (transport limit = %d)",
2034 /*************************************************
2035 * Transport-time check for a previous delivery *
2036 *************************************************/
2038 /* Check that this base address hasn't previously been delivered to its routed
2039 transport. If it has been delivered, mark it done. The check is necessary at
2040 delivery time in order to handle homonymic addresses correctly in cases where
2041 the pattern of redirection changes between delivery attempts (so the unique
2042 fields change). Non-homonymic previous delivery is detected earlier, at routing
2043 time (which saves unnecessary routing).
2046 addr the address item
2047 testing TRUE if testing wanted only, without side effects
2049 Returns: TRUE if previously delivered by the transport
2053 previously_transported(address_item *addr, BOOL testing)
2055 (void)string_format(big_buffer, big_buffer_size, "%s/%s",
2056 addr->unique + (testflag(addr, af_homonym)? 3:0), addr->transport->name);
2058 if (tree_search(tree_nonrecipients, big_buffer) != 0)
2060 DEBUG(D_deliver|D_route|D_transport)
2061 debug_printf("%s was previously delivered (%s transport): discarded\n",
2062 addr->address, addr->transport->name);
2063 if (!testing) child_done(addr, tod_stamp(tod_log));
2072 /******************************************************
2073 * Check for a given header in a header string *
2074 ******************************************************/
2076 /* This function is used when generating quota warnings. The configuration may
2077 specify any header lines it likes in quota_warn_message. If certain of them are
2078 missing, defaults are inserted, so we need to be able to test for the presence
2082 hdr the required header name
2083 hstring the header string
2085 Returns: TRUE the header is in the string
2086 FALSE the header is not in the string
2090 contains_header(uschar *hdr, uschar *hstring)
2092 int len = Ustrlen(hdr);
2093 uschar *p = hstring;
2096 if (strncmpic(p, hdr, len) == 0)
2099 while (*p == ' ' || *p == '\t') p++;
2100 if (*p == ':') return TRUE;
2102 while (*p != 0 && *p != '\n') p++;
2103 if (*p == '\n') p++;
2111 /*************************************************
2112 * Perform a local delivery *
2113 *************************************************/
2115 /* Each local delivery is performed in a separate process which sets its
2116 uid and gid as specified. This is a safer way than simply changing and
2117 restoring using seteuid(); there is a body of opinion that seteuid() cannot be
2118 used safely. From release 4, Exim no longer makes any use of it. Besides, not
2119 all systems have seteuid().
2121 If the uid/gid are specified in the transport_instance, they are used; the
2122 transport initialization must ensure that either both or neither are set.
2123 Otherwise, the values associated with the address are used. If neither are set,
2124 it is a configuration error.
2126 The transport or the address may specify a home directory (transport over-
2127 rides), and if they do, this is set as $home. If neither have set a working
2128 directory, this value is used for that as well. Otherwise $home is left unset
2129 and the cwd is set to "/" - a directory that should be accessible to all users.
2131 Using a separate process makes it more complicated to get error information
2132 back. We use a pipe to pass the return code and also an error code and error
2133 text string back to the parent process.
2136 addr points to an address block for this delivery; for "normal" local
2137 deliveries this is the only address to be delivered, but for
2138 pseudo-remote deliveries (e.g. by batch SMTP to a file or pipe)
2139 a number of addresses can be handled simultaneously, and in this
2140 case addr will point to a chain of addresses with the same
2143 shadowing TRUE if running a shadow transport; this causes output from pipes
2150 deliver_local(address_item *addr, BOOL shadowing)
2152 BOOL use_initgroups;
2155 int status, len, rc;
2158 uschar *working_directory;
2159 address_item *addr2;
2160 transport_instance *tp = addr->transport;
2162 /* Set up the return path from the errors or sender address. If the transport
2163 has its own return path setting, expand it and replace the existing value. */
2165 if(addr->prop.errors_address)
2166 return_path = addr->prop.errors_address;
2167 #ifdef EXPERIMENTAL_SRS
2168 else if (addr->prop.srs_sender)
2169 return_path = addr->prop.srs_sender;
2172 return_path = sender_address;
2174 if (tp->return_path)
2176 uschar *new_return_path = expand_string(tp->return_path);
2177 if (!new_return_path)
2179 if (!f.expand_string_forcedfail)
2181 common_error(TRUE, addr, ERRNO_EXPANDFAIL,
2182 US"Failed to expand return path \"%s\" in %s transport: %s",
2183 tp->return_path, tp->name, expand_string_message);
2187 else return_path = new_return_path;
2190 /* For local deliveries, one at a time, the value used for logging can just be
2191 set directly, once and for all. */
2193 used_return_path = return_path;
2195 /* Sort out the uid, gid, and initgroups flag. If an error occurs, the message
2196 gets put into the address(es), and the expansions are unset, so we can just
2199 if (!findugid(addr, tp, &uid, &gid, &use_initgroups)) return;
2201 /* See if either the transport or the address specifies a home directory. A
2202 home directory set in the address may already be expanded; a flag is set to
2203 indicate that. In other cases we must expand it. */
2205 if ( (deliver_home = tp->home_dir) /* Set in transport, or */
2206 || ( (deliver_home = addr->home_dir) /* Set in address and */
2207 && !testflag(addr, af_home_expanded) /* not expanded */
2210 uschar *rawhome = deliver_home;
2211 deliver_home = NULL; /* in case it contains $home */
2212 if (!(deliver_home = expand_string(rawhome)))
2214 common_error(TRUE, addr, ERRNO_EXPANDFAIL, US"home directory \"%s\" failed "
2215 "to expand for %s transport: %s", rawhome, tp->name,
2216 expand_string_message);
2219 if (*deliver_home != '/')
2221 common_error(TRUE, addr, ERRNO_NOTABSOLUTE, US"home directory path \"%s\" "
2222 "is not absolute for %s transport", deliver_home, tp->name);
2227 /* See if either the transport or the address specifies a current directory,
2228 and if so, expand it. If nothing is set, use the home directory, unless it is
2229 also unset in which case use "/", which is assumed to be a directory to which
2230 all users have access. It is necessary to be in a visible directory for some
2231 operating systems when running pipes, as some commands (e.g. "rm" under Solaris
2232 2.5) require this. */
2234 working_directory = tp->current_dir ? tp->current_dir : addr->current_dir;
2235 if (working_directory)
2237 uschar *raw = working_directory;
2238 if (!(working_directory = expand_string(raw)))
2240 common_error(TRUE, addr, ERRNO_EXPANDFAIL, US"current directory \"%s\" "
2241 "failed to expand for %s transport: %s", raw, tp->name,
2242 expand_string_message);
2245 if (*working_directory != '/')
2247 common_error(TRUE, addr, ERRNO_NOTABSOLUTE, US"current directory path "
2248 "\"%s\" is not absolute for %s transport", working_directory, tp->name);
2252 else working_directory = deliver_home ? deliver_home : US"/";
2254 /* If one of the return_output flags is set on the transport, create and open a
2255 file in the message log directory for the transport to write its output onto.
2256 This is mainly used by pipe transports. The file needs to be unique to the
2257 address. This feature is not available for shadow transports. */
2260 && ( tp->return_output || tp->return_fail_output
2261 || tp->log_output || tp->log_fail_output || tp->log_defer_output
2266 addr->return_filename =
2267 spool_fname(US"msglog", message_subdir, message_id,
2268 string_sprintf("-%d-%d", getpid(), return_count++));
2270 if ((addr->return_file = open_msglog_file(addr->return_filename, 0400, &error)) < 0)
2272 common_error(TRUE, addr, errno, US"Unable to %s file for %s transport "
2273 "to return message: %s", error, tp->name, strerror(errno));
2278 /* Create the pipe for inter-process communication. */
2282 common_error(TRUE, addr, ERRNO_PIPEFAIL, US"Creation of pipe failed: %s",
2287 /* Now fork the process to do the real work in the subprocess, but first
2288 ensure that all cached resources are freed so that the subprocess starts with
2289 a clean slate and doesn't interfere with the parent process. */
2293 if ((pid = fork()) == 0)
2295 BOOL replicate = TRUE;
2297 /* Prevent core dumps, as we don't want them in users' home directories.
2298 HP-UX doesn't have RLIMIT_CORE; I don't know how to do this in that
2299 system. Some experimental/developing systems (e.g. GNU/Hurd) may define
2300 RLIMIT_CORE but not support it in setrlimit(). For such systems, do not
2301 complain if the error is "not supported".
2303 There are two scenarios where changing the max limit has an effect. In one,
2304 the user is using a .forward and invoking a command of their choice via pipe;
2305 for these, we do need the max limit to be 0 unless the admin chooses to
2306 permit an increased limit. In the other, the command is invoked directly by
2307 the transport and is under administrator control, thus being able to raise
2308 the limit aids in debugging. So there's no general always-right answer.
2310 Thus we inhibit core-dumps completely but let individual transports, while
2311 still root, re-raise the limits back up to aid debugging. We make the
2312 default be no core-dumps -- few enough people can use core dumps in
2313 diagnosis that it's reasonable to make them something that has to be explicitly requested.
2320 if (setrlimit(RLIMIT_CORE, &rl) < 0)
2322 # ifdef SETRLIMIT_NOT_SUPPORTED
2323 if (errno != ENOSYS && errno != ENOTSUP)
2325 log_write(0, LOG_MAIN|LOG_PANIC, "setrlimit(RLIMIT_CORE) failed: %s",
2330 /* Reset the random number generator, so different processes don't all
2331 have the same sequence. */
2335 /* If the transport has a setup entry, call this first, while still
2336 privileged. (Appendfile uses this to expand quota, for example, while
2337 able to read private files.) */
2339 if (addr->transport->setup)
2340 switch((addr->transport->setup)(addr->transport, addr, NULL, uid, gid,
2344 addr->transport_return = DEFER;
2348 addr->transport_return = PANIC;
2352 /* Ignore SIGINT and SIGTERM during delivery. Also ignore SIGUSR1, as
2353 when the process becomes unprivileged, it won't be able to write to the
2354 process log. SIGHUP is ignored throughout exim, except when it is being
2357 signal(SIGINT, SIG_IGN);
2358 signal(SIGTERM, SIG_IGN);
2359 signal(SIGUSR1, SIG_IGN);
2361 /* Close the unwanted half of the pipe, and set close-on-exec for the other
2362 half - for transports that exec things (e.g. pipe). Then set the required
2365 (void)close(pfd[pipe_read]);
2366 (void)fcntl(pfd[pipe_write], F_SETFD, fcntl(pfd[pipe_write], F_GETFD) |
2368 exim_setugid(uid, gid, use_initgroups,
2369 string_sprintf("local delivery to %s <%s> transport=%s", addr->local_part,
2370 addr->address, addr->transport->name));
2374 address_item *batched;
2375 debug_printf(" home=%s current=%s\n", deliver_home, working_directory);
2376 for (batched = addr->next; batched; batched = batched->next)
2377 debug_printf("additional batched address: %s\n", batched->address);
2380 /* Set an appropriate working directory. */
2382 if (Uchdir(working_directory) < 0)
2384 addr->transport_return = DEFER;
2385 addr->basic_errno = errno;
2386 addr->message = string_sprintf("failed to chdir to %s", working_directory);
2389 /* If successful, call the transport */
2394 set_process_info("delivering %s to %s using %s", message_id,
2395 addr->local_part, addr->transport->name);
2397 /* Setting this global in the subprocess means we need never clear it */
2398 transport_name = addr->transport->name;
2400 /* If a transport filter has been specified, set up its argument list.
2401 Any errors will get put into the address, and FALSE yielded. */
2403 if (addr->transport->filter_command)
2405 ok = transport_set_up_command(&transport_filter_argv,
2406 addr->transport->filter_command,
2407 TRUE, PANIC, addr, US"transport filter", NULL);
2408 transport_filter_timeout = addr->transport->filter_timeout;
2410 else transport_filter_argv = NULL;
2414 debug_print_string(addr->transport->debug_string);
2415 replicate = !(addr->transport->info->code)(addr->transport, addr);
2419 /* Pass the results back down the pipe. If necessary, first replicate the
2420 status in the top address to the others in the batch. The label is the
2421 subject of a goto when a call to the transport's setup function fails. We
2422 pass the pointer to the transport back in case it got changed as a result of
2423 file_format in appendfile. */
2427 if (replicate) replicate_status(addr);
2428 for (addr2 = addr; addr2; addr2 = addr2->next)
2431 int local_part_length = Ustrlen(addr2->local_part);
2435 if( (ret = write(pfd[pipe_write], &addr2->transport_return, sizeof(int))) != sizeof(int)
2436 || (ret = write(pfd[pipe_write], &transport_count, sizeof(transport_count))) != sizeof(transport_count)
2437 || (ret = write(pfd[pipe_write], &addr2->flags, sizeof(addr2->flags))) != sizeof(addr2->flags)
2438 || (ret = write(pfd[pipe_write], &addr2->basic_errno, sizeof(int))) != sizeof(int)
2439 || (ret = write(pfd[pipe_write], &addr2->more_errno, sizeof(int))) != sizeof(int)
2440 || (ret = write(pfd[pipe_write], &addr2->delivery_usec, sizeof(int))) != sizeof(int)
2441 || (ret = write(pfd[pipe_write], &addr2->special_action, sizeof(int))) != sizeof(int)
2442 || (ret = write(pfd[pipe_write], &addr2->transport,
2443 sizeof(transport_instance *))) != sizeof(transport_instance *)
2445 /* For a file delivery, pass back the local part, in case the original
2446 was only part of the final delivery path. This gives more complete
2449 || (testflag(addr2, af_file)
2450 && ( (ret = write(pfd[pipe_write], &local_part_length, sizeof(int))) != sizeof(int)
2451 || (ret = write(pfd[pipe_write], addr2->local_part, local_part_length)) != local_part_length
2455 log_write(0, LOG_MAIN|LOG_PANIC, "Failed writing transport results to pipe: %s",
2456 ret == -1 ? strerror(errno) : "short write");
2458 /* Now any messages */
2460 for (i = 0, s = addr2->message; i < 2; i++, s = addr2->user_message)
2462 int message_length = s ? Ustrlen(s) + 1 : 0;
2463 if( (ret = write(pfd[pipe_write], &message_length, sizeof(int))) != sizeof(int)
2464 || message_length > 0 && (ret = write(pfd[pipe_write], s, message_length)) != message_length
2466 log_write(0, LOG_MAIN|LOG_PANIC, "Failed writing transport results to pipe: %s",
2467 ret == -1 ? strerror(errno) : "short write");
2471 /* OK, this process is now done. Free any cached resources that it opened,
2472 and close the pipe we were writing down before exiting. */
2474 (void)close(pfd[pipe_write]);
2479 /* Back in the main process: panic if the fork did not succeed. This seems
2480 better than returning an error - if forking is failing it is probably best
2481 not to try other deliveries for this message. */
2484 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Fork failed for local delivery to %s",
2487 /* Read the pipe to get the delivery status codes and error messages. Our copy
2488 of the writing end must be closed first, as otherwise read() won't return zero
2489 on an empty pipe. We check that a status exists for each address before
2490 overwriting the address structure. If data is missing, the default DEFER status
2491 will remain. Afterwards, close the reading end. */
2493 (void)close(pfd[pipe_write]);
2495 for (addr2 = addr; addr2; addr2 = addr2->next)
2497 if ((len = read(pfd[pipe_read], &status, sizeof(int))) > 0)
2502 addr2->transport_return = status;
2503 len = read(pfd[pipe_read], &transport_count,
2504 sizeof(transport_count));
2505 len = read(pfd[pipe_read], &addr2->flags, sizeof(addr2->flags));
2506 len = read(pfd[pipe_read], &addr2->basic_errno, sizeof(int));
2507 len = read(pfd[pipe_read], &addr2->more_errno, sizeof(int));
2508 len = read(pfd[pipe_read], &addr2->delivery_usec, sizeof(int));
2509 len = read(pfd[pipe_read], &addr2->special_action, sizeof(int));
2510 len = read(pfd[pipe_read], &addr2->transport,
2511 sizeof(transport_instance *));
2513 if (testflag(addr2, af_file))
2516 if ( read(pfd[pipe_read], &llen, sizeof(int)) != sizeof(int)
2517 || llen > 64*4 /* limit from rfc 5821, times I18N factor */
2520 log_write(0, LOG_MAIN|LOG_PANIC, "bad local_part length read"
2521 " from delivery subprocess");
2524 /* sanity-checked llen so disable the Coverity error */
2525 /* coverity[tainted_data] */
2526 if (read(pfd[pipe_read], big_buffer, llen) != llen)
2528 log_write(0, LOG_MAIN|LOG_PANIC, "bad local_part read"
2529 " from delivery subprocess");
2532 big_buffer[llen] = 0;
2533 addr2->local_part = string_copy(big_buffer);
2536 for (i = 0, sptr = &addr2->message; i < 2; i++, sptr = &addr2->user_message)
2539 len = read(pfd[pipe_read], &message_length, sizeof(int));
2540 if (message_length > 0)
2542 len = read(pfd[pipe_read], big_buffer, message_length);
2543 big_buffer[big_buffer_size-1] = '\0'; /* guard byte */
2544 if (len > 0) *sptr = string_copy(big_buffer);
2551 log_write(0, LOG_MAIN|LOG_PANIC, "failed to read delivery status for %s "
2552 "from delivery subprocess", addr2->unique);
2557 (void)close(pfd[pipe_read]);
2559 /* Unless shadowing, write all successful addresses immediately to the journal
2560 file, to ensure they are recorded asap. For homonymic addresses, use the base
2561 address plus the transport name. Failure to write the journal is panic-worthy,
2562 but don't stop, as it may prove possible subsequently to update the spool file
2563 in order to record the delivery. */
2567 for (addr2 = addr; addr2; addr2 = addr2->next)
2568 if (addr2->transport_return == OK)
2570 if (testflag(addr2, af_homonym))
2571 sprintf(CS big_buffer, "%.500s/%s\n", addr2->unique + 3, tp->name);
2573 sprintf(CS big_buffer, "%.500s\n", addr2->unique);
2575 /* In the test harness, wait just a bit to let the subprocess finish off
2576 any debug output etc first. */
2578 if (f.running_in_test_harness) millisleep(300);
2580 DEBUG(D_deliver) debug_printf("journalling %s", big_buffer);
2581 len = Ustrlen(big_buffer);
2582 if (write(journal_fd, big_buffer, len) != len)
2583 log_write(0, LOG_MAIN|LOG_PANIC, "failed to update journal for %s: %s",
2584 big_buffer, strerror(errno));
2587 /* Ensure the journal file is pushed out to disk. */
2589 if (EXIMfsync(journal_fd) < 0)
2590 log_write(0, LOG_MAIN|LOG_PANIC, "failed to fsync journal: %s",
2594 /* Wait for the process to finish. If it terminates with a non-zero code,
2595 freeze the message (except for SIGTERM, SIGKILL and SIGQUIT), but leave the
2596 status values of all the addresses as they are. Take care to handle the case
2597 when the subprocess doesn't seem to exist. This has been seen on one system
2598 when Exim was called from an MUA that set SIGCHLD to SIG_IGN. When that
2599 happens, wait() doesn't recognize the termination of child processes. Exim now
2600 resets SIGCHLD to SIG_DFL, but this code should still be robust. */
2602 while ((rc = wait(&status)) != pid)
2603 if (rc < 0 && errno == ECHILD) /* Process has vanished */
2605 log_write(0, LOG_MAIN, "%s transport process vanished unexpectedly",
2606 addr->transport->driver_name);
2611 if ((status & 0xffff) != 0)
2613 int msb = (status >> 8) & 255;
2614 int lsb = status & 255;
2615 int code = (msb == 0)? (lsb & 0x7f) : msb;
2616 if (msb != 0 || (code != SIGTERM && code != SIGKILL && code != SIGQUIT))
2617 addr->special_action = SPECIAL_FREEZE;
2618 log_write(0, LOG_MAIN|LOG_PANIC, "%s transport process returned non-zero "
2619 "status 0x%04x: %s %d",
2620 addr->transport->driver_name,
2622 msb == 0 ? "terminated by signal" : "exit code",
2626 /* If SPECIAL_WARN is set in the top address, send a warning message. */
2628 if (addr->special_action == SPECIAL_WARN && addr->transport->warn_message)
2631 uschar *warn_message;
2634 DEBUG(D_deliver) debug_printf("Warning message requested by transport\n");
2636 if (!(warn_message = expand_string(addr->transport->warn_message)))
2637 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand \"%s\" (warning "
2638 "message for %s transport): %s", addr->transport->warn_message,
2639 addr->transport->name, expand_string_message);
2641 else if ((pid = child_open_exim(&fd)) > 0)
2643 FILE *f = fdopen(fd, "wb");
2644 if (errors_reply_to && !contains_header(US"Reply-To", warn_message))
2645 fprintf(f, "Reply-To: %s\n", errors_reply_to);
2646 fprintf(f, "Auto-Submitted: auto-replied\n");
2647 if (!contains_header(US"From", warn_message))
2649 fprintf(f, "%s", CS warn_message);
2651 /* Close and wait for child process to complete, without a timeout. */
2654 (void)child_close(pid, 0);
2657 addr->special_action = SPECIAL_NONE;
2664 /* Check transport for the given concurrency limit. Return TRUE if over
2665 the limit (or an expansion failure), else FALSE and if there was a limit,
2666 the key for the hints database used for the concurrency count. */
2669 tpt_parallel_check(transport_instance * tp, address_item * addr, uschar ** key)
2671 unsigned max_parallel;
2673 if (!tp->max_parallel) return FALSE;
2675 max_parallel = (unsigned) expand_string_integer(tp->max_parallel, TRUE);
2676 if (expand_string_message)
2678 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand max_parallel option "
2679 "in %s transport (%s): %s", tp->name, addr->address,
2680 expand_string_message);
2684 if (max_parallel > 0)
2686 uschar * serialize_key = string_sprintf("tpt-serialize-%s", tp->name);
2687 if (!enq_start(serialize_key, max_parallel))
2689 address_item * next;
2691 debug_printf("skipping tpt %s because concurrency limit %u reached\n",
2692 tp->name, max_parallel);
2696 addr->message = US"concurrency limit reached for transport";
2697 addr->basic_errno = ERRNO_TRETRY;
2698 post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_TRANSPORT, 0);
2699 } while ((addr = next));
2702 *key = serialize_key;
2709 /*************************************************
2710 * Do local deliveries *
2711 *************************************************/
2713 /* This function processes the list of addresses in addr_local. True local
2714 deliveries are always done one address at a time. However, local deliveries can
2715 be batched up in some cases. Typically this is when writing batched SMTP output
2716 files for use by some external transport mechanism, or when running local
2717 deliveries over LMTP.
2724 do_local_deliveries(void)
2727 open_db *dbm_file = NULL;
2728 time_t now = time(NULL);
2730 /* Loop until we have exhausted the supply of local deliveries */
2734 struct timeval delivery_start;
2735 struct timeval deliver_time;
2736 address_item *addr2, *addr3, *nextaddr;
2737 int logflags = LOG_MAIN;
2738 int logchar = f.dont_deliver? '*' : '=';
2739 transport_instance *tp;
2740 uschar * serialize_key = NULL;
2742 /* Pick the first undelivered address off the chain */
2744 address_item *addr = addr_local;
2745 addr_local = addr->next;
2748 DEBUG(D_deliver|D_transport)
2749 debug_printf("--------> %s <--------\n", addr->address);
2751 /* An internal disaster if there is no transport. Should not occur! */
2753 if (!(tp = addr->transport))
2755 logflags |= LOG_PANIC;
2756 f.disable_logging = FALSE; /* Jic */
2757 addr->message = addr->router
2758 ? string_sprintf("No transport set by %s router", addr->router->name)
2759 : string_sprintf("No transport set by system filter");
2760 post_process_one(addr, DEFER, logflags, EXIM_DTYPE_TRANSPORT, 0);
2764 /* Check that this base address hasn't previously been delivered to this
2765 transport. The check is necessary at this point to handle homonymic addresses
2766 correctly in cases where the pattern of redirection changes between delivery
2767 attempts. Non-homonymic previous delivery is detected earlier, at routing
2770 if (previously_transported(addr, FALSE)) continue;
2772 /* There are weird cases where logging is disabled */
2774 f.disable_logging = tp->disable_logging;
2776 /* Check for batched addresses and possible amalgamation. Skip all the work
2777 if either batch_max <= 1 or there aren't any other addresses for local
2780 if (tp->batch_max > 1 && addr_local)
2782 int batch_count = 1;
2783 BOOL uses_dom = readconf_depends((driver_instance *)tp, US"domain");
2784 BOOL uses_lp = ( testflag(addr, af_pfr)
2785 && (testflag(addr, af_file) || addr->local_part[0] == '|')
2787 || readconf_depends((driver_instance *)tp, US"local_part");
2788 uschar *batch_id = NULL;
2789 address_item **anchor = &addr_local;
2790 address_item *last = addr;
2793 /* Expand the batch_id string for comparison with other addresses.
2794 Expansion failure suppresses batching. */
2798 deliver_set_expansions(addr);
2799 batch_id = expand_string(tp->batch_id);
2800 deliver_set_expansions(NULL);
2803 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand batch_id option "
2804 "in %s transport (%s): %s", tp->name, addr->address,
2805 expand_string_message);
2806 batch_count = tp->batch_max;
2810 /* Until we reach the batch_max limit, pick off addresses which have the
2811 same characteristics. These are:
2814 not previously delivered (see comment about 50 lines above)
2815 same local part if the transport's configuration contains $local_part
2816 or if this is a file or pipe delivery from a redirection
2817 same domain if the transport's configuration contains $domain
2819 same additional headers
2820 same headers to be removed
2821 same uid/gid for running the transport
2822 same first host if a host list is set
2825 while ((next = *anchor) && batch_count < tp->batch_max)
2828 tp == next->transport
2829 && !previously_transported(next, TRUE)
2830 && testflag(addr, af_pfr) == testflag(next, af_pfr)
2831 && testflag(addr, af_file) == testflag(next, af_file)
2832 && (!uses_lp || Ustrcmp(next->local_part, addr->local_part) == 0)
2833 && (!uses_dom || Ustrcmp(next->domain, addr->domain) == 0)
2834 && same_strings(next->prop.errors_address, addr->prop.errors_address)
2835 && same_headers(next->prop.extra_headers, addr->prop.extra_headers)
2836 && same_strings(next->prop.remove_headers, addr->prop.remove_headers)
2837 && same_ugid(tp, addr, next)
2838 && ( !addr->host_list && !next->host_list
2841 && Ustrcmp(addr->host_list->name, next->host_list->name) == 0
2844 /* If the transport has a batch_id setting, batch_id will be non-NULL
2845 from the expansion outside the loop. Expand for this address and compare.
2846 Expansion failure makes this address ineligible for batching. */
2851 address_item *save_nextnext = next->next;
2852 next->next = NULL; /* Expansion for a single address */
2853 deliver_set_expansions(next);
2854 next->next = save_nextnext;
2855 bid = expand_string(tp->batch_id);
2856 deliver_set_expansions(NULL);
2859 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand batch_id option "
2860 "in %s transport (%s): %s", tp->name, next->address,
2861 expand_string_message);
2864 else ok = (Ustrcmp(batch_id, bid) == 0);
2867 /* Take address into batch if OK. */
2871 *anchor = next->next; /* Include the address */
2877 else anchor = &next->next; /* Skip the address */
2881 /* We now have one or more addresses that can be delivered in a batch. Check
2882 whether the transport is prepared to accept a message of this size. If not,
2883 fail them all forthwith. If the expansion fails, or does not yield an
2884 integer, defer delivery. */
2886 if (tp->message_size_limit)
2888 int rc = check_message_size(tp, addr);
2891 replicate_status(addr);
2895 post_process_one(addr, rc, logflags, EXIM_DTYPE_TRANSPORT, 0);
2898 continue; /* With next batch of addresses */
2902 /* If we are not running the queue, or if forcing, all deliveries will be
2903 attempted. Otherwise, we must respect the retry times for each address. Even
2904 when not doing this, we need to set up the retry key string, and determine
2905 whether a retry record exists, because after a successful delivery, a delete
2906 retry item must be set up. Keep the retry database open only for the duration
2907 of these checks, rather than for all local deliveries, because some local
2908 deliveries (e.g. to pipes) can take a substantial time. */
2910 if (!(dbm_file = dbfn_open(US"retry", O_RDONLY, &dbblock, FALSE)))
2912 DEBUG(D_deliver|D_retry|D_hints_lookup)
2913 debug_printf("no retry data available\n");
2920 BOOL ok = TRUE; /* to deliver this address */
2923 /* Set up the retry key to include the domain or not, and change its
2924 leading character from "R" to "T". Must make a copy before doing this,
2925 because the old key may be pointed to from a "delete" retry item after
2928 retry_key = string_copy(
2929 tp->retry_use_local_part ? addr2->address_retry_key :
2930 addr2->domain_retry_key);
2933 /* Inspect the retry data. If there is no hints file, delivery happens. */
2937 dbdata_retry *retry_record = dbfn_read(dbm_file, retry_key);
2939 /* If there is no retry record, delivery happens. If there is,
2940 remember it exists so it can be deleted after a successful delivery. */
2944 setflag(addr2, af_lt_retry_exists);
2946 /* A retry record exists for this address. If queue running and not
2947 forcing, inspect its contents. If the record is too old, or if its
2948 retry time has come, or if it has passed its cutoff time, delivery
2953 debug_printf("retry record exists: age=%s ",
2954 readconf_printtime(now - retry_record->time_stamp));
2955 debug_printf("(max %s)\n", readconf_printtime(retry_data_expire));
2956 debug_printf(" time to retry = %s expired = %d\n",
2957 readconf_printtime(retry_record->next_try - now),
2958 retry_record->expired);
2961 if (f.queue_running && !f.deliver_force)
2963 ok = (now - retry_record->time_stamp > retry_data_expire)
2964 || (now >= retry_record->next_try)
2965 || retry_record->expired;
2967 /* If we haven't reached the retry time, there is one more check
2968 to do, which is for the ultimate address timeout. */
2971 ok = retry_ultimate_address_timeout(retry_key, addr2->domain,
2975 else DEBUG(D_retry) debug_printf("no retry record exists\n");
2978 /* This address is to be delivered. Leave it on the chain. */
2983 addr2 = addr2->next;
2986 /* This address is to be deferred. Take it out of the chain, and
2987 post-process it as complete. Must take it out of the chain first,
2988 because post processing puts it on another chain. */
2992 address_item *this = addr2;
2993 this->message = US"Retry time not yet reached";
2994 this->basic_errno = ERRNO_LRETRY;
2995 addr2 = addr3 ? (addr3->next = addr2->next)
2996 : (addr = addr2->next);
2997 post_process_one(this, DEFER, logflags, EXIM_DTYPE_TRANSPORT, 0);
3001 if (dbm_file) dbfn_close(dbm_file);
3003 /* If there are no addresses left on the chain, they all deferred. Loop
3004 for the next set of addresses. */
3006 if (!addr) continue;
3008 /* If the transport is limited for parallellism, enforce that here.
3009 We use a hints DB entry, incremented here and decremented after
3010 the transport (and any shadow transport) completes. */
3012 if (tpt_parallel_check(tp, addr, &serialize_key))
3014 if (expand_string_message)
3016 logflags |= LOG_PANIC;
3020 post_process_one(addr, DEFER, logflags, EXIM_DTYPE_TRANSPORT, 0);
3021 } while ((addr = addr2));
3023 continue; /* Loop for the next set of addresses. */
3027 /* So, finally, we do have some addresses that can be passed to the
3028 transport. Before doing so, set up variables that are relevant to a
3031 deliver_set_expansions(addr);
3033 gettimeofday(&delivery_start, NULL);
3034 deliver_local(addr, FALSE);
3035 timesince(&deliver_time, &delivery_start);
3037 /* If a shadow transport (which must perforce be another local transport), is
3038 defined, and its condition is met, we must pass the message to the shadow
3039 too, but only those addresses that succeeded. We do this by making a new
3040 chain of addresses - also to keep the original chain uncontaminated. We must
3041 use a chain rather than doing it one by one, because the shadow transport may
3044 NOTE: if the condition fails because of a lookup defer, there is nothing we
3048 && ( !tp->shadow_condition
3049 || expand_check_condition(tp->shadow_condition, tp->name, US"transport")
3052 transport_instance *stp;
3053 address_item *shadow_addr = NULL;
3054 address_item **last = &shadow_addr;
3056 for (stp = transports; stp; stp = stp->next)
3057 if (Ustrcmp(stp->name, tp->shadow) == 0) break;
3060 log_write(0, LOG_MAIN|LOG_PANIC, "shadow transport \"%s\" not found ",
3063 /* Pick off the addresses that have succeeded, and make clones. Put into
3064 the shadow_message field a pointer to the shadow_message field of the real
3067 else for (addr2 = addr; addr2; addr2 = addr2->next)
3068 if (addr2->transport_return == OK)
3070 addr3 = store_get(sizeof(address_item));
3073 addr3->shadow_message = US &addr2->shadow_message;
3074 addr3->transport = stp;
3075 addr3->transport_return = DEFER;
3076 addr3->return_filename = NULL;
3077 addr3->return_file = -1;
3079 last = &addr3->next;
3082 /* If we found any addresses to shadow, run the delivery, and stick any
3083 message back into the shadow_message field in the original. */
3087 int save_count = transport_count;
3089 DEBUG(D_deliver|D_transport)
3090 debug_printf(">>>>>>>>>>>>>>>> Shadow delivery >>>>>>>>>>>>>>>>\n");
3091 deliver_local(shadow_addr, TRUE);
3093 for(; shadow_addr; shadow_addr = shadow_addr->next)
3095 int sresult = shadow_addr->transport_return;
3096 *(uschar **)shadow_addr->shadow_message =
3098 ? string_sprintf(" ST=%s", stp->name)
3099 : string_sprintf(" ST=%s (%s%s%s)", stp->name,
3100 shadow_addr->basic_errno <= 0
3102 : US strerror(shadow_addr->basic_errno),
3103 shadow_addr->basic_errno <= 0 || !shadow_addr->message
3106 shadow_addr->message
3107 ? shadow_addr->message
3108 : shadow_addr->basic_errno <= 0
3112 DEBUG(D_deliver|D_transport)
3113 debug_printf("%s shadow transport returned %s for %s\n",
3115 sresult == OK ? "OK" :
3116 sresult == DEFER ? "DEFER" :
3117 sresult == FAIL ? "FAIL" :
3118 sresult == PANIC ? "PANIC" : "?",
3119 shadow_addr->address);
3122 DEBUG(D_deliver|D_transport)
3123 debug_printf(">>>>>>>>>>>>>>>> End shadow delivery >>>>>>>>>>>>>>>>\n");
3125 transport_count = save_count; /* Restore original transport count */
3129 /* Cancel the expansions that were set up for the delivery. */
3131 deliver_set_expansions(NULL);
3133 /* If the transport was parallelism-limited, decrement the hints DB record. */
3135 if (serialize_key) enq_end(serialize_key);
3137 /* Now we can process the results of the real transport. We must take each
3138 address off the chain first, because post_process_one() puts it on another
3141 for (addr2 = addr; addr2; addr2 = nextaddr)
3143 int result = addr2->transport_return;
3144 nextaddr = addr2->next;
3146 DEBUG(D_deliver|D_transport)
3147 debug_printf("%s transport returned %s for %s\n",
3149 result == OK ? "OK" :
3150 result == DEFER ? "DEFER" :
3151 result == FAIL ? "FAIL" :
3152 result == PANIC ? "PANIC" : "?",
3155 /* If there is a retry_record, or if delivery is deferred, build a retry
3156 item for setting a new retry time or deleting the old retry record from
3157 the database. These items are handled all together after all addresses
3158 have been handled (so the database is open just for a short time for
3161 if (result == DEFER || testflag(addr2, af_lt_retry_exists))
3163 int flags = result == DEFER ? 0 : rf_delete;
3164 uschar *retry_key = string_copy(tp->retry_use_local_part
3165 ? addr2->address_retry_key : addr2->domain_retry_key);
3167 retry_add_item(addr2, retry_key, flags);
3170 /* Done with this address */
3174 addr2->more_errno = deliver_time.tv_sec;
3175 addr2->delivery_usec = deliver_time.tv_usec;
3177 post_process_one(addr2, result, logflags, EXIM_DTYPE_TRANSPORT, logchar);
3179 /* If a pipe delivery generated text to be sent back, the result may be
3180 changed to FAIL, and we must copy this for subsequent addresses in the
3183 if (addr2->transport_return != result)
3185 for (addr3 = nextaddr; addr3; addr3 = addr3->next)
3187 addr3->transport_return = addr2->transport_return;
3188 addr3->basic_errno = addr2->basic_errno;
3189 addr3->message = addr2->message;
3191 result = addr2->transport_return;
3194 /* Whether or not the result was changed to FAIL, we need to copy the
3195 return_file value from the first address into all the addresses of the
3196 batch, so they are all listed in the error message. */
3198 addr2->return_file = addr->return_file;
3200 /* Change log character for recording successful deliveries. */
3202 if (result == OK) logchar = '-';
3204 } /* Loop back for next batch of addresses */
3210 /*************************************************
3211 * Sort remote deliveries *
3212 *************************************************/
3214 /* This function is called if remote_sort_domains is set. It arranges that the
3215 chain of addresses for remote deliveries is ordered according to the strings
3216 specified. Try to make this shuffling reasonably efficient by handling
3217 sequences of addresses rather than just single ones.
3224 sort_remote_deliveries(void)
3227 address_item **aptr = &addr_remote;
3228 const uschar *listptr = remote_sort_domains;
3233 && (pattern = string_nextinlist(&listptr, &sep, patbuf, sizeof(patbuf)))
3236 address_item *moved = NULL;
3237 address_item **bptr = &moved;
3241 address_item **next;
3242 deliver_domain = (*aptr)->domain; /* set $domain */
3243 if (match_isinlist(deliver_domain, (const uschar **)&pattern, UCHAR_MAX+1,
3244 &domainlist_anchor, NULL, MCL_DOMAIN, TRUE, NULL) == OK)
3246 aptr = &(*aptr)->next;
3250 next = &(*aptr)->next;
3252 && (deliver_domain = (*next)->domain, /* Set $domain */
3253 match_isinlist(deliver_domain, (const uschar **)&pattern, UCHAR_MAX+1,
3254 &domainlist_anchor, NULL, MCL_DOMAIN, TRUE, NULL)) != OK
3256 next = &(*next)->next;
3258 /* If the batch of non-matchers is at the end, add on any that were
3259 extracted further up the chain, and end this iteration. Otherwise,
3260 extract them from the chain and hang on the moved chain. */
3272 aptr = &(*aptr)->next;
3275 /* If the loop ended because the final address matched, *aptr will
3276 be NULL. Add on to the end any extracted non-matching addresses. If
3277 *aptr is not NULL, the loop ended via "break" when *next is null, that
3278 is, there was a string of non-matching addresses at the end. In this
3279 case the extracted addresses have already been added on the end. */
3281 if (!*aptr) *aptr = moved;
3287 debug_printf("remote addresses after sorting:\n");
3288 for (addr = addr_remote; addr; addr = addr->next)
3289 debug_printf(" %s\n", addr->address);
3295 /*************************************************
3296 * Read from pipe for remote delivery subprocess *
3297 *************************************************/
3299 /* This function is called when the subprocess is complete, but can also be
3300 called before it is complete, in order to empty a pipe that is full (to prevent
3301 deadlock). It must therefore keep track of its progress in the parlist data
3304 We read the pipe to get the delivery status codes and a possible error message
3305 for each address, optionally preceded by unusability data for the hosts and
3306 also by optional retry data.
3308 Read in large chunks into the big buffer and then scan through, interpreting
3309 the data therein. In most cases, only a single read will be necessary. No
3310 individual item will ever be anywhere near 2500 bytes in length, so by ensuring
3311 that we read the next chunk when there is less than 2500 bytes left in the
3312 non-final chunk, we can assume each item is complete in the buffer before
3313 handling it. Each item is written using a single write(), which is atomic for
3314 small items (less than PIPE_BUF, which seems to be at least 512 in any Unix and
3315 often bigger) so even if we are reading while the subprocess is still going, we
3316 should never have only a partial item in the buffer.
3318 hs12: This assumption is not true anymore, since we got quit large items (certificate
3319 information and such)
3322 poffset the offset of the parlist item
3323 eop TRUE if the process has completed
3325 Returns: TRUE if the terminating 'Z' item has been read,
3326 or there has been a disaster (i.e. no more data needed);
3331 par_read_pipe(int poffset, BOOL eop)
3334 pardata *p = parlist + poffset;
3335 address_item *addrlist = p->addrlist;
3336 address_item *addr = p->addr;
3340 uschar *msg = p->msg;
3341 BOOL done = p->done;
3343 /* Loop through all items, reading from the pipe when necessary. The pipe
3344 used to be non-blocking. But I do not see a reason for using non-blocking I/O
3345 here, as the preceding select() tells us, if data is available for reading.
3347 A read() on a "selected" handle should never block, but(!) it may return
3348 less data then we expected. (The buffer size we pass to read() shouldn't be
3349 understood as a "request", but as a "limit".)
3351 Each separate item is written to the pipe in a timely manner. But, especially for
3352 larger items, the read(2) may already return partial data from the write(2).
3354 The write is atomic mostly (depending on the amount written), but atomic does
3355 not imply "all or noting", it just is "not intermixed" with other writes on the
3356 same channel (pipe).
3360 DEBUG(D_deliver) debug_printf("reading pipe for subprocess %d (%s)\n",
3361 (int)p->pid, eop? "ended" : "not ended yet");
3365 retry_item *r, **rp;
3366 uschar pipeheader[PIPE_HEADER_SIZE+1];
3367 uschar *id = &pipeheader[0];
3368 uschar *subid = &pipeheader[1];
3369 uschar *ptr = big_buffer;
3370 size_t required = PIPE_HEADER_SIZE; /* first the pipehaeder, later the data */
3373 DEBUG(D_deliver) debug_printf(
3374 "expect %lu bytes (pipeheader) from tpt process %d\n", (u_long)required, pid);
3376 /* We require(!) all the PIPE_HEADER_SIZE bytes here, as we know,
3377 they're written in a timely manner, so waiting for the write shouldn't hurt a lot.
3378 If we get less, we can assume the subprocess do be done and do not expect any further
3379 information from it. */
3381 if ((got = readn(fd, pipeheader, required)) != required)
3383 msg = string_sprintf("got " SSIZE_T_FMT " of %d bytes (pipeheader) "
3384 "from transport process %d for transport %s",
3385 got, PIPE_HEADER_SIZE, pid, addr->transport->driver_name);
3390 pipeheader[PIPE_HEADER_SIZE] = '\0';
3392 debug_printf("got %ld bytes (pipeheader) from transport process %d\n",
3396 /* If we can't decode the pipeheader, the subprocess seems to have a
3397 problem, we do not expect any furher information from it. */
3399 required = Ustrtol(pipeheader+2, &endc, 10);
3402 msg = string_sprintf("failed to read pipe "
3403 "from transport process %d for transport %s: error decoding size from header",
3404 pid, addr->transport->driver_name);
3411 debug_printf("expect %lu bytes (pipedata) from transport process %d\n",
3412 (u_long)required, pid);
3414 /* Same as above, the transport process will write the bytes announced
3415 in a timely manner, so we can just wait for the bytes, getting less than expected
3416 is considered a problem of the subprocess, we do not expect anything else from it. */
3417 if ((got = readn(fd, big_buffer, required)) != required)
3419 msg = string_sprintf("got only " SSIZE_T_FMT " of " SIZE_T_FMT
3420 " bytes (pipedata) from transport process %d for transport %s",
3421 got, required, pid, addr->transport->driver_name);
3426 /* Handle each possible type of item, assuming the complete item is
3427 available in store. */
3431 /* Host items exist only if any hosts were marked unusable. Match
3432 up by checking the IP address. */
3435 for (h = addrlist->host_list; h; h = h->next)
3437 if (!h->address || Ustrcmp(h->address, ptr+2) != 0) continue;
3445 /* Retry items are sent in a preceding R item for each address. This is
3446 kept separate to keep each message short enough to guarantee it won't
3447 be split in the pipe. Hopefully, in the majority of cases, there won't in
3448 fact be any retry items at all.
3450 The complete set of retry items might include an item to delete a
3451 routing retry if there was a previous routing delay. However, routing
3452 retries are also used when a remote transport identifies an address error.
3453 In that case, there may also be an "add" item for the same key. Arrange
3454 that a "delete" item is dropped in favour of an "add" item. */
3457 if (!addr) goto ADDR_MISMATCH;
3459 DEBUG(D_deliver|D_retry)
3460 debug_printf("reading retry information for %s from subprocess\n",
3463 /* Cut out any "delete" items on the list. */
3465 for (rp = &addr->retries; (r = *rp); rp = &r->next)
3466 if (Ustrcmp(r->key, ptr+1) == 0) /* Found item with same key */
3468 if (!(r->flags & rf_delete)) break; /* It was not "delete" */
3469 *rp = r->next; /* Excise a delete item */
3470 DEBUG(D_deliver|D_retry)
3471 debug_printf(" existing delete item dropped\n");
3474 /* We want to add a delete item only if there is no non-delete item;
3475 however we still have to step ptr through the data. */
3477 if (!r || !(*ptr & rf_delete))
3479 r = store_get(sizeof(retry_item));
3480 r->next = addr->retries;
3483 r->key = string_copy(ptr);
3485 memcpy(&r->basic_errno, ptr, sizeof(r->basic_errno));
3486 ptr += sizeof(r->basic_errno);
3487 memcpy(&r->more_errno, ptr, sizeof(r->more_errno));
3488 ptr += sizeof(r->more_errno);
3489 r->message = *ptr ? string_copy(ptr) : NULL;
3490 DEBUG(D_deliver|D_retry) debug_printf(" added %s item\n",
3491 r->flags & rf_delete ? "delete" : "retry");
3496 DEBUG(D_deliver|D_retry)
3497 debug_printf(" delete item not added: non-delete item exists\n");
3500 ptr += sizeof(r->basic_errno) + sizeof(r->more_errno);
3506 /* Put the amount of data written into the parlist block */
3509 memcpy(&(p->transport_count), ptr, sizeof(transport_count));
3510 ptr += sizeof(transport_count);
3513 /* Address items are in the order of items on the address chain. We
3514 remember the current address value in case this function is called
3515 several times to empty the pipe in stages. Information about delivery
3516 over TLS is sent in a preceding X item for each address. We don't put
3517 it in with the other info, in order to keep each message short enough to
3518 guarantee it won't be split in the pipe. */
3522 if (!addr) goto ADDR_MISMATCH; /* Below, in 'A' handler */
3526 addr->cipher = NULL;
3527 addr->peerdn = NULL;
3530 addr->cipher = string_copy(ptr);
3533 addr->peerdn = string_copy(ptr);
3538 (void) tls_import_cert(ptr, &addr->peercert);
3540 addr->peercert = NULL;
3545 (void) tls_import_cert(ptr, &addr->ourcert);
3547 addr->ourcert = NULL;
3550 # ifndef DISABLE_OCSP
3552 addr->ocsp = *ptr ? *ptr - '0' : OCSP_NOT_REQ;
3558 #endif /*SUPPORT_TLS*/
3560 case 'C': /* client authenticator information */
3563 case '1': addr->authenticator = *ptr ? string_copy(ptr) : NULL; break;
3564 case '2': addr->auth_id = *ptr ? string_copy(ptr) : NULL; break;
3565 case '3': addr->auth_sndr = *ptr ? string_copy(ptr) : NULL; break;
3570 #ifndef DISABLE_PRDR
3572 setflag(addr, af_prdr_used);
3579 case 1: setflag(addr, af_pipelining); break;
3584 setflag(addr, af_chunking_used);
3588 setflag(addr, af_tcp_fastopen_conn);
3589 if (*subid > '0') setflag(addr, af_tcp_fastopen);
3593 if (!addr) goto ADDR_MISMATCH;
3594 memcpy(&(addr->dsn_aware), ptr, sizeof(addr->dsn_aware));
3595 ptr += sizeof(addr->dsn_aware);
3596 DEBUG(D_deliver) debug_printf("DSN read: addr->dsn_aware = %d\n", addr->dsn_aware);
3603 msg = string_sprintf("address count mismatch for data read from pipe "
3604 "for transport process %d for transport %s", pid,
3605 addrlist->transport->driver_name);
3612 #ifdef SUPPORT_SOCKS
3613 case '2': /* proxy information; must arrive before A0 and applies to that addr XXX oops*/
3614 proxy_session = TRUE; /*XXX should this be cleared somewhere? */
3619 proxy_local_address = string_copy(ptr);
3621 memcpy(&proxy_local_port, ptr, sizeof(proxy_local_port));
3622 ptr += sizeof(proxy_local_port);
3627 #ifdef EXPERIMENTAL_DSN_INFO
3628 case '1': /* must arrive before A0, and applies to that addr */
3629 /* Two strings: smtp_greeting and helo_response */
3630 addr->smtp_greeting = string_copy(ptr);
3632 addr->helo_response = string_copy(ptr);
3638 DEBUG(D_deliver) debug_printf("A0 %s tret %d\n", addr->address, *ptr);
3639 addr->transport_return = *ptr++;
3640 addr->special_action = *ptr++;
3641 memcpy(&addr->basic_errno, ptr, sizeof(addr->basic_errno));
3642 ptr += sizeof(addr->basic_errno);
3643 memcpy(&addr->more_errno, ptr, sizeof(addr->more_errno));
3644 ptr += sizeof(addr->more_errno);
3645 memcpy(&addr->delivery_usec, ptr, sizeof(addr->delivery_usec));
3646 ptr += sizeof(addr->delivery_usec);
3647 memcpy(&addr->flags, ptr, sizeof(addr->flags));
3648 ptr += sizeof(addr->flags);
3649 addr->message = *ptr ? string_copy(ptr) : NULL;
3651 addr->user_message = *ptr ? string_copy(ptr) : NULL;
3654 /* Always two strings for host information, followed by the port number and DNSSEC mark */
3658 h = store_get(sizeof(host_item));
3659 h->name = string_copy(ptr);
3661 h->address = string_copy(ptr);
3663 memcpy(&h->port, ptr, sizeof(h->port));
3664 ptr += sizeof(h->port);
3665 h->dnssec = *ptr == '2' ? DS_YES
3666 : *ptr == '1' ? DS_NO
3669 addr->host_used = h;
3673 /* Finished with this address */
3680 /* Local interface address/port */
3682 if (*ptr) sending_ip_address = string_copy(ptr);
3684 if (*ptr) sending_port = atoi(CS ptr);
3688 /* Z marks the logical end of the data. It is followed by '0' if
3689 continue_transport was NULL at the end of transporting, otherwise '1'.
3690 We need to know when it becomes NULL during a delivery down a passed SMTP
3691 channel so that we don't try to pass anything more down it. Of course, for
3692 most normal messages it will remain NULL all the time. */
3697 continue_transport = NULL;
3698 continue_hostname = NULL;
3701 DEBUG(D_deliver) debug_printf("Z0%c item read\n", *ptr);
3704 /* Anything else is a disaster. */
3707 msg = string_sprintf("malformed data (%d) read from pipe for transport "
3708 "process %d for transport %s", ptr[-1], pid,
3709 addr->transport->driver_name);
3715 /* The done flag is inspected externally, to determine whether or not to
3716 call the function again when the process finishes. */
3720 /* If the process hadn't finished, and we haven't seen the end of the data
3721 or if we suffered a disaster, update the rest of the state, and return FALSE to
3722 indicate "not finished". */
3731 /* Close our end of the pipe, to prevent deadlock if the far end is still
3732 pushing stuff into it. */
3737 /* If we have finished without error, but haven't had data for every address,
3738 something is wrong. */
3741 msg = string_sprintf("insufficient address data read from pipe "
3742 "for transport process %d for transport %s", pid,
3743 addr->transport->driver_name);
3745 /* If an error message is set, something has gone wrong in getting back
3746 the delivery data. Put the message into each address and freeze it. */
3749 for (addr = addrlist; addr; addr = addr->next)
3751 addr->transport_return = DEFER;
3752 addr->special_action = SPECIAL_FREEZE;
3753 addr->message = msg;
3754 log_write(0, LOG_MAIN|LOG_PANIC, "Delivery status for %s: %s\n", addr->address, addr->message);
3757 /* Return TRUE to indicate we have got all we need from this process, even
3758 if it hasn't actually finished yet. */
3765 /*************************************************
3766 * Post-process a set of remote addresses *
3767 *************************************************/
3769 /* Do what has to be done immediately after a remote delivery for each set of
3770 addresses, then re-write the spool if necessary. Note that post_process_one
3771 puts the address on an appropriate queue; hence we must fish off the next
3772 one first. This function is also called if there is a problem with setting
3773 up a subprocess to do a remote delivery in parallel. In this case, the final
3774 argument contains a message, and the action must be forced to DEFER.
3777 addr pointer to chain of address items
3778 logflags flags for logging
3779 msg NULL for normal cases; -> error message for unexpected problems
3780 fallback TRUE if processing fallback hosts
3786 remote_post_process(address_item *addr, int logflags, uschar *msg,
3791 /* If any host addresses were found to be unusable, add them to the unusable
3792 tree so that subsequent deliveries don't try them. */
3794 for (h = addr->host_list; h; h = h->next)
3796 if (h->status >= hstatus_unusable) tree_add_unusable(h);
3798 /* Now handle each address on the chain. The transport has placed '=' or '-'
3799 into the special_action field for each successful delivery. */
3803 address_item *next = addr->next;
3805 /* If msg == NULL (normal processing) and the result is DEFER and we are
3806 processing the main hosts and there are fallback hosts available, put the
3807 address on the list for fallback delivery. */
3809 if ( addr->transport_return == DEFER
3810 && addr->fallback_hosts
3815 addr->host_list = addr->fallback_hosts;
3816 addr->next = addr_fallback;
3817 addr_fallback = addr;
3818 DEBUG(D_deliver) debug_printf("%s queued for fallback host(s)\n", addr->address);
3821 /* If msg is set (=> unexpected problem), set it in the address before
3822 doing the ordinary post processing. */
3828 addr->message = msg;
3829 addr->transport_return = DEFER;
3831 (void)post_process_one(addr, addr->transport_return, logflags,
3832 EXIM_DTYPE_TRANSPORT, addr->special_action);
3840 /* If we have just delivered down a passed SMTP channel, and that was
3841 the last address, the channel will have been closed down. Now that
3842 we have logged that delivery, set continue_sequence to 1 so that
3843 any subsequent deliveries don't get "*" incorrectly logged. */
3845 if (!continue_transport) continue_sequence = 1;
3850 /*************************************************
3851 * Wait for one remote delivery subprocess *
3852 *************************************************/
3854 /* This function is called while doing remote deliveries when either the
3855 maximum number of processes exist and we need one to complete so that another
3856 can be created, or when waiting for the last ones to complete. It must wait for
3857 the completion of one subprocess, empty the control block slot, and return a
3858 pointer to the address chain.
3861 Returns: pointer to the chain of addresses handled by the process;
3862 NULL if no subprocess found - this is an unexpected error
3865 static address_item *
3868 int poffset, status;
3869 address_item *addr, *addrlist;
3872 set_process_info("delivering %s: waiting for a remote delivery subprocess "
3873 "to finish", message_id);
3875 /* Loop until either a subprocess completes, or there are no subprocesses in
3876 existence - in which case give an error return. We cannot proceed just by
3877 waiting for a completion, because a subprocess may have filled up its pipe, and
3878 be waiting for it to be emptied. Therefore, if no processes have finished, we
3879 wait for one of the pipes to acquire some data by calling select(), with a
3880 timeout just in case.
3882 The simple approach is just to iterate after reading data from a ready pipe.
3883 This leads to non-ideal behaviour when the subprocess has written its final Z
3884 item, closed the pipe, and is in the process of exiting (the common case). A
3885 call to waitpid() yields nothing completed, but select() shows the pipe ready -
3886 reading it yields EOF, so you end up with busy-waiting until the subprocess has
3889 To avoid this, if all the data that is needed has been read from a subprocess
3890 after select(), an explicit wait() for it is done. We know that all it is doing
3891 is writing to the pipe and then exiting, so the wait should not be long.
3893 The non-blocking waitpid() is to some extent just insurance; if we could
3894 reliably detect end-of-file on the pipe, we could always know when to do a
3895 blocking wait() for a completed process. However, because some systems use
3896 NDELAY, which doesn't distinguish between EOF and pipe empty, it is easier to
3897 use code that functions without the need to recognize EOF.
3899 There's a double loop here just in case we end up with a process that is not in
3900 the list of remote delivery processes. Something has obviously gone wrong if
3901 this is the case. (For example, a process that is incorrectly left over from
3902 routing or local deliveries might be found.) The damage can be minimized by
3903 looping back and looking for another process. If there aren't any, the error
3904 return will happen. */
3906 for (;;) /* Normally we do not repeat this loop */
3908 while ((pid = waitpid(-1, &status, WNOHANG)) <= 0)
3911 fd_set select_pipes;
3912 int maxpipe, readycount;
3914 /* A return value of -1 can mean several things. If errno != ECHILD, it
3915 either means invalid options (which we discount), or that this process was
3916 interrupted by a signal. Just loop to try the waitpid() again.
3918 If errno == ECHILD, waitpid() is telling us that there are no subprocesses
3919 in existence. This should never happen, and is an unexpected error.
3920 However, there is a nasty complication when running under Linux. If "strace
3921 -f" is being used under Linux to trace this process and its children,
3922 subprocesses are "stolen" from their parents and become the children of the
3923 tracing process. A general wait such as the one we've just obeyed returns
3924 as if there are no children while subprocesses are running. Once a
3925 subprocess completes, it is restored to the parent, and waitpid(-1) finds
3926 it. Thanks to Joachim Wieland for finding all this out and suggesting a
3929 This does not happen using "truss" on Solaris, nor (I think) with other
3930 tracing facilities on other OS. It seems to be specific to Linux.
3932 What we do to get round this is to use kill() to see if any of our
3933 subprocesses are still in existence. If kill() gives an OK return, we know
3934 it must be for one of our processes - it can't be for a re-use of the pid,
3935 because if our process had finished, waitpid() would have found it. If any
3936 of our subprocesses are in existence, we proceed to use select() as if
3937 waitpid() had returned zero. I think this is safe. */
3941 if (errno != ECHILD) continue; /* Repeats the waitpid() */
3944 debug_printf("waitpid() returned -1/ECHILD: checking explicitly "
3945 "for process existence\n");
3947 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3949 if ((pid = parlist[poffset].pid) != 0 && kill(pid, 0) == 0)
3951 DEBUG(D_deliver) debug_printf("process %d still exists: assume "
3952 "stolen by strace\n", (int)pid);
3953 break; /* With poffset set */
3957 if (poffset >= remote_max_parallel)
3959 DEBUG(D_deliver) debug_printf("*** no delivery children found\n");
3960 return NULL; /* This is the error return */
3964 /* A pid value greater than 0 breaks the "while" loop. A negative value has
3965 been handled above. A return value of zero means that there is at least one
3966 subprocess, but there are no completed subprocesses. See if any pipes are
3967 ready with any data for reading. */
3969 DEBUG(D_deliver) debug_printf("selecting on subprocess pipes\n");
3972 FD_ZERO(&select_pipes);
3973 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3974 if (parlist[poffset].pid != 0)
3976 int fd = parlist[poffset].fd;
3977 FD_SET(fd, &select_pipes);
3978 if (fd > maxpipe) maxpipe = fd;
3981 /* Stick in a 60-second timeout, just in case. */
3986 readycount = select(maxpipe + 1, (SELECT_ARG2_TYPE *)&select_pipes,
3989 /* Scan through the pipes and read any that are ready; use the count
3990 returned by select() to stop when there are no more. Select() can return
3991 with no processes (e.g. if interrupted). This shouldn't matter.
3993 If par_read_pipe() returns TRUE, it means that either the terminating Z was
3994 read, or there was a disaster. In either case, we are finished with this
3995 process. Do an explicit wait() for the process and break the main loop if
3998 It turns out that we have to deal with the case of an interrupted system
3999 call, which can happen on some operating systems if the signal handling is
4000 set up to do that by default. */
4003 readycount > 0 && poffset < remote_max_parallel;
4006 if ( (pid = parlist[poffset].pid) != 0
4007 && FD_ISSET(parlist[poffset].fd, &select_pipes)
4011 if (par_read_pipe(poffset, FALSE)) /* Finished with this pipe */
4012 for (;;) /* Loop for signals */
4014 pid_t endedpid = waitpid(pid, &status, 0);
4015 if (endedpid == pid) goto PROCESS_DONE;
4016 if (endedpid != (pid_t)(-1) || errno != EINTR)
4017 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Unexpected error return "
4018 "%d (errno = %d) from waitpid() for process %d",
4019 (int)endedpid, errno, (int)pid);
4024 /* Now go back and look for a completed subprocess again. */
4027 /* A completed process was detected by the non-blocking waitpid(). Find the
4028 data block that corresponds to this subprocess. */
4030 for (poffset = 0; poffset < remote_max_parallel; poffset++)
4031 if (pid == parlist[poffset].pid) break;
4033 /* Found the data block; this is a known remote delivery process. We don't
4034 need to repeat the outer loop. This should be what normally happens. */
4036 if (poffset < remote_max_parallel) break;
4038 /* This situation is an error, but it's probably better to carry on looking
4039 for another process than to give up (as we used to do). */
4041 log_write(0, LOG_MAIN|LOG_PANIC, "Process %d finished: not found in remote "
4042 "transport process list", pid);
4043 } /* End of the "for" loop */
4045 /* Come here when all the data was completely read after a select(), and
4046 the process in pid has been wait()ed for. */
4053 debug_printf("remote delivery process %d ended\n", (int)pid);
4055 debug_printf("remote delivery process %d ended: status=%04x\n", (int)pid,
4059 set_process_info("delivering %s", message_id);
4061 /* Get the chain of processed addresses */
4063 addrlist = parlist[poffset].addrlist;
4065 /* If the process did not finish cleanly, record an error and freeze (except
4066 for SIGTERM, SIGKILL and SIGQUIT), and also ensure the journal is not removed,
4067 in case the delivery did actually happen. */
4069 if ((status & 0xffff) != 0)
4072 int msb = (status >> 8) & 255;
4073 int lsb = status & 255;
4074 int code = (msb == 0)? (lsb & 0x7f) : msb;
4076 msg = string_sprintf("%s transport process returned non-zero status 0x%04x: "
4078 addrlist->transport->driver_name,
4080 (msb == 0)? "terminated by signal" : "exit code",
4083 if (msb != 0 || (code != SIGTERM && code != SIGKILL && code != SIGQUIT))
4084 addrlist->special_action = SPECIAL_FREEZE;
4086 for (addr = addrlist; addr; addr = addr->next)
4088 addr->transport_return = DEFER;
4089 addr->message = msg;
4092 remove_journal = FALSE;
4095 /* Else complete reading the pipe to get the result of the delivery, if all
4096 the data has not yet been obtained. */
4098 else if (!parlist[poffset].done) (void)par_read_pipe(poffset, TRUE);
4100 /* Put the data count and return path into globals, mark the data slot unused,
4101 decrement the count of subprocesses, and return the address chain. */
4103 transport_count = parlist[poffset].transport_count;
4104 used_return_path = parlist[poffset].return_path;
4105 parlist[poffset].pid = 0;
4112 /*************************************************
4113 * Wait for subprocesses and post-process *
4114 *************************************************/
4116 /* This function waits for subprocesses until the number that are still running
4117 is below a given threshold. For each complete subprocess, the addresses are
4118 post-processed. If we can't find a running process, there is some shambles.
4119 Better not bomb out, as that might lead to multiple copies of the message. Just
4120 log and proceed as if all done.
4123 max maximum number of subprocesses to leave running
4124 fallback TRUE if processing fallback hosts
4130 par_reduce(int max, BOOL fallback)
4132 while (parcount > max)
4134 address_item *doneaddr = par_wait();
4137 log_write(0, LOG_MAIN|LOG_PANIC,
4138 "remote delivery process count got out of step");
4143 transport_instance * tp = doneaddr->transport;
4144 if (tp->max_parallel)
4145 enq_end(string_sprintf("tpt-serialize-%s", tp->name));
4147 remote_post_process(doneaddr, LOG_MAIN, NULL, fallback);
4153 rmt_dlv_checked_write(int fd, char id, char subid, void * buf, ssize_t size)
4155 uschar pipe_header[PIPE_HEADER_SIZE+1];
4156 size_t total_len = PIPE_HEADER_SIZE + size;
4158 struct iovec iov[2] = {
4159 { pipe_header, PIPE_HEADER_SIZE }, /* indication about the data to expect */
4160 { buf, size } /* *the* data */
4165 /* we assume that size can't get larger then BIG_BUFFER_SIZE which currently is set to 16k */
4166 /* complain to log if someone tries with buffer sizes we can't handle*/
4168 if (size > BIG_BUFFER_SIZE-1)
4170 log_write(0, LOG_MAIN|LOG_PANIC_DIE,
4171 "Failed writing transport result to pipe: can't handle buffers > %d bytes. truncating!\n",
4173 size = BIG_BUFFER_SIZE;
4176 /* Should we check that we do not write more than PIPE_BUF? What would
4179 /* convert size to human readable string prepended by id and subid */
4180 if (PIPE_HEADER_SIZE != snprintf(CS pipe_header, PIPE_HEADER_SIZE+1, "%c%c%05ld",
4181 id, subid, (long)size))
4182 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "header snprintf failed\n");
4184 DEBUG(D_deliver) debug_printf("header write id:%c,subid:%c,size:%ld,final:%s\n",
4185 id, subid, (long)size, pipe_header);
4187 if ((ret = writev(fd, iov, 2)) != total_len)
4188 log_write(0, LOG_MAIN|LOG_PANIC_DIE,
4189 "Failed writing transport result to pipe (%ld of %ld bytes): %s",
4190 (long)ret, (long)total_len, ret == -1 ? strerror(errno) : "short write");
4193 /*************************************************
4194 * Do remote deliveries *
4195 *************************************************/
4197 /* This function is called to process the addresses in addr_remote. We must
4198 pick off the queue all addresses that have the same transport, remote
4199 destination, and errors address, and hand them to the transport in one go,
4200 subject to some configured limitations. If this is a run to continue delivering
4201 to an existing delivery channel, skip all but those addresses that can go to
4202 that channel. The skipped addresses just get deferred.
4204 If mua_wrapper is set, all addresses must be able to be sent in a single
4205 transaction. If not, this function yields FALSE.
4207 In Exim 4, remote deliveries are always done in separate processes, even
4208 if remote_max_parallel = 1 or if there's only one delivery to do. The reason
4209 is so that the base process can retain privilege. This makes the
4210 implementation of fallback transports feasible (though not initially done.)
4212 We create up to the configured number of subprocesses, each of which passes
4213 back the delivery state via a pipe. (However, when sending down an existing
4214 connection, remote_max_parallel is forced to 1.)
4217 fallback TRUE if processing fallback hosts
4219 Returns: TRUE normally
4220 FALSE if mua_wrapper is set and the addresses cannot all be sent
4225 do_remote_deliveries(BOOL fallback)
4231 parcount = 0; /* Number of executing subprocesses */
4233 /* When sending down an existing channel, only do one delivery at a time.
4234 We use a local variable (parmax) to hold the maximum number of processes;
4235 this gets reduced from remote_max_parallel if we can't create enough pipes. */
4237 if (continue_transport) remote_max_parallel = 1;
4238 parmax = remote_max_parallel;
4240 /* If the data for keeping a list of processes hasn't yet been
4245 parlist = store_get(remote_max_parallel * sizeof(pardata));
4246 for (poffset = 0; poffset < remote_max_parallel; poffset++)
4247 parlist[poffset].pid = 0;
4250 /* Now loop for each remote delivery */
4252 for (delivery_count = 0; addr_remote; delivery_count++)
4258 int address_count = 1;
4259 int address_count_max;
4261 BOOL use_initgroups;
4262 BOOL pipe_done = FALSE;
4263 transport_instance *tp;
4264 address_item **anchor = &addr_remote;
4265 address_item *addr = addr_remote;
4266 address_item *last = addr;
4269 uschar * serialize_key = NULL;
4271 /* Pull the first address right off the list. */
4273 addr_remote = addr->next;
4276 DEBUG(D_deliver|D_transport)
4277 debug_printf("--------> %s <--------\n", addr->address);
4279 /* If no transport has been set, there has been a big screw-up somewhere. */
4281 if (!(tp = addr->transport))
4283 f.disable_logging = FALSE; /* Jic */
4284 panicmsg = US"No transport set by router";
4285 goto panic_continue;
4288 /* Check that this base address hasn't previously been delivered to this
4289 transport. The check is necessary at this point to handle homonymic addresses
4290 correctly in cases where the pattern of redirection changes between delivery
4291 attempts. Non-homonymic previous delivery is detected earlier, at routing
4294 if (previously_transported(addr, FALSE)) continue;
4296 /* Force failure if the message is too big. */
4298 if (tp->message_size_limit)
4300 int rc = check_message_size(tp, addr);
4303 addr->transport_return = rc;
4304 remote_post_process(addr, LOG_MAIN, NULL, fallback);
4309 /* Get the flag which specifies whether the transport can handle different
4310 domains that nevertheless resolve to the same set of hosts. If it needs
4311 expanding, get variables set: $address_data, $domain_data, $localpart_data,
4312 $host, $host_address, $host_port. */
4313 if (tp->expand_multi_domain)
4314 deliver_set_expansions(addr);
4316 if (exp_bool(addr, US"transport", tp->name, D_transport,
4317 US"multi_domain", tp->multi_domain, tp->expand_multi_domain,
4318 &multi_domain) != OK)
4320 deliver_set_expansions(NULL);
4321 panicmsg = addr->message;
4322 goto panic_continue;
4325 /* Get the maximum it can handle in one envelope, with zero meaning
4326 unlimited, which is forced for the MUA wrapper case. */
4328 address_count_max = tp->max_addresses;
4329 if (address_count_max == 0 || mua_wrapper) address_count_max = 999999;
4332 /************************************************************************/
4333 /***** This is slightly experimental code, but should be safe. *****/
4335 /* The address_count_max value is the maximum number of addresses that the
4336 transport can send in one envelope. However, the transport must be capable of
4337 dealing with any number of addresses. If the number it gets exceeds its
4338 envelope limitation, it must send multiple copies of the message. This can be
4339 done over a single connection for SMTP, so uses less resources than making
4340 multiple connections. On the other hand, if remote_max_parallel is greater
4341 than one, it is perhaps a good idea to use parallel processing to move the
4342 message faster, even if that results in multiple simultaneous connections to
4345 How can we come to some compromise between these two ideals? What we do is to
4346 limit the number of addresses passed to a single instance of a transport to
4347 the greater of (a) its address limit (rcpt_max for SMTP) and (b) the total
4348 number of addresses routed to remote transports divided by
4349 remote_max_parallel. For example, if the message has 100 remote recipients,
4350 remote max parallel is 2, and rcpt_max is 10, we'd never send more than 50 at
4351 once. But if rcpt_max is 100, we could send up to 100.
4353 Of course, not all the remotely addresses in a message are going to go to the
4354 same set of hosts (except in smarthost configurations), so this is just a
4355 heuristic way of dividing up the work.
4357 Furthermore (1), because this may not be wanted in some cases, and also to
4358 cope with really pathological cases, there is also a limit to the number of
4359 messages that are sent over one connection. This is the same limit that is
4360 used when sending several different messages over the same connection.
4361 Continue_sequence is set when in this situation, to the number sent so
4362 far, including this message.
4364 Furthermore (2), when somebody explicitly sets the maximum value to 1, it
4365 is probably because they are using VERP, in which case they want to pass only
4366 one address at a time to the transport, in order to be able to use
4367 $local_part and $domain in constructing a new return path. We could test for
4368 the use of these variables, but as it is so likely they will be used when the
4369 maximum is 1, we don't bother. Just leave the value alone. */
4371 if ( address_count_max != 1
4372 && address_count_max < remote_delivery_count/remote_max_parallel
4375 int new_max = remote_delivery_count/remote_max_parallel;
4376 int message_max = tp->connection_max_messages;
4377 if (connection_max_messages >= 0) message_max = connection_max_messages;
4378 message_max -= continue_sequence - 1;
4379 if (message_max > 0 && new_max > address_count_max * message_max)
4380 new_max = address_count_max * message_max;
4381 address_count_max = new_max;
4384 /************************************************************************/
4387 /* Pick off all addresses which have the same transport, errors address,
4388 destination, and extra headers. In some cases they point to the same host
4389 list, but we also need to check for identical host lists generated from
4390 entirely different domains. The host list pointers can be NULL in the case
4391 where the hosts are defined in the transport. There is also a configured
4392 maximum limit of addresses that can be handled at once (see comments above
4393 for how it is computed).
4394 If the transport does not handle multiple domains, enforce that also,
4395 and if it might need a per-address check for this, re-evaluate it.
4398 while ((next = *anchor) && address_count < address_count_max)
4401 if ( (multi_domain || Ustrcmp(next->domain, addr->domain) == 0)
4402 && tp == next->transport
4403 && same_hosts(next->host_list, addr->host_list)
4404 && same_strings(next->prop.errors_address, addr->prop.errors_address)
4405 && same_headers(next->prop.extra_headers, addr->prop.extra_headers)
4406 && same_ugid(tp, next, addr)
4407 && ( next->prop.remove_headers == addr->prop.remove_headers
4408 || ( next->prop.remove_headers
4409 && addr->prop.remove_headers
4410 && Ustrcmp(next->prop.remove_headers, addr->prop.remove_headers) == 0
4414 (void)(!tp->expand_multi_domain || ((void)deliver_set_expansions(next), 1)),
4416 US"transport", next->transport->name, D_transport,
4417 US"multi_domain", next->transport->multi_domain,
4418 next->transport->expand_multi_domain, &md) == OK
4423 *anchor = next->next;
4425 next->first = addr; /* remember top one (for retry processing) */
4430 else anchor = &(next->next);
4431 deliver_set_expansions(NULL);
4434 /* If we are acting as an MUA wrapper, all addresses must go in a single
4435 transaction. If not, put them back on the chain and yield FALSE. */
4437 if (mua_wrapper && addr_remote)
4439 last->next = addr_remote;
4444 /* If the transport is limited for parallellism, enforce that here.
4445 The hints DB entry is decremented in par_reduce(), when we reap the
4446 transport process. */
4448 if (tpt_parallel_check(tp, addr, &serialize_key))
4449 if ((panicmsg = expand_string_message))
4450 goto panic_continue;
4452 continue; /* Loop for the next set of addresses. */
4454 /* Set up the expansion variables for this set of addresses */
4456 deliver_set_expansions(addr);
4458 /* Ensure any transport-set auth info is fresh */
4459 addr->authenticator = addr->auth_id = addr->auth_sndr = NULL;
4461 /* Compute the return path, expanding a new one if required. The old one
4462 must be set first, as it might be referred to in the expansion. */
4464 if(addr->prop.errors_address)
4465 return_path = addr->prop.errors_address;
4466 #ifdef EXPERIMENTAL_SRS
4467 else if(addr->prop.srs_sender)
4468 return_path = addr->prop.srs_sender;
4471 return_path = sender_address;
4473 if (tp->return_path)
4475 uschar *new_return_path = expand_string(tp->return_path);
4476 if (new_return_path)
4477 return_path = new_return_path;
4478 else if (!f.expand_string_forcedfail)
4480 panicmsg = string_sprintf("Failed to expand return path \"%s\": %s",
4481 tp->return_path, expand_string_message);
4486 /* Find the uid, gid, and use_initgroups setting for this transport. Failure
4487 logs and sets up error messages, so we just post-process and continue with
4488 the next address. */
4490 if (!findugid(addr, tp, &uid, &gid, &use_initgroups))
4496 /* If this transport has a setup function, call it now so that it gets
4497 run in this process and not in any subprocess. That way, the results of
4498 any setup that are retained by the transport can be reusable. One of the
4499 things the setup does is to set the fallback host lists in the addresses.
4500 That is why it is called at this point, before the continue delivery
4501 processing, because that might use the fallback hosts. */
4504 (void)((tp->setup)(addr->transport, addr, NULL, uid, gid, NULL));
4506 /* If we have a connection still open from a verify stage (lazy-close)
4507 treat it as if it is a continued connection (apart from the counter used
4508 for the log line mark). */
4510 if (cutthrough.cctx.sock >= 0 && cutthrough.callout_hold_only)
4513 debug_printf("lazy-callout-close: have conn still open from verification\n");
4514 continue_transport = cutthrough.transport;
4515 continue_hostname = string_copy(cutthrough.host.name);
4516 continue_host_address = string_copy(cutthrough.host.address);
4517 continue_sequence = 1;
4518 sending_ip_address = cutthrough.snd_ip;
4519 sending_port = cutthrough.snd_port;
4520 smtp_peer_options = cutthrough.peer_options;
4523 /* If this is a run to continue delivery down an already-established
4524 channel, check that this set of addresses matches the transport and
4525 the channel. If it does not, defer the addresses. If a host list exists,
4526 we must check that the continue host is on the list. Otherwise, the
4527 host is set in the transport. */
4529 f.continue_more = FALSE; /* In case got set for the last lot */
4530 if (continue_transport)
4532 BOOL ok = Ustrcmp(continue_transport, tp->name) == 0;
4534 /* If the transport is about to override the host list do not check
4535 it here but take the cost of running the transport process to discover
4536 if the continued_hostname connection is suitable. This is a layering
4537 violation which is unfortunate as it requires we haul in the smtp
4542 smtp_transport_options_block * ob;
4544 if ( !( Ustrcmp(tp->info->driver_name, "smtp") == 0
4545 && (ob = (smtp_transport_options_block *)tp->options_block)
4546 && ob->hosts_override && ob->hosts
4553 for (h = addr->host_list; h; h = h->next)
4554 if (Ustrcmp(h->name, continue_hostname) == 0)
4555 /*XXX should also check port here */
4556 { ok = TRUE; break; }
4560 /* Addresses not suitable; defer or queue for fallback hosts (which
4561 might be the continue host) and skip to next address. */
4565 DEBUG(D_deliver) debug_printf("not suitable for continue_transport (%s)\n",
4566 Ustrcmp(continue_transport, tp->name) != 0
4567 ? string_sprintf("tpt %s vs %s", continue_transport, tp->name)
4568 : string_sprintf("no host matching %s", continue_hostname));
4569 if (serialize_key) enq_end(serialize_key);
4571 if (addr->fallback_hosts && !fallback)
4573 for (next = addr; ; next = next->next)
4575 next->host_list = next->fallback_hosts;
4576 DEBUG(D_deliver) debug_printf("%s queued for fallback host(s)\n", next->address);
4577 if (!next->next) break;
4579 next->next = addr_fallback;
4580 addr_fallback = addr;
4585 for (next = addr; ; next = next->next)
4587 DEBUG(D_deliver) debug_printf(" %s to def list\n", next->address);
4588 if (!next->next) break;
4590 next->next = addr_defer;
4597 /* Set a flag indicating whether there are further addresses that list
4598 the continued host. This tells the transport to leave the channel open,
4599 but not to pass it to another delivery process. We'd like to do that
4600 for non-continue_transport cases too but the knowlege of which host is
4601 connected to is too hard to manage. Perhaps we need a finer-grain
4602 interface to the transport. */
4604 for (next = addr_remote; next && !f.continue_more; next = next->next)
4607 for (h = next->host_list; h; h = h->next)
4608 if (Ustrcmp(h->name, continue_hostname) == 0)
4609 { f.continue_more = TRUE; break; }
4613 /* The transports set up the process info themselves as they may connect
4614 to more than one remote machine. They also have to set up the filter
4615 arguments, if required, so that the host name and address are available
4618 transport_filter_argv = NULL;
4620 /* Create the pipe for inter-process communication. If pipe creation
4621 fails, it is probably because the value of remote_max_parallel is so
4622 large that too many file descriptors for pipes have been created. Arrange
4623 to wait for a process to finish, and then try again. If we still can't
4624 create a pipe when all processes have finished, break the retry loop. */
4628 if (pipe(pfd) == 0) pipe_done = TRUE;
4629 else if (parcount > 0) parmax = parcount;
4632 /* We need to make the reading end of the pipe non-blocking. There are
4633 two different options for this. Exim is cunningly (I hope!) coded so
4634 that it can use either of them, though it prefers O_NONBLOCK, which
4635 distinguishes between EOF and no-more-data. */
4637 /* The data appears in a timely manner and we already did a select on
4638 all pipes, so I do not see a reason to use non-blocking IO here
4641 (void)fcntl(pfd[pipe_read], F_SETFL, O_NONBLOCK);
4643 (void)fcntl(pfd[pipe_read], F_SETFL, O_NDELAY);
4647 /* If the maximum number of subprocesses already exist, wait for a process
4648 to finish. If we ran out of file descriptors, parmax will have been reduced
4649 from its initial value of remote_max_parallel. */
4651 par_reduce(parmax - 1, fallback);
4654 /* If we failed to create a pipe and there were no processes to wait
4655 for, we have to give up on this one. Do this outside the above loop
4656 so that we can continue the main loop. */
4660 panicmsg = string_sprintf("unable to create pipe: %s", strerror(errno));
4664 /* Find a free slot in the pardata list. Must do this after the possible
4665 waiting for processes to finish, because a terminating process will free
4668 for (poffset = 0; poffset < remote_max_parallel; poffset++)
4669 if (parlist[poffset].pid == 0)
4672 /* If there isn't one, there has been a horrible disaster. */
4674 if (poffset >= remote_max_parallel)
4676 (void)close(pfd[pipe_write]);
4677 (void)close(pfd[pipe_read]);
4678 panicmsg = US"Unexpectedly no free subprocess slot";
4682 /* Now fork a subprocess to do the remote delivery, but before doing so,
4683 ensure that any cached resources are released so as not to interfere with
4684 what happens in the subprocess. */
4689 if ((pid = fork()) == 0)
4691 int fd = pfd[pipe_write];
4693 DEBUG(D_deliver) debug_selector |= D_pid; // hs12
4695 /* Setting this global in the subprocess means we need never clear it */
4696 transport_name = tp->name;
4698 /* There are weird circumstances in which logging is disabled */
4699 f.disable_logging = tp->disable_logging;
4701 /* Show pids on debug output if parallelism possible */
4703 if (parmax > 1 && (parcount > 0 || addr_remote))
4705 DEBUG(D_any|D_v) debug_selector |= D_pid;
4706 DEBUG(D_deliver) debug_printf("Remote delivery process started\n");
4709 /* Reset the random number generator, so different processes don't all
4710 have the same sequence. In the test harness we want different, but
4711 predictable settings for each delivery process, so do something explicit
4712 here rather they rely on the fixed reset in the random number function. */
4714 random_seed = f.running_in_test_harness ? 42 + 2*delivery_count : 0;
4716 /* Set close-on-exec on the pipe so that it doesn't get passed on to
4717 a new process that may be forked to do another delivery down the same
4720 (void)fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
4722 /* Close open file descriptors for the pipes of other processes
4723 that are running in parallel. */
4725 for (poffset = 0; poffset < remote_max_parallel; poffset++)
4726 if (parlist[poffset].pid != 0) (void)close(parlist[poffset].fd);
4728 /* This process has inherited a copy of the file descriptor
4729 for the data file, but its file pointer is shared with all the
4730 other processes running in parallel. Therefore, we have to re-open
4731 the file in order to get a new file descriptor with its own
4732 file pointer. We don't need to lock it, as the lock is held by
4733 the parent process. There doesn't seem to be any way of doing
4734 a dup-with-new-file-pointer. */
4736 (void)close(deliver_datafile);
4738 uschar * fname = spool_fname(US"input", message_subdir, message_id, US"-D");
4740 if ((deliver_datafile = Uopen(fname,
4744 O_RDWR | O_APPEND, 0)) < 0)
4745 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Failed to reopen %s for remote "
4746 "parallel delivery: %s", fname, strerror(errno));
4749 /* Set the close-on-exec flag */
4751 (void)fcntl(deliver_datafile, F_SETFD, fcntl(deliver_datafile, F_GETFD) |
4755 /* Set the uid/gid of this process; bombs out on failure. */
4757 exim_setugid(uid, gid, use_initgroups,
4758 string_sprintf("remote delivery to %s with transport=%s",
4759 addr->address, tp->name));
4761 /* Close the unwanted half of this process' pipe, set the process state,
4762 and run the transport. Afterwards, transport_count will contain the number
4763 of bytes written. */
4765 (void)close(pfd[pipe_read]);
4766 set_process_info("delivering %s using %s", message_id, tp->name);
4767 debug_print_string(tp->debug_string);
4768 if (!(tp->info->code)(addr->transport, addr)) replicate_status(addr);
4770 set_process_info("delivering %s (just run %s for %s%s in subprocess)",
4771 message_id, tp->name, addr->address, addr->next ? ", ..." : "");
4773 /* Ensure any cached resources that we used are now released */
4777 /* Pass the result back down the pipe. This is a lot more information
4778 than is needed for a local delivery. We have to send back the error
4779 status for each address, the usability status for each host that is
4780 flagged as unusable, and all the retry items. When TLS is in use, we
4781 send also the cipher and peerdn information. Each type of information
4782 is flagged by an identifying byte, and is then in a fixed format (with
4783 strings terminated by zeros), and there is a final terminator at the
4784 end. The host information and retry information is all attached to
4785 the first address, so that gets sent at the start. */
4787 /* Host unusability information: for most success cases this will
4790 for (h = addr->host_list; h; h = h->next)
4792 if (!h->address || h->status < hstatus_unusable) continue;
4793 sprintf(CS big_buffer, "%c%c%s", h->status, h->why, h->address);
4794 rmt_dlv_checked_write(fd, 'H', '0', big_buffer, Ustrlen(big_buffer+2) + 3);
4797 /* The number of bytes written. This is the same for each address. Even
4798 if we sent several copies of the message down the same connection, the
4799 size of each one is the same, and it's that value we have got because
4800 transport_count gets reset before calling transport_write_message(). */
4802 memcpy(big_buffer, &transport_count, sizeof(transport_count));
4803 rmt_dlv_checked_write(fd, 'S', '0', big_buffer, sizeof(transport_count));
4805 /* Information about what happened to each address. Four item types are
4806 used: an optional 'X' item first, for TLS information, then an optional "C"
4807 item for any client-auth info followed by 'R' items for any retry settings,
4808 and finally an 'A' item for the remaining data. */
4810 for(; addr; addr = addr->next)
4815 /* The certificate verification status goes into the flags */
4816 if (tls_out.certificate_verified) setflag(addr, af_cert_verified);
4818 if (tls_out.dane_verified) setflag(addr, af_dane_verified);
4821 /* Use an X item only if there's something to send */
4825 ptr = big_buffer + sprintf(CS big_buffer, "%.128s", addr->cipher) + 1;
4829 ptr += sprintf(CS ptr, "%.512s", addr->peerdn) + 1;
4831 rmt_dlv_checked_write(fd, 'X', '1', big_buffer, ptr - big_buffer);
4833 else if (continue_proxy_cipher)
4835 ptr = big_buffer + sprintf(CS big_buffer, "%.128s", continue_proxy_cipher) + 1;
4837 rmt_dlv_checked_write(fd, 'X', '1', big_buffer, ptr - big_buffer);
4843 if (!tls_export_cert(ptr, big_buffer_size-2, addr->peercert))
4847 rmt_dlv_checked_write(fd, 'X', '2', big_buffer, ptr - big_buffer);
4852 if (!tls_export_cert(ptr, big_buffer_size-2, addr->ourcert))
4856 rmt_dlv_checked_write(fd, 'X', '3', big_buffer, ptr - big_buffer);
4858 # ifndef DISABLE_OCSP
4859 if (addr->ocsp > OCSP_NOT_REQ)
4861 ptr = big_buffer + sprintf(CS big_buffer, "%c", addr->ocsp + '0') + 1;
4862 rmt_dlv_checked_write(fd, 'X', '4', big_buffer, ptr - big_buffer);
4865 #endif /*SUPPORT_TLS*/
4867 if (client_authenticator)
4869 ptr = big_buffer + sprintf(CS big_buffer, "%.64s", client_authenticator) + 1;
4870 rmt_dlv_checked_write(fd, 'C', '1', big_buffer, ptr - big_buffer);
4872 if (client_authenticated_id)
4874 ptr = big_buffer + sprintf(CS big_buffer, "%.64s", client_authenticated_id) + 1;
4875 rmt_dlv_checked_write(fd, 'C', '2', big_buffer, ptr - big_buffer);
4877 if (client_authenticated_sender)
4879 ptr = big_buffer + sprintf(CS big_buffer, "%.64s", client_authenticated_sender) + 1;
4880 rmt_dlv_checked_write(fd, 'C', '3', big_buffer, ptr - big_buffer);
4883 #ifndef DISABLE_PRDR
4884 if (testflag(addr, af_prdr_used))
4885 rmt_dlv_checked_write(fd, 'P', '0', NULL, 0);
4888 if (testflag(addr, af_pipelining))
4889 rmt_dlv_checked_write(fd, 'L', '1', NULL, 0);
4891 if (testflag(addr, af_chunking_used))
4892 rmt_dlv_checked_write(fd, 'K', '0', NULL, 0);
4894 if (testflag(addr, af_tcp_fastopen_conn))
4895 rmt_dlv_checked_write(fd, 'T',
4896 testflag(addr, af_tcp_fastopen) ? '1' : '0', NULL, 0);
4898 memcpy(big_buffer, &addr->dsn_aware, sizeof(addr->dsn_aware));
4899 rmt_dlv_checked_write(fd, 'D', '0', big_buffer, sizeof(addr->dsn_aware));
4901 /* Retry information: for most success cases this will be null. */
4903 for (r = addr->retries; r; r = r->next)
4905 sprintf(CS big_buffer, "%c%.500s", r->flags, r->key);
4906 ptr = big_buffer + Ustrlen(big_buffer+2) + 3;
4907 memcpy(ptr, &r->basic_errno, sizeof(r->basic_errno));
4908 ptr += sizeof(r->basic_errno);
4909 memcpy(ptr, &r->more_errno, sizeof(r->more_errno));
4910 ptr += sizeof(r->more_errno);
4911 if (!r->message) *ptr++ = 0; else
4913 sprintf(CS ptr, "%.512s", r->message);
4916 rmt_dlv_checked_write(fd, 'R', '0', big_buffer, ptr - big_buffer);
4919 #ifdef SUPPORT_SOCKS
4920 if (LOGGING(proxy) && proxy_session)
4923 if (proxy_local_address)
4925 DEBUG(D_deliver) debug_printf("proxy_local_address '%s'\n", proxy_local_address);
4926 ptr = big_buffer + sprintf(CS ptr, "%.128s", proxy_local_address) + 1;
4927 DEBUG(D_deliver) debug_printf("proxy_local_port %d\n", proxy_local_port);
4928 memcpy(ptr, &proxy_local_port, sizeof(proxy_local_port));
4929 ptr += sizeof(proxy_local_port);
4933 rmt_dlv_checked_write(fd, 'A', '2', big_buffer, ptr - big_buffer);
4937 #ifdef EXPERIMENTAL_DSN_INFO
4938 /*um, are they really per-addr? Other per-conn stuff is not (auth, tls). But host_used is! */
4939 if (addr->smtp_greeting)
4941 DEBUG(D_deliver) debug_printf("smtp_greeting '%s'\n", addr->smtp_greeting);
4942 ptr = big_buffer + sprintf(CS big_buffer, "%.128s", addr->smtp_greeting) + 1;
4943 if (addr->helo_response)
4945 DEBUG(D_deliver) debug_printf("helo_response '%s'\n", addr->helo_response);
4946 ptr += sprintf(CS ptr, "%.128s", addr->helo_response) + 1;
4950 rmt_dlv_checked_write(fd, 'A', '1', big_buffer, ptr - big_buffer);
4954 /* The rest of the information goes in an 'A0' item. */
4956 sprintf(CS big_buffer, "%c%c", addr->transport_return, addr->special_action);
4957 ptr = big_buffer + 2;
4958 memcpy(ptr, &addr->basic_errno, sizeof(addr->basic_errno));
4959 ptr += sizeof(addr->basic_errno);
4960 memcpy(ptr, &addr->more_errno, sizeof(addr->more_errno));
4961 ptr += sizeof(addr->more_errno);
4962 memcpy(ptr, &addr->delivery_usec, sizeof(addr->delivery_usec));
4963 ptr += sizeof(addr->delivery_usec);
4964 memcpy(ptr, &addr->flags, sizeof(addr->flags));
4965 ptr += sizeof(addr->flags);
4967 if (!addr->message) *ptr++ = 0; else
4968 ptr += sprintf(CS ptr, "%.1024s", addr->message) + 1;
4970 if (!addr->user_message) *ptr++ = 0; else
4971 ptr += sprintf(CS ptr, "%.1024s", addr->user_message) + 1;
4973 if (!addr->host_used) *ptr++ = 0; else
4975 ptr += sprintf(CS ptr, "%.256s", addr->host_used->name) + 1;
4976 ptr += sprintf(CS ptr, "%.64s", addr->host_used->address) + 1;
4977 memcpy(ptr, &addr->host_used->port, sizeof(addr->host_used->port));
4978 ptr += sizeof(addr->host_used->port);
4980 /* DNS lookup status */
4981 *ptr++ = addr->host_used->dnssec==DS_YES ? '2'
4982 : addr->host_used->dnssec==DS_NO ? '1' : '0';
4985 rmt_dlv_checked_write(fd, 'A', '0', big_buffer, ptr - big_buffer);
4988 /* Local interface address/port */
4989 #ifdef EXPERIMENTAL_DSN_INFO
4990 if (sending_ip_address)
4992 if (LOGGING(incoming_interface) && sending_ip_address)
4996 ptr = big_buffer + sprintf(CS big_buffer, "%.128s", sending_ip_address) + 1;
4997 ptr += sprintf(CS ptr, "%d", sending_port) + 1;
4998 rmt_dlv_checked_write(fd, 'I', '0', big_buffer, ptr - big_buffer);
5001 /* Add termination flag, close the pipe, and that's it. The character
5002 after 'Z' indicates whether continue_transport is now NULL or not.
5003 A change from non-NULL to NULL indicates a problem with a continuing
5006 big_buffer[0] = continue_transport ? '1' : '0';
5007 rmt_dlv_checked_write(fd, 'Z', '0', big_buffer, 1);
5012 /* Back in the mainline: close the unwanted half of the pipe. */
5014 (void)close(pfd[pipe_write]);
5016 /* If we have a connection still open from a verify stage (lazy-close)
5017 release its TLS library context (if any) as responsibility was passed to
5018 the delivery child process. */
5020 if (cutthrough.cctx.sock >= 0 && cutthrough.callout_hold_only)
5023 if (cutthrough.is_tls)
5024 tls_close(cutthrough.cctx.tls_ctx, TLS_NO_SHUTDOWN);
5026 (void) close(cutthrough.cctx.sock);
5027 release_cutthrough_connection(US"passed to transport proc");
5030 /* Fork failed; defer with error message */
5034 (void)close(pfd[pipe_read]);
5035 panicmsg = string_sprintf("fork failed for remote delivery to %s: %s",
5036 addr->domain, strerror(errno));
5040 /* Fork succeeded; increment the count, and remember relevant data for
5041 when the process finishes. */
5044 parlist[poffset].addrlist = parlist[poffset].addr = addr;
5045 parlist[poffset].pid = pid;
5046 parlist[poffset].fd = pfd[pipe_read];
5047 parlist[poffset].done = FALSE;
5048 parlist[poffset].msg = NULL;
5049 parlist[poffset].return_path = return_path;
5051 /* If the process we've just started is sending a message down an existing
5052 channel, wait for it now. This ensures that only one such process runs at
5053 once, whatever the value of remote_max parallel. Otherwise, we might try to
5054 send two or more messages simultaneously down the same channel. This could
5055 happen if there are different domains that include the same host in otherwise
5056 different host lists.
5058 Also, if the transport closes down the channel, this information gets back
5059 (continue_transport gets set to NULL) before we consider any other addresses
5062 if (continue_transport) par_reduce(0, fallback);
5064 /* Otherwise, if we are running in the test harness, wait a bit, to let the
5065 newly created process get going before we create another process. This should
5066 ensure repeatability in the tests. We only need to wait a tad. */
5068 else if (f.running_in_test_harness) millisleep(500);
5073 if (serialize_key) enq_end(serialize_key);
5075 remote_post_process(addr, LOG_MAIN|LOG_PANIC, panicmsg, fallback);
5079 /* Reached the end of the list of addresses. Wait for all the subprocesses that
5080 are still running and post-process their addresses. */
5082 par_reduce(0, fallback);
5089 /*************************************************
5090 * Split an address into local part and domain *
5091 *************************************************/
5093 /* This function initializes an address for routing by splitting it up into a
5094 local part and a domain. The local part is set up twice - once in its original
5095 casing, and once in lower case, and it is dequoted. We also do the "percent
5096 hack" for configured domains. This may lead to a DEFER result if a lookup
5097 defers. When a percent-hacking takes place, we insert a copy of the original
5098 address as a new parent of this address, as if we have had a redirection.
5101 addr points to an addr_item block containing the address
5104 DEFER - could not determine if domain is %-hackable
5108 deliver_split_address(address_item * addr)
5110 uschar * address = addr->address;
5115 if (!(domain = Ustrrchr(address, '@')))
5116 return DEFER; /* should always have a domain, but just in case... */
5118 len = domain - address;
5119 addr->domain = string_copylc(domain+1); /* Domains are always caseless */
5121 /* The implication in the RFCs (though I can't say I've seen it spelled out
5122 explicitly) is that quoting should be removed from local parts at the point
5123 where they are locally interpreted. [The new draft "821" is more explicit on
5124 this, Jan 1999.] We know the syntax is valid, so this can be done by simply
5125 removing quoting backslashes and any unquoted doublequotes. */
5127 t = addr->cc_local_part = store_get(len+1);
5131 if (c == '\"') continue;
5141 /* We do the percent hack only for those domains that are listed in
5142 percent_hack_domains. A loop is required, to copy with multiple %-hacks. */
5144 if (percent_hack_domains)
5147 uschar *new_address = NULL;
5148 uschar *local_part = addr->cc_local_part;
5150 deliver_domain = addr->domain; /* set $domain */
5152 while ( (rc = match_isinlist(deliver_domain, (const uschar **)&percent_hack_domains, 0,
5153 &domainlist_anchor, addr->domain_cache, MCL_DOMAIN, TRUE, NULL))
5155 && (t = Ustrrchr(local_part, '%')) != NULL
5158 new_address = string_copy(local_part);
5159 new_address[t - local_part] = '@';
5160 deliver_domain = string_copylc(t+1);
5161 local_part = string_copyn(local_part, t - local_part);
5164 if (rc == DEFER) return DEFER; /* lookup deferred */
5166 /* If hackery happened, set up new parent and alter the current address. */
5170 address_item *new_parent = store_get(sizeof(address_item));
5171 *new_parent = *addr;
5172 addr->parent = new_parent;
5173 new_parent->child_count = 1;
5174 addr->address = new_address;
5175 addr->unique = string_copy(new_address);
5176 addr->domain = deliver_domain;
5177 addr->cc_local_part = local_part;
5178 DEBUG(D_deliver) debug_printf("%%-hack changed address to: %s\n",
5183 /* Create the lowercased version of the final local part, and make that the
5184 default one to be used. */
5186 addr->local_part = addr->lc_local_part = string_copylc(addr->cc_local_part);
5193 /*************************************************
5194 * Get next error message text *
5195 *************************************************/
5197 /* If f is not NULL, read the next "paragraph", from a customized error message
5198 text file, terminated by a line containing ****, and expand it.
5201 f NULL or a file to read from
5202 which string indicating which string (for errors)
5204 Returns: NULL or an expanded string
5208 next_emf(FILE *f, uschar *which)
5214 if (!f) return NULL;
5216 if (!Ufgets(buffer, sizeof(buffer), f) || Ustrcmp(buffer, "****\n") == 0)
5219 para = string_get(256);
5222 para = string_cat(para, buffer);
5223 if (!Ufgets(buffer, sizeof(buffer), f) || Ustrcmp(buffer, "****\n") == 0)
5226 if ((yield = expand_string(string_from_gstring(para))))
5229 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand string from "
5230 "bounce_message_file or warn_message_file (%s): %s", which,
5231 expand_string_message);
5238 /*************************************************
5239 * Close down a passed transport channel *
5240 *************************************************/
5242 /* This function is called when a passed transport channel cannot be used.
5243 It attempts to close it down tidily. The yield is always DELIVER_NOT_ATTEMPTED
5244 so that the function call can be the argument of a "return" statement.
5247 Returns: DELIVER_NOT_ATTEMPTED
5251 continue_closedown(void)
5253 if (continue_transport)
5255 transport_instance *t;
5256 for (t = transports; t; t = t->next)
5257 if (Ustrcmp(t->name, continue_transport) == 0)
5259 if (t->info->closedown) (t->info->closedown)(t);
5263 return DELIVER_NOT_ATTEMPTED;
5269 /*************************************************
5270 * Print address information *
5271 *************************************************/
5273 /* This function is called to output an address, or information about an
5274 address, for bounce or defer messages. If the hide_child flag is set, all we
5275 output is the original ancestor address.
5278 addr points to the address
5279 f the FILE to print to
5280 si an initial string
5281 sc a continuation string for before "generated"
5284 Returns: TRUE if the address is not hidden
5288 print_address_information(address_item *addr, FILE *f, uschar *si, uschar *sc,
5292 uschar *printed = US"";
5293 address_item *ancestor = addr;
5294 while (ancestor->parent) ancestor = ancestor->parent;
5296 fprintf(f, "%s", CS si);
5298 if (addr->parent && testflag(addr, af_hide_child))
5300 printed = US"an undisclosed address";
5303 else if (!testflag(addr, af_pfr) || !addr->parent)
5304 printed = addr->address;
5308 uschar *s = addr->address;
5311 if (addr->address[0] == '>') { ss = US"mail"; s++; }
5312 else if (addr->address[0] == '|') ss = US"pipe";
5315 fprintf(f, "%s to %s%sgenerated by ", ss, s, sc);
5316 printed = addr->parent->address;
5319 fprintf(f, "%s", CS string_printing(printed));
5321 if (ancestor != addr)
5323 uschar *original = ancestor->onetime_parent;
5324 if (!original) original= ancestor->address;
5325 if (strcmpic(original, printed) != 0)
5326 fprintf(f, "%s(%sgenerated from %s)", sc,
5327 ancestor != addr->parent ? "ultimately " : "",
5328 string_printing(original));
5331 if (addr->host_used)
5332 fprintf(f, "\n host %s [%s]",
5333 addr->host_used->name, addr->host_used->address);
5335 fprintf(f, "%s", CS se);
5343 /*************************************************
5344 * Print error for an address *
5345 *************************************************/
5347 /* This function is called to print the error information out of an address for
5348 a bounce or a warning message. It tries to format the message reasonably by
5349 introducing newlines. All lines are indented by 4; the initial printing
5350 position must be set before calling.
5352 This function used always to print the error. Nowadays we want to restrict it
5353 to cases such as LMTP/SMTP errors from a remote host, and errors from :fail:
5354 and filter "fail". We no longer pass other information willy-nilly in bounce
5355 and warning messages. Text in user_message is always output; text in message
5356 only if the af_pass_message flag is set.
5360 f the FILE to print on
5367 print_address_error(address_item *addr, FILE *f, uschar *t)
5369 int count = Ustrlen(t);
5370 uschar *s = testflag(addr, af_pass_message)? addr->message : NULL;
5372 if (!s && !(s = addr->user_message))
5375 fprintf(f, "\n %s", t);
5378 if (*s == '\\' && s[1] == 'n')
5388 if (*s++ == ':' && isspace(*s) && count > 45)
5390 fprintf(f, "\n "); /* sic (because space follows) */
5397 /***********************************************************
5398 * Print Diagnostic-Code for an address *
5399 ************************************************************/
5401 /* This function is called to print the error information out of an address for
5402 a bounce or a warning message. It tries to format the message reasonably as
5403 required by RFC 3461 by adding a space after each newline
5405 it uses the same logic as print_address_error() above. if af_pass_message is true
5406 and addr->message is set it uses the remote host answer. if not addr->user_message
5407 is used instead if available.
5411 f the FILE to print on
5417 print_dsn_diagnostic_code(const address_item *addr, FILE *f)
5419 uschar *s = testflag(addr, af_pass_message) ? addr->message : NULL;
5421 /* af_pass_message and addr->message set ? print remote host answer */
5425 debug_printf("DSN Diagnostic-Code: addr->message = %s\n", addr->message);
5427 /* search first ": ". we assume to find the remote-MTA answer there */
5428 if (!(s = Ustrstr(addr->message, ": ")))
5429 return; /* not found, bail out */
5430 s += 2; /* skip ": " */
5431 fprintf(f, "Diagnostic-Code: smtp; ");
5433 /* no message available. do nothing */
5437 if (*s == '\\' && s[1] == 'n')
5439 fputs("\n ", f); /* as defined in RFC 3461 */
5449 /*************************************************
5450 * Check list of addresses for duplication *
5451 *************************************************/
5453 /* This function was introduced when the test for duplicate addresses that are
5454 not pipes, files, or autoreplies was moved from the middle of routing to when
5455 routing was complete. That was to fix obscure cases when the routing history
5456 affects the subsequent routing of identical addresses. This function is called
5457 after routing, to check that the final routed addresses are not duplicates.
5459 If we detect a duplicate, we remember what it is a duplicate of. Note that
5460 pipe, file, and autoreply de-duplication is handled during routing, so we must
5461 leave such "addresses" alone here, as otherwise they will incorrectly be
5464 Argument: address of list anchor
5469 do_duplicate_check(address_item **anchor)
5472 while ((addr = *anchor))
5475 if (testflag(addr, af_pfr))
5477 anchor = &(addr->next);
5479 else if ((tnode = tree_search(tree_duplicates, addr->unique)))
5481 DEBUG(D_deliver|D_route)
5482 debug_printf("%s is a duplicate address: discarded\n", addr->unique);
5483 *anchor = addr->next;
5484 addr->dupof = tnode->data.ptr;
5485 addr->next = addr_duplicate;
5486 addr_duplicate = addr;
5490 tree_add_duplicate(addr->unique, addr);
5491 anchor = &(addr->next);
5499 /*************************************************
5500 * Deliver one message *
5501 *************************************************/
5503 /* This is the function which is called when a message is to be delivered. It
5504 is passed the id of the message. It is possible that the message no longer
5505 exists, if some other process has delivered it, and it is also possible that
5506 the message is being worked on by another process, in which case the data file
5509 If no delivery is attempted for any of the above reasons, the function returns
5510 DELIVER_NOT_ATTEMPTED.
5512 If the give_up flag is set true, do not attempt any deliveries, but instead
5513 fail all outstanding addresses and return the message to the sender (or
5516 A delivery operation has a process all to itself; we never deliver more than
5517 one message in the same process. Therefore we needn't worry too much about
5520 Liable to be called as root.
5523 id the id of the message to be delivered
5524 forced TRUE if delivery was forced by an administrator; this overrides
5525 retry delays and causes a delivery to be tried regardless
5526 give_up TRUE if an administrator has requested that delivery attempts
5529 Returns: When the global variable mua_wrapper is FALSE:
5530 DELIVER_ATTEMPTED_NORMAL if a delivery attempt was made
5531 DELIVER_NOT_ATTEMPTED otherwise (see comment above)
5532 When the global variable mua_wrapper is TRUE:
5533 DELIVER_MUA_SUCCEEDED if delivery succeeded
5534 DELIVER_MUA_FAILED if delivery failed
5535 DELIVER_NOT_ATTEMPTED if not attempted (should not occur)
5539 deliver_message(uschar *id, BOOL forced, BOOL give_up)
5542 int final_yield = DELIVER_ATTEMPTED_NORMAL;
5543 time_t now = time(NULL);
5544 address_item *addr_last = NULL;
5545 uschar *filter_message = NULL;
5546 int process_recipients = RECIP_ACCEPT;
5549 extern int acl_where;
5551 uschar *info = queue_run_pid == (pid_t)0
5552 ? string_sprintf("delivering %s", id)
5553 : string_sprintf("delivering %s (queue run pid %d)", id, queue_run_pid);
5555 /* If the D_process_info bit is on, set_process_info() will output debugging
5556 information. If not, we want to show this initial information if D_deliver or
5557 D_queue_run is set or in verbose mode. */
5559 set_process_info("%s", info);
5561 if ( !(debug_selector & D_process_info)
5562 && (debug_selector & (D_deliver|D_queue_run|D_v))
5564 debug_printf("%s\n", info);
5566 /* Ensure that we catch any subprocesses that are created. Although Exim
5567 sets SIG_DFL as its initial default, some routes through the code end up
5568 here with it set to SIG_IGN - cases where a non-synchronous delivery process
5569 has been forked, but no re-exec has been done. We use sigaction rather than
5570 plain signal() on those OS where SA_NOCLDWAIT exists, because we want to be
5571 sure it is turned off. (There was a problem on AIX with this.) */
5575 struct sigaction act;
5576 act.sa_handler = SIG_DFL;
5577 sigemptyset(&(act.sa_mask));
5579 sigaction(SIGCHLD, &act, NULL);
5582 signal(SIGCHLD, SIG_DFL);
5585 /* Make the forcing flag available for routers and transports, set up the
5586 global message id field, and initialize the count for returned files and the
5587 message size. This use of strcpy() is OK because the length id is checked when
5588 it is obtained from a command line (the -M or -q options), and otherwise it is
5589 known to be a valid message id. */
5591 Ustrcpy(message_id, id);
5592 f.deliver_force = forced;
5596 /* Initialize some flags */
5598 update_spool = FALSE;
5599 remove_journal = TRUE;
5601 /* Set a known context for any ACLs we call via expansions */
5602 acl_where = ACL_WHERE_DELIVERY;
5604 /* Reset the random number generator, so that if several delivery processes are
5605 started from a queue runner that has already used random numbers (for sorting),
5606 they don't all get the same sequence. */
5610 /* Open and lock the message's data file. Exim locks on this one because the
5611 header file may get replaced as it is re-written during the delivery process.
5612 Any failures cause messages to be written to the log, except for missing files
5613 while queue running - another process probably completed delivery. As part of
5614 opening the data file, message_subdir gets set. */
5616 if ((deliver_datafile = spool_open_datafile(id)) < 0)
5617 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5619 /* The value of message_size at this point has been set to the data length,
5620 plus one for the blank line that notionally precedes the data. */
5622 /* Now read the contents of the header file, which will set up the headers in
5623 store, and also the list of recipients and the tree of non-recipients and
5624 assorted flags. It updates message_size. If there is a reading or format error,
5625 give up; if the message has been around for sufficiently long, remove it. */
5628 uschar * spoolname = string_sprintf("%s-H", id);
5629 if ((rc = spool_read_header(spoolname, TRUE, TRUE)) != spool_read_OK)
5631 if (errno == ERRNO_SPOOLFORMAT)
5633 struct stat statbuf;
5634 if (Ustat(spool_fname(US"input", message_subdir, spoolname, US""),
5636 log_write(0, LOG_MAIN, "Format error in spool file %s: "
5637 "size=" OFF_T_FMT, spoolname, statbuf.st_size);
5639 log_write(0, LOG_MAIN, "Format error in spool file %s", spoolname);
5642 log_write(0, LOG_MAIN, "Error reading spool file %s: %s", spoolname,
5645 /* If we managed to read the envelope data, received_time contains the
5646 time the message was received. Otherwise, we can calculate it from the
5649 if (rc != spool_read_hdrerror)
5651 received_time.tv_sec = received_time.tv_usec = 0;
5652 /*XXX subsec precision?*/
5653 for (i = 0; i < 6; i++)
5654 received_time.tv_sec = received_time.tv_sec * BASE_62 + tab62[id[i] - '0'];
5657 /* If we've had this malformed message too long, sling it. */
5659 if (now - received_time.tv_sec > keep_malformed)
5661 Uunlink(spool_fname(US"msglog", message_subdir, id, US""));
5662 Uunlink(spool_fname(US"input", message_subdir, id, US"-D"));
5663 Uunlink(spool_fname(US"input", message_subdir, id, US"-H"));
5664 Uunlink(spool_fname(US"input", message_subdir, id, US"-J"));
5665 log_write(0, LOG_MAIN, "Message removed because older than %s",
5666 readconf_printtime(keep_malformed));
5669 (void)close(deliver_datafile);
5670 deliver_datafile = -1;
5671 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5675 /* The spool header file has been read. Look to see if there is an existing
5676 journal file for this message. If there is, it means that a previous delivery
5677 attempt crashed (program or host) before it could update the spool header file.
5678 Read the list of delivered addresses from the journal and add them to the
5679 nonrecipients tree. Then update the spool file. We can leave the journal in
5680 existence, as it will get further successful deliveries added to it in this
5681 run, and it will be deleted if this function gets to its end successfully.
5682 Otherwise it might be needed again. */
5685 uschar * fname = spool_fname(US"input", message_subdir, id, US"-J");
5688 if ( (journal_fd = Uopen(fname, O_RDWR|O_APPEND
5696 && lseek(journal_fd, 0, SEEK_SET) == 0
5697 && (jread = fdopen(journal_fd, "rb"))
5700 while (Ufgets(big_buffer, big_buffer_size, jread))
5702 int n = Ustrlen(big_buffer);
5703 big_buffer[n-1] = 0;
5704 tree_add_nonrecipient(big_buffer);
5705 DEBUG(D_deliver) debug_printf("Previously delivered address %s taken from "
5706 "journal file\n", big_buffer);
5709 if ((journal_fd = dup(fileno(jread))) < 0)
5710 journal_fd = fileno(jread);
5712 (void) fclose(jread); /* Try to not leak the FILE resource */
5714 /* Panic-dies on error */
5715 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
5717 else if (errno != ENOENT)
5719 log_write(0, LOG_MAIN|LOG_PANIC, "attempt to open journal for reading gave: "
5720 "%s", strerror(errno));
5721 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5724 /* A null recipients list indicates some kind of disaster. */
5726 if (!recipients_list)
5728 (void)close(deliver_datafile);
5729 deliver_datafile = -1;
5730 log_write(0, LOG_MAIN, "Spool error: no recipients for %s", fname);
5731 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5736 /* Handle a message that is frozen. There are a number of different things that
5737 can happen, but in the default situation, unless forced, no delivery is
5740 if (f.deliver_freeze)
5742 #ifdef SUPPORT_MOVE_FROZEN_MESSAGES
5743 /* Moving to another directory removes the message from Exim's view. Other
5744 tools must be used to deal with it. Logging of this action happens in
5745 spool_move_message() and its subfunctions. */
5747 if ( move_frozen_messages
5748 && spool_move_message(id, message_subdir, US"", US"F")
5750 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5753 /* For all frozen messages (bounces or not), timeout_frozen_after sets the
5754 maximum time to keep messages that are frozen. Thaw if we reach it, with a
5755 flag causing all recipients to be failed. The time is the age of the
5756 message, not the time since freezing. */
5758 if (timeout_frozen_after > 0 && message_age >= timeout_frozen_after)
5760 log_write(0, LOG_MAIN, "cancelled by timeout_frozen_after");
5761 process_recipients = RECIP_FAIL_TIMEOUT;
5764 /* For bounce messages (and others with no sender), thaw if the error message
5765 ignore timer is exceeded. The message will be discarded if this delivery
5768 else if (!*sender_address && message_age >= ignore_bounce_errors_after)
5769 log_write(0, LOG_MAIN, "Unfrozen by errmsg timer");
5771 /* If this is a bounce message, or there's no auto thaw, or we haven't
5772 reached the auto thaw time yet, and this delivery is not forced by an admin
5773 user, do not attempt delivery of this message. Note that forced is set for
5774 continuing messages down the same channel, in order to skip load checking and
5775 ignore hold domains, but we don't want unfreezing in that case. */
5779 if ( ( sender_address[0] == 0
5781 || now <= deliver_frozen_at + auto_thaw
5783 && ( !forced || !f.deliver_force_thaw
5784 || !f.admin_user || continue_hostname
5787 (void)close(deliver_datafile);
5788 deliver_datafile = -1;
5789 log_write(L_skip_delivery, LOG_MAIN, "Message is frozen");
5790 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5793 /* If delivery was forced (by an admin user), assume a manual thaw.
5794 Otherwise it's an auto thaw. */
5798 f.deliver_manual_thaw = TRUE;
5799 log_write(0, LOG_MAIN, "Unfrozen by forced delivery");
5801 else log_write(0, LOG_MAIN, "Unfrozen by auto-thaw");
5804 /* We get here if any of the rules for unfreezing have triggered. */
5806 f.deliver_freeze = FALSE;
5807 update_spool = TRUE;
5811 /* Open the message log file if we are using them. This records details of
5812 deliveries, deferments, and failures for the benefit of the mail administrator.
5813 The log is not used by exim itself to track the progress of a message; that is
5814 done by rewriting the header spool file. */
5818 uschar * fname = spool_fname(US"msglog", message_subdir, id, US"");
5822 if ((fd = open_msglog_file(fname, SPOOL_MODE, &error)) < 0)
5824 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't %s message log %s: %s", error,
5825 fname, strerror(errno));
5826 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5829 /* Make a C stream out of it. */
5831 if (!(message_log = fdopen(fd, "a")))
5833 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't fdopen message log %s: %s",
5834 fname, strerror(errno));
5835 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5840 /* If asked to give up on a message, log who did it, and set the action for all
5845 struct passwd *pw = getpwuid(real_uid);
5846 log_write(0, LOG_MAIN, "cancelled by %s",
5847 pw ? US pw->pw_name : string_sprintf("uid %ld", (long int)real_uid));
5848 process_recipients = RECIP_FAIL;
5851 /* Otherwise, if there are too many Received: headers, fail all recipients. */
5853 else if (received_count > received_headers_max)
5854 process_recipients = RECIP_FAIL_LOOP;
5856 /* Otherwise, if a system-wide, address-independent message filter is
5857 specified, run it now, except in the case when we are failing all recipients as
5858 a result of timeout_frozen_after. If the system filter yields "delivered", then
5859 ignore the true recipients of the message. Failure of the filter file is
5860 logged, and the delivery attempt fails. */
5862 else if (system_filter && process_recipients != RECIP_FAIL_TIMEOUT)
5867 redirect_block redirect;
5869 if (system_filter_uid_set)
5871 ugid.uid = system_filter_uid;
5872 ugid.gid = system_filter_gid;
5873 ugid.uid_set = ugid.gid_set = TRUE;
5877 ugid.uid_set = ugid.gid_set = FALSE;
5880 return_path = sender_address;
5881 f.enable_dollar_recipients = TRUE; /* Permit $recipients in system filter */
5882 f.system_filtering = TRUE;
5884 /* Any error in the filter file causes a delivery to be abandoned. */
5886 redirect.string = system_filter;
5887 redirect.isfile = TRUE;
5888 redirect.check_owner = redirect.check_group = FALSE;
5889 redirect.owners = NULL;
5890 redirect.owngroups = NULL;
5892 redirect.modemask = 0;
5894 DEBUG(D_deliver|D_filter) debug_printf("running system filter\n");
5897 &redirect, /* Where the data is */
5898 RDO_DEFER | /* Turn on all the enabling options */
5899 RDO_FAIL | /* Leave off all the disabling options */
5904 NULL, /* No :include: restriction (not used in filter) */
5905 NULL, /* No sieve vacation directory (not sieve!) */
5906 NULL, /* No sieve enotify mailto owner (not sieve!) */
5907 NULL, /* No sieve user address (not sieve!) */
5908 NULL, /* No sieve subaddress (not sieve!) */
5909 &ugid, /* uid/gid data */
5910 &addr_new, /* Where to hang generated addresses */
5911 &filter_message, /* Where to put error message */
5912 NULL, /* Don't skip syntax errors */
5913 &filtertype, /* Will always be set to FILTER_EXIM for this call */
5914 US"system filter"); /* For error messages */
5916 DEBUG(D_deliver|D_filter) debug_printf("system filter returned %d\n", rc);
5918 if (rc == FF_ERROR || rc == FF_NONEXIST)
5920 (void)close(deliver_datafile);
5921 deliver_datafile = -1;
5922 log_write(0, LOG_MAIN|LOG_PANIC, "Error in system filter: %s",
5923 string_printing(filter_message));
5924 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5927 /* Reset things. If the filter message is an empty string, which can happen
5928 for a filter "fail" or "freeze" command with no text, reset it to NULL. */
5930 f.system_filtering = FALSE;
5931 f.enable_dollar_recipients = FALSE;
5932 if (filter_message && filter_message[0] == 0) filter_message = NULL;
5934 /* Save the values of the system filter variables so that user filters
5937 memcpy(filter_sn, filter_n, sizeof(filter_sn));
5939 /* The filter can request that delivery of the original addresses be
5944 process_recipients = RECIP_DEFER;
5945 deliver_msglog("Delivery deferred by system filter\n");
5946 log_write(0, LOG_MAIN, "Delivery deferred by system filter");
5949 /* The filter can request that a message be frozen, but this does not
5950 take place if the message has been manually thawed. In that case, we must
5951 unset "delivered", which is forced by the "freeze" command to make -bF
5954 else if (rc == FF_FREEZE && !f.deliver_manual_thaw)
5956 f.deliver_freeze = TRUE;
5957 deliver_frozen_at = time(NULL);
5958 process_recipients = RECIP_DEFER;
5959 frozen_info = string_sprintf(" by the system filter%s%s",
5960 filter_message ? US": " : US"",
5961 filter_message ? filter_message : US"");
5964 /* The filter can request that a message be failed. The error message may be
5965 quite long - it is sent back to the sender in the bounce - but we don't want
5966 to fill up the log with repetitions of it. If it starts with << then the text
5967 between << and >> is written to the log, with the rest left for the bounce
5970 else if (rc == FF_FAIL)
5972 uschar *colon = US"";
5973 uschar *logmsg = US"";
5976 process_recipients = RECIP_FAIL_FILTER;
5982 if ( filter_message[0] == '<'
5983 && filter_message[1] == '<'
5984 && (logend = Ustrstr(filter_message, ">>"))
5987 logmsg = filter_message + 2;
5988 loglen = logend - logmsg;
5989 filter_message = logend + 2;
5990 if (filter_message[0] == 0) filter_message = NULL;
5994 logmsg = filter_message;
5995 loglen = Ustrlen(filter_message);
5999 log_write(0, LOG_MAIN, "cancelled by system filter%s%.*s", colon, loglen,
6003 /* Delivery can be restricted only to those recipients (if any) that the
6004 filter specified. */
6006 else if (rc == FF_DELIVERED)
6008 process_recipients = RECIP_IGNORE;
6010 log_write(0, LOG_MAIN, "original recipients ignored (system filter)");
6012 log_write(0, LOG_MAIN, "=> discarded (system filter)");
6015 /* If any new addresses were created by the filter, fake up a "parent"
6016 for them. This is necessary for pipes, etc., which are expected to have
6017 parents, and it also gives some sensible logging for others. Allow
6018 pipes, files, and autoreplies, and run them as the filter uid if set,
6019 otherwise as the current uid. */
6023 int uid = (system_filter_uid_set)? system_filter_uid : geteuid();
6024 int gid = (system_filter_gid_set)? system_filter_gid : getegid();
6026 /* The text "system-filter" is tested in transport_set_up_command() and in
6027 set_up_shell_command() in the pipe transport, to enable them to permit
6028 $recipients, so don't change it here without also changing it there. */
6030 address_item *p = addr_new;
6031 address_item *parent = deliver_make_addr(US"system-filter", FALSE);
6033 parent->domain = string_copylc(qualify_domain_recipient);
6034 parent->local_part = US"system-filter";
6036 /* As part of this loop, we arrange for addr_last to end up pointing
6037 at the final address. This is used if we go on to add addresses for the
6038 original recipients. */
6042 if (parent->child_count == USHRT_MAX)
6043 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "system filter generated more "
6044 "than %d delivery addresses", USHRT_MAX);
6045 parent->child_count++;
6048 if (testflag(p, af_pfr))
6054 setflag(p, af_uid_set);
6055 setflag(p, af_gid_set);
6056 setflag(p, af_allow_file);
6057 setflag(p, af_allow_pipe);
6058 setflag(p, af_allow_reply);
6060 /* Find the name of the system filter's appropriate pfr transport */
6062 if (p->address[0] == '|')
6065 tpname = system_filter_pipe_transport;
6066 address_pipe = p->address;
6068 else if (p->address[0] == '>')
6071 tpname = system_filter_reply_transport;
6075 if (p->address[Ustrlen(p->address)-1] == '/')
6077 type = US"directory";
6078 tpname = system_filter_directory_transport;
6083 tpname = system_filter_file_transport;
6085 address_file = p->address;
6088 /* Now find the actual transport, first expanding the name. We have
6089 set address_file or address_pipe above. */
6093 uschar *tmp = expand_string(tpname);
6094 address_file = address_pipe = NULL;
6096 p->message = string_sprintf("failed to expand \"%s\" as a "
6097 "system filter transport name", tpname);
6101 p->message = string_sprintf("system_filter_%s_transport is unset",
6106 transport_instance *tp;
6107 for (tp = transports; tp; tp = tp->next)
6108 if (Ustrcmp(tp->name, tpname) == 0)
6114 p->message = string_sprintf("failed to find \"%s\" transport "
6115 "for system filter delivery", tpname);
6118 /* If we couldn't set up a transport, defer the delivery, putting the
6119 error on the panic log as well as the main log. */
6123 address_item *badp = p;
6125 if (!addr_last) addr_new = p; else addr_last->next = p;
6126 badp->local_part = badp->address; /* Needed for log line */
6127 post_process_one(badp, DEFER, LOG_MAIN|LOG_PANIC, EXIM_DTYPE_ROUTER, 0);
6130 } /* End of pfr handling */
6132 /* Either a non-pfr delivery, or we found a transport */
6134 DEBUG(D_deliver|D_filter)
6135 debug_printf("system filter added %s\n", p->address);
6139 } /* Loop through all addr_new addresses */
6144 /* Scan the recipients list, and for every one that is not in the non-
6145 recipients tree, add an addr item to the chain of new addresses. If the pno
6146 value is non-negative, we must set the onetime parent from it. This which
6147 points to the relevant entry in the recipients list.
6149 This processing can be altered by the setting of the process_recipients
6150 variable, which is changed if recipients are to be ignored, failed, or
6151 deferred. This can happen as a result of system filter activity, or if the -Mg
6152 option is used to fail all of them.
6154 Duplicate addresses are handled later by a different tree structure; we can't
6155 just extend the non-recipients tree, because that will be re-written to the
6156 spool if the message is deferred, and in any case there are casing
6157 complications for local addresses. */
6159 if (process_recipients != RECIP_IGNORE)
6160 for (i = 0; i < recipients_count; i++)
6161 if (!tree_search(tree_nonrecipients, recipients_list[i].address))
6163 recipient_item *r = recipients_list + i;
6164 address_item *new = deliver_make_addr(r->address, FALSE);
6165 new->prop.errors_address = r->errors_to;
6167 if ((new->prop.utf8_msg = message_smtputf8))
6169 new->prop.utf8_downcvt = message_utf8_downconvert == 1;
6170 new->prop.utf8_downcvt_maybe = message_utf8_downconvert == -1;
6171 DEBUG(D_deliver) debug_printf("utf8, downconvert %s\n",
6172 new->prop.utf8_downcvt ? "yes"
6173 : new->prop.utf8_downcvt_maybe ? "ifneeded"
6179 new->onetime_parent = recipients_list[r->pno].address;
6181 /* If DSN support is enabled, set the dsn flags and the original receipt
6182 to be passed on to other DSN enabled MTAs */
6183 new->dsn_flags = r->dsn_flags & rf_dsnflags;
6184 new->dsn_orcpt = r->orcpt;
6185 DEBUG(D_deliver) debug_printf("DSN: set orcpt: %s flags: %d\n",
6186 new->dsn_orcpt ? new->dsn_orcpt : US"", new->dsn_flags);
6188 switch (process_recipients)
6190 /* RECIP_DEFER is set when a system filter freezes a message. */
6193 new->next = addr_defer;
6198 /* RECIP_FAIL_FILTER is set when a system filter has obeyed a "fail"
6201 case RECIP_FAIL_FILTER:
6203 filter_message ? filter_message : US"delivery cancelled";
6204 setflag(new, af_pass_message);
6205 goto RECIP_QUEUE_FAILED; /* below */
6208 /* RECIP_FAIL_TIMEOUT is set when a message is frozen, but is older
6209 than the value in timeout_frozen_after. Treat non-bounce messages
6210 similarly to -Mg; for bounce messages we just want to discard, so
6211 don't put the address on the failed list. The timeout has already
6214 case RECIP_FAIL_TIMEOUT:
6215 new->message = US"delivery cancelled; message timed out";
6216 goto RECIP_QUEUE_FAILED; /* below */
6219 /* RECIP_FAIL is set when -Mg has been used. */
6222 new->message = US"delivery cancelled by administrator";
6225 /* Common code for the failure cases above. If this is not a bounce
6226 message, put the address on the failed list so that it is used to
6227 create a bounce. Otherwise do nothing - this just discards the address.
6228 The incident has already been logged. */
6231 if (sender_address[0])
6233 new->next = addr_failed;
6239 /* RECIP_FAIL_LOOP is set when there are too many Received: headers
6240 in the message. Process each address as a routing failure; if this
6241 is a bounce message, it will get frozen. */
6243 case RECIP_FAIL_LOOP:
6244 new->message = US"Too many \"Received\" headers - suspected mail loop";
6245 post_process_one(new, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6249 /* Value should be RECIP_ACCEPT; take this as the safe default. */
6252 if (!addr_new) addr_new = new; else addr_last->next = new;
6257 #ifndef DISABLE_EVENT
6258 if (process_recipients != RECIP_ACCEPT)
6260 uschar * save_local = deliver_localpart;
6261 const uschar * save_domain = deliver_domain;
6262 uschar * addr = new->address, * errmsg = NULL;
6263 int start, end, dom;
6265 if (!parse_extract_address(addr, &errmsg, &start, &end, &dom, TRUE))
6266 log_write(0, LOG_MAIN|LOG_PANIC,
6267 "failed to parse address '%.100s': %s\n", addr, errmsg);
6271 string_copyn(addr+start, dom ? (dom-1) - start : end - start);
6272 deliver_domain = dom ? CUS string_copyn(addr+dom, end - dom) : CUS"";
6274 event_raise(event_action, US"msg:fail:internal", new->message);
6276 deliver_localpart = save_local;
6277 deliver_domain = save_domain;
6286 debug_printf("Delivery address list:\n");
6287 for (p = addr_new; p; p = p->next)
6288 debug_printf(" %s %s\n", p->address,
6289 p->onetime_parent ? p->onetime_parent : US"");
6292 /* Set up the buffers used for copying over the file when delivering. */
6294 deliver_in_buffer = store_malloc(DELIVER_IN_BUFFER_SIZE);
6295 deliver_out_buffer = store_malloc(DELIVER_OUT_BUFFER_SIZE);
6299 /* Until there are no more new addresses, handle each one as follows:
6301 . If this is a generated address (indicated by the presence of a parent
6302 pointer) then check to see whether it is a pipe, file, or autoreply, and
6303 if so, handle it directly here. The router that produced the address will
6304 have set the allow flags into the address, and also set the uid/gid required.
6305 Having the routers generate new addresses and then checking them here at
6306 the outer level is tidier than making each router do the checking, and
6307 means that routers don't need access to the failed address queue.
6309 . Break up the address into local part and domain, and make lowercased
6310 versions of these strings. We also make unquoted versions of the local part.
6312 . Handle the percent hack for those domains for which it is valid.
6314 . For child addresses, determine if any of the parents have the same address.
6315 If so, generate a different string for previous delivery checking. Without
6316 this code, if the address spqr generates spqr via a forward or alias file,
6317 delivery of the generated spqr stops further attempts at the top level spqr,
6318 which is not what is wanted - it may have generated other addresses.
6320 . Check on the retry database to see if routing was previously deferred, but
6321 only if in a queue run. Addresses that are to be routed are put on the
6322 addr_route chain. Addresses that are to be deferred are put on the
6323 addr_defer chain. We do all the checking first, so as not to keep the
6324 retry database open any longer than necessary.
6326 . Now we run the addresses through the routers. A router may put the address
6327 on either the addr_local or the addr_remote chain for local or remote
6328 delivery, respectively, or put it on the addr_failed chain if it is
6329 undeliveable, or it may generate child addresses and put them on the
6330 addr_new chain, or it may defer an address. All the chain anchors are
6331 passed as arguments so that the routers can be called for verification
6334 . If new addresses have been generated by the routers, da capo.
6337 f.header_rewritten = FALSE; /* No headers rewritten yet */
6338 while (addr_new) /* Loop until all addresses dealt with */
6340 address_item *addr, *parent;
6342 /* Failure to open the retry database is treated the same as if it does
6343 not exist. In both cases, dbm_file is NULL. */
6345 if (!(dbm_file = dbfn_open(US"retry", O_RDONLY, &dbblock, FALSE)))
6346 DEBUG(D_deliver|D_retry|D_route|D_hints_lookup)
6347 debug_printf("no retry data available\n");
6349 /* Scan the current batch of new addresses, to handle pipes, files and
6350 autoreplies, and determine which others are ready for routing. */
6357 dbdata_retry *domain_retry_record;
6358 dbdata_retry *address_retry_record;
6361 addr_new = addr->next;
6363 DEBUG(D_deliver|D_retry|D_route)
6365 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
6366 debug_printf("Considering: %s\n", addr->address);
6369 /* Handle generated address that is a pipe or a file or an autoreply. */
6371 if (testflag(addr, af_pfr))
6373 /* If an autoreply in a filter could not generate a syntactically valid
6374 address, give up forthwith. Set af_ignore_error so that we don't try to
6375 generate a bounce. */
6377 if (testflag(addr, af_bad_reply))
6379 addr->basic_errno = ERRNO_BADADDRESS2;
6380 addr->local_part = addr->address;
6382 US"filter autoreply generated syntactically invalid recipient";
6383 addr->prop.ignore_error = TRUE;
6384 (void) post_process_one(addr, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6385 continue; /* with the next new address */
6388 /* If two different users specify delivery to the same pipe or file or
6389 autoreply, there should be two different deliveries, so build a unique
6390 string that incorporates the original address, and use this for
6391 duplicate testing and recording delivery, and also for retrying. */
6394 string_sprintf("%s:%s", addr->address, addr->parent->unique +
6395 (testflag(addr->parent, af_homonym)? 3:0));
6397 addr->address_retry_key = addr->domain_retry_key =
6398 string_sprintf("T:%s", addr->unique);
6400 /* If a filter file specifies two deliveries to the same pipe or file,
6401 we want to de-duplicate, but this is probably not wanted for two mail
6402 commands to the same address, where probably both should be delivered.
6403 So, we have to invent a different unique string in that case. Just
6404 keep piling '>' characters on the front. */
6406 if (addr->address[0] == '>')
6408 while (tree_search(tree_duplicates, addr->unique))
6409 addr->unique = string_sprintf(">%s", addr->unique);
6412 else if ((tnode = tree_search(tree_duplicates, addr->unique)))
6414 DEBUG(D_deliver|D_route)
6415 debug_printf("%s is a duplicate address: discarded\n", addr->address);
6416 addr->dupof = tnode->data.ptr;
6417 addr->next = addr_duplicate;
6418 addr_duplicate = addr;
6422 DEBUG(D_deliver|D_route) debug_printf("unique = %s\n", addr->unique);
6424 /* Check for previous delivery */
6426 if (tree_search(tree_nonrecipients, addr->unique))
6428 DEBUG(D_deliver|D_route)
6429 debug_printf("%s was previously delivered: discarded\n", addr->address);
6430 child_done(addr, tod_stamp(tod_log));
6434 /* Save for checking future duplicates */
6436 tree_add_duplicate(addr->unique, addr);
6438 /* Set local part and domain */
6440 addr->local_part = addr->address;
6441 addr->domain = addr->parent->domain;
6443 /* Ensure that the delivery is permitted. */
6445 if (testflag(addr, af_file))
6447 if (!testflag(addr, af_allow_file))
6449 addr->basic_errno = ERRNO_FORBIDFILE;
6450 addr->message = US"delivery to file forbidden";
6451 (void)post_process_one(addr, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6452 continue; /* with the next new address */
6455 else if (addr->address[0] == '|')
6457 if (!testflag(addr, af_allow_pipe))
6459 addr->basic_errno = ERRNO_FORBIDPIPE;
6460 addr->message = US"delivery to pipe forbidden";
6461 (void)post_process_one(addr, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6462 continue; /* with the next new address */
6465 else if (!testflag(addr, af_allow_reply))
6467 addr->basic_errno = ERRNO_FORBIDREPLY;
6468 addr->message = US"autoreply forbidden";
6469 (void)post_process_one(addr, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6470 continue; /* with the next new address */
6473 /* If the errno field is already set to BADTRANSPORT, it indicates
6474 failure to expand a transport string, or find the associated transport,
6475 or an unset transport when one is required. Leave this test till now so
6476 that the forbid errors are given in preference. */
6478 if (addr->basic_errno == ERRNO_BADTRANSPORT)
6480 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6484 /* Treat /dev/null as a special case and abandon the delivery. This
6485 avoids having to specify a uid on the transport just for this case.
6486 Arrange for the transport name to be logged as "**bypassed**". */
6488 if (Ustrcmp(addr->address, "/dev/null") == 0)
6490 uschar *save = addr->transport->name;
6491 addr->transport->name = US"**bypassed**";
6492 (void)post_process_one(addr, OK, LOG_MAIN, EXIM_DTYPE_TRANSPORT, '=');
6493 addr->transport->name = save;
6494 continue; /* with the next new address */
6497 /* Pipe, file, or autoreply delivery is to go ahead as a normal local
6500 DEBUG(D_deliver|D_route)
6501 debug_printf("queued for %s transport\n", addr->transport->name);
6502 addr->next = addr_local;
6504 continue; /* with the next new address */
6507 /* Handle normal addresses. First, split up into local part and domain,
6508 handling the %-hack if necessary. There is the possibility of a defer from
6509 a lookup in percent_hack_domains. */
6511 if ((rc = deliver_split_address(addr)) == DEFER)
6513 addr->message = US"cannot check percent_hack_domains";
6514 addr->basic_errno = ERRNO_LISTDEFER;
6515 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_NONE, 0);
6519 /* Check to see if the domain is held. If so, proceed only if the
6520 delivery was forced by hand. */
6522 deliver_domain = addr->domain; /* set $domain */
6523 if ( !forced && hold_domains
6524 && (rc = match_isinlist(addr->domain, (const uschar **)&hold_domains, 0,
6525 &domainlist_anchor, addr->domain_cache, MCL_DOMAIN, TRUE,
6531 addr->message = US"hold_domains lookup deferred";
6532 addr->basic_errno = ERRNO_LISTDEFER;
6536 addr->message = US"domain is held";
6537 addr->basic_errno = ERRNO_HELD;
6539 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_NONE, 0);
6543 /* Now we can check for duplicates and previously delivered addresses. In
6544 order to do this, we have to generate a "unique" value for each address,
6545 because there may be identical actual addresses in a line of descendents.
6546 The "unique" field is initialized to the same value as the "address" field,
6547 but gets changed here to cope with identically-named descendents. */
6549 for (parent = addr->parent; parent; parent = parent->parent)
6550 if (strcmpic(addr->address, parent->address) == 0) break;
6552 /* If there's an ancestor with the same name, set the homonym flag. This
6553 influences how deliveries are recorded. Then add a prefix on the front of
6554 the unique address. We use \n\ where n starts at 0 and increases each time.
6555 It is unlikely to pass 9, but if it does, it may look odd but will still
6556 work. This means that siblings or cousins with the same names are treated
6557 as duplicates, which is what we want. */
6561 setflag(addr, af_homonym);
6562 if (parent->unique[0] != '\\')
6563 addr->unique = string_sprintf("\\0\\%s", addr->address);
6565 addr->unique = string_sprintf("\\%c\\%s", parent->unique[1] + 1,
6569 /* Ensure that the domain in the unique field is lower cased, because
6570 domains are always handled caselessly. */
6572 p = Ustrrchr(addr->unique, '@');
6573 while (*p != 0) { *p = tolower(*p); p++; }
6575 DEBUG(D_deliver|D_route) debug_printf("unique = %s\n", addr->unique);
6577 if (tree_search(tree_nonrecipients, addr->unique))
6579 DEBUG(D_deliver|D_route)
6580 debug_printf("%s was previously delivered: discarded\n", addr->unique);
6581 child_done(addr, tod_stamp(tod_log));
6585 /* Get the routing retry status, saving the two retry keys (with and
6586 without the local part) for subsequent use. If there is no retry record for
6587 the standard address routing retry key, we look for the same key with the
6588 sender attached, because this form is used by the smtp transport after a
6589 4xx response to RCPT when address_retry_include_sender is true. */
6591 addr->domain_retry_key = string_sprintf("R:%s", addr->domain);
6592 addr->address_retry_key = string_sprintf("R:%s@%s", addr->local_part,
6597 domain_retry_record = dbfn_read(dbm_file, addr->domain_retry_key);
6598 if ( domain_retry_record
6599 && now - domain_retry_record->time_stamp > retry_data_expire
6601 domain_retry_record = NULL; /* Ignore if too old */
6603 address_retry_record = dbfn_read(dbm_file, addr->address_retry_key);
6604 if ( address_retry_record
6605 && now - address_retry_record->time_stamp > retry_data_expire
6607 address_retry_record = NULL; /* Ignore if too old */
6609 if (!address_retry_record)
6611 uschar *altkey = string_sprintf("%s:<%s>", addr->address_retry_key,
6613 address_retry_record = dbfn_read(dbm_file, altkey);
6614 if ( address_retry_record
6615 && now - address_retry_record->time_stamp > retry_data_expire)
6616 address_retry_record = NULL; /* Ignore if too old */
6620 domain_retry_record = address_retry_record = NULL;
6622 DEBUG(D_deliver|D_retry)
6624 if (!domain_retry_record)
6625 debug_printf("no domain retry record\n");
6626 if (!address_retry_record)
6627 debug_printf("no address retry record\n");
6630 /* If we are sending a message down an existing SMTP connection, we must
6631 assume that the message which created the connection managed to route
6632 an address to that connection. We do not want to run the risk of taking
6633 a long time over routing here, because if we do, the server at the other
6634 end of the connection may time it out. This is especially true for messages
6635 with lots of addresses. For this kind of delivery, queue_running is not
6636 set, so we would normally route all addresses. We take a pragmatic approach
6637 and defer routing any addresses that have any kind of domain retry record.
6638 That is, we don't even look at their retry times. It doesn't matter if this
6639 doesn't work occasionally. This is all just an optimization, after all.
6641 The reason for not doing the same for address retries is that they normally
6642 arise from 4xx responses, not DNS timeouts. */
6644 if (continue_hostname && domain_retry_record)
6646 addr->message = US"reusing SMTP connection skips previous routing defer";
6647 addr->basic_errno = ERRNO_RRETRY;
6648 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6651 /* If we are in a queue run, defer routing unless there is no retry data or
6652 we've passed the next retry time, or this message is forced. In other
6653 words, ignore retry data when not in a queue run.
6655 However, if the domain retry time has expired, always allow the routing
6656 attempt. If it fails again, the address will be failed. This ensures that
6657 each address is routed at least once, even after long-term routing
6660 If there is an address retry, check that too; just wait for the next
6661 retry time. This helps with the case when the temporary error on the
6662 address was really message-specific rather than address specific, since
6663 it allows other messages through.
6665 We also wait for the next retry time if this is a message sent down an
6666 existing SMTP connection (even though that will be forced). Otherwise there
6667 will be far too many attempts for an address that gets a 4xx error. In
6668 fact, after such an error, we should not get here because, the host should
6669 not be remembered as one this message needs. However, there was a bug that
6670 used to cause this to happen, so it is best to be on the safe side.
6672 Even if we haven't reached the retry time in the hints, there is one more
6673 check to do, which is for the ultimate address timeout. We only do this
6674 check if there is an address retry record and there is not a domain retry
6675 record; this implies that previous attempts to handle the address had the
6676 retry_use_local_parts option turned on. We use this as an approximation
6677 for the destination being like a local delivery, for example delivery over
6678 LMTP to an IMAP message store. In this situation users are liable to bump
6679 into their quota and thereby have intermittently successful deliveries,
6680 which keep the retry record fresh, which can lead to us perpetually
6681 deferring messages. */
6683 else if ( ( f.queue_running && !f.deliver_force
6684 || continue_hostname
6686 && ( ( domain_retry_record
6687 && now < domain_retry_record->next_try
6688 && !domain_retry_record->expired
6690 || ( address_retry_record
6691 && now < address_retry_record->next_try
6693 && ( domain_retry_record
6694 || !address_retry_record
6695 || !retry_ultimate_address_timeout(addr->address_retry_key,
6696 addr->domain, address_retry_record, now)
6699 addr->message = US"retry time not reached";
6700 addr->basic_errno = ERRNO_RRETRY;
6701 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6704 /* The domain is OK for routing. Remember if retry data exists so it
6705 can be cleaned up after a successful delivery. */
6709 if (domain_retry_record || address_retry_record)
6710 setflag(addr, af_dr_retry_exists);
6711 addr->next = addr_route;
6713 DEBUG(D_deliver|D_route)
6714 debug_printf("%s: queued for routing\n", addr->address);
6718 /* The database is closed while routing is actually happening. Requests to
6719 update it are put on a chain and all processed together at the end. */
6721 if (dbm_file) dbfn_close(dbm_file);
6723 /* If queue_domains is set, we don't even want to try routing addresses in
6724 those domains. During queue runs, queue_domains is forced to be unset.
6725 Optimize by skipping this pass through the addresses if nothing is set. */
6727 if (!f.deliver_force && queue_domains)
6729 address_item *okaddr = NULL;
6732 address_item *addr = addr_route;
6733 addr_route = addr->next;
6735 deliver_domain = addr->domain; /* set $domain */
6736 if ((rc = match_isinlist(addr->domain, (const uschar **)&queue_domains, 0,
6737 &domainlist_anchor, addr->domain_cache, MCL_DOMAIN, TRUE, NULL))
6741 addr->basic_errno = ERRNO_LISTDEFER;
6742 addr->message = US"queue_domains lookup deferred";
6743 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6747 addr->next = okaddr;
6752 addr->basic_errno = ERRNO_QUEUE_DOMAIN;
6753 addr->message = US"domain is in queue_domains";
6754 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6758 addr_route = okaddr;
6761 /* Now route those addresses that are not deferred. */
6766 address_item *addr = addr_route;
6767 const uschar *old_domain = addr->domain;
6768 uschar *old_unique = addr->unique;
6769 addr_route = addr->next;
6772 /* Just in case some router parameter refers to it. */
6774 if (!(return_path = addr->prop.errors_address))
6775 return_path = sender_address;
6777 /* If a router defers an address, add a retry item. Whether or not to
6778 use the local part in the key is a property of the router. */
6780 if ((rc = route_address(addr, &addr_local, &addr_remote, &addr_new,
6781 &addr_succeed, v_none)) == DEFER)
6782 retry_add_item(addr,
6783 addr->router->retry_use_local_part
6784 ? string_sprintf("R:%s@%s", addr->local_part, addr->domain)
6785 : string_sprintf("R:%s", addr->domain),
6788 /* Otherwise, if there is an existing retry record in the database, add
6789 retry items to delete both forms. We must also allow for the possibility
6790 of a routing retry that includes the sender address. Since the domain might
6791 have been rewritten (expanded to fully qualified) as a result of routing,
6792 ensure that the rewritten form is also deleted. */
6794 else if (testflag(addr, af_dr_retry_exists))
6796 uschar *altkey = string_sprintf("%s:<%s>", addr->address_retry_key,
6798 retry_add_item(addr, altkey, rf_delete);
6799 retry_add_item(addr, addr->address_retry_key, rf_delete);
6800 retry_add_item(addr, addr->domain_retry_key, rf_delete);
6801 if (Ustrcmp(addr->domain, old_domain) != 0)
6802 retry_add_item(addr, string_sprintf("R:%s", old_domain), rf_delete);
6805 /* DISCARD is given for :blackhole: and "seen finish". The event has been
6806 logged, but we need to ensure the address (and maybe parents) is marked
6811 address_done(addr, tod_stamp(tod_log));
6812 continue; /* route next address */
6815 /* The address is finished with (failed or deferred). */
6819 (void)post_process_one(addr, rc, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6820 continue; /* route next address */
6823 /* The address has been routed. If the router changed the domain, it will
6824 also have changed the unique address. We have to test whether this address
6825 has already been delivered, because it's the unique address that finally
6828 if ( addr->unique != old_unique
6829 && tree_search(tree_nonrecipients, addr->unique) != 0
6832 DEBUG(D_deliver|D_route) debug_printf("%s was previously delivered: "
6833 "discarded\n", addr->address);
6834 if (addr_remote == addr) addr_remote = addr->next;
6835 else if (addr_local == addr) addr_local = addr->next;
6838 /* If the router has same_domain_copy_routing set, we are permitted to copy
6839 the routing for any other addresses with the same domain. This is an
6840 optimisation to save repeated DNS lookups for "standard" remote domain
6841 routing. The option is settable only on routers that generate host lists.
6842 We play it very safe, and do the optimization only if the address is routed
6843 to a remote transport, there are no header changes, and the domain was not
6844 modified by the router. */
6846 if ( addr_remote == addr
6847 && addr->router->same_domain_copy_routing
6848 && !addr->prop.extra_headers
6849 && !addr->prop.remove_headers
6850 && old_domain == addr->domain
6853 address_item **chain = &addr_route;
6856 address_item *addr2 = *chain;
6857 if (Ustrcmp(addr2->domain, addr->domain) != 0)
6859 chain = &(addr2->next);
6863 /* Found a suitable address; take it off the routing list and add it to
6864 the remote delivery list. */
6866 *chain = addr2->next;
6867 addr2->next = addr_remote;
6868 addr_remote = addr2;
6870 /* Copy the routing data */
6872 addr2->domain = addr->domain;
6873 addr2->router = addr->router;
6874 addr2->transport = addr->transport;
6875 addr2->host_list = addr->host_list;
6876 addr2->fallback_hosts = addr->fallback_hosts;
6877 addr2->prop.errors_address = addr->prop.errors_address;
6878 copyflag(addr2, addr, af_hide_child);
6879 copyflag(addr2, addr, af_local_host_removed);
6881 DEBUG(D_deliver|D_route)
6882 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"
6884 "Routing for %s copied from %s\n",
6885 addr2->address, addr2->address, addr->address);
6888 } /* Continue with routing the next address. */
6889 } /* Loop to process any child addresses that the routers created, and
6890 any rerouted addresses that got put back on the new chain. */
6893 /* Debugging: show the results of the routing */
6895 DEBUG(D_deliver|D_retry|D_route)
6898 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
6899 debug_printf("After routing:\n Local deliveries:\n");
6900 for (p = addr_local; p; p = p->next)
6901 debug_printf(" %s\n", p->address);
6903 debug_printf(" Remote deliveries:\n");
6904 for (p = addr_remote; p; p = p->next)
6905 debug_printf(" %s\n", p->address);
6907 debug_printf(" Failed addresses:\n");
6908 for (p = addr_failed; p; p = p->next)
6909 debug_printf(" %s\n", p->address);
6911 debug_printf(" Deferred addresses:\n");
6912 for (p = addr_defer; p; p = p->next)
6913 debug_printf(" %s\n", p->address);
6916 /* Free any resources that were cached during routing. */
6921 /* These two variables are set only during routing, after check_local_user.
6922 Ensure they are not set in transports. */
6924 local_user_gid = (gid_t)(-1);
6925 local_user_uid = (uid_t)(-1);
6927 /* Check for any duplicate addresses. This check is delayed until after
6928 routing, because the flexibility of the routing configuration means that
6929 identical addresses with different parentage may end up being redirected to
6930 different addresses. Checking for duplicates too early (as we previously used
6931 to) makes this kind of thing not work. */
6933 do_duplicate_check(&addr_local);
6934 do_duplicate_check(&addr_remote);
6936 /* When acting as an MUA wrapper, we proceed only if all addresses route to a
6937 remote transport. The check that they all end up in one transaction happens in
6938 the do_remote_deliveries() function. */
6941 && (addr_local || addr_failed || addr_defer)
6945 uschar *which, *colon, *msg;
6952 else if (addr_defer)
6955 which = US"deferred";
6963 while (addr->parent) addr = addr->parent;
6968 msg = addr->message;
6970 else colon = msg = US"";
6972 /* We don't need to log here for a forced failure as it will already
6973 have been logged. Defer will also have been logged, but as a defer, so we do
6974 need to do the failure logging. */
6976 if (addr != addr_failed)
6977 log_write(0, LOG_MAIN, "** %s routing yielded a %s delivery",
6978 addr->address, which);
6980 /* Always write an error to the caller */
6982 fprintf(stderr, "routing %s yielded a %s delivery%s%s\n", addr->address,
6985 final_yield = DELIVER_MUA_FAILED;
6986 addr_failed = addr_defer = NULL; /* So that we remove the message */
6987 goto DELIVERY_TIDYUP;
6991 /* If this is a run to continue deliveries to an external channel that is
6992 already set up, defer any local deliveries. */
6994 if (continue_transport)
6998 address_item *addr = addr_defer;
6999 while (addr->next) addr = addr->next;
7000 addr->next = addr_local;
7003 addr_defer = addr_local;
7008 /* Because address rewriting can happen in the routers, we should not really do
7009 ANY deliveries until all addresses have been routed, so that all recipients of
7010 the message get the same headers. However, this is in practice not always
7011 possible, since sometimes remote addresses give DNS timeouts for days on end.
7012 The pragmatic approach is to deliver what we can now, saving any rewritten
7013 headers so that at least the next lot of recipients benefit from the rewriting
7014 that has already been done.
7016 If any headers have been rewritten during routing, update the spool file to
7017 remember them for all subsequent deliveries. This can be delayed till later if
7018 there is only address to be delivered - if it succeeds the spool write need not
7021 if ( f.header_rewritten
7022 && ( addr_local && (addr_local->next || addr_remote)
7023 || addr_remote && addr_remote->next
7026 /* Panic-dies on error */
7027 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
7028 f.header_rewritten = FALSE;
7032 /* If there are any deliveries to be and we do not already have the journal
7033 file, create it. This is used to record successful deliveries as soon as
7034 possible after each delivery is known to be complete. A file opened with
7035 O_APPEND is used so that several processes can run simultaneously.
7037 The journal is just insurance against crashes. When the spool file is
7038 ultimately updated at the end of processing, the journal is deleted. If a
7039 journal is found to exist at the start of delivery, the addresses listed
7040 therein are added to the non-recipients. */
7042 if (addr_local || addr_remote)
7046 uschar * fname = spool_fname(US"input", message_subdir, id, US"-J");
7048 if ((journal_fd = Uopen(fname,
7052 O_WRONLY|O_APPEND|O_CREAT|O_EXCL, SPOOL_MODE)) < 0)
7054 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't open journal file %s: %s",
7055 fname, strerror(errno));
7056 return DELIVER_NOT_ATTEMPTED;
7059 /* Set the close-on-exec flag, make the file owned by Exim, and ensure
7060 that the mode is correct - the group setting doesn't always seem to get
7061 set automatically. */
7063 if( fchown(journal_fd, exim_uid, exim_gid)
7064 || fchmod(journal_fd, SPOOL_MODE)
7066 || fcntl(journal_fd, F_SETFD, fcntl(journal_fd, F_GETFD) | FD_CLOEXEC)
7070 int ret = Uunlink(fname);
7071 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't set perms on journal file %s: %s",
7072 fname, strerror(errno));
7073 if(ret && errno != ENOENT)
7074 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s",
7075 fname, strerror(errno));
7076 return DELIVER_NOT_ATTEMPTED;
7080 else if (journal_fd >= 0)
7088 /* Now we can get down to the business of actually doing deliveries. Local
7089 deliveries are done first, then remote ones. If ever the problems of how to
7090 handle fallback transports are figured out, this section can be put into a loop
7091 for handling fallbacks, though the uid switching will have to be revised. */
7093 /* Precompile a regex that is used to recognize a parameter in response
7094 to an LHLO command, if is isn't already compiled. This may be used on both
7095 local and remote LMTP deliveries. */
7097 if (!regex_IGNOREQUOTA)
7099 regex_must_compile(US"\\n250[\\s\\-]IGNOREQUOTA(\\s|\\n|$)", FALSE, TRUE);
7101 /* Handle local deliveries */
7105 DEBUG(D_deliver|D_transport)
7106 debug_printf(">>>>>>>>>>>>>>>> Local deliveries >>>>>>>>>>>>>>>>\n");
7107 do_local_deliveries();
7108 f.disable_logging = FALSE;
7111 /* If queue_run_local is set, we do not want to attempt any remote deliveries,
7112 so just queue them all. */
7114 if (f.queue_run_local)
7117 address_item *addr = addr_remote;
7118 addr_remote = addr->next;
7120 addr->basic_errno = ERRNO_LOCAL_ONLY;
7121 addr->message = US"remote deliveries suppressed";
7122 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_TRANSPORT, 0);
7125 /* Handle remote deliveries */
7129 DEBUG(D_deliver|D_transport)
7130 debug_printf(">>>>>>>>>>>>>>>> Remote deliveries >>>>>>>>>>>>>>>>\n");
7132 /* Precompile some regex that are used to recognize parameters in response
7133 to an EHLO command, if they aren't already compiled. */
7137 /* Now sort the addresses if required, and do the deliveries. The yield of
7138 do_remote_deliveries is FALSE when mua_wrapper is set and all addresses
7139 cannot be delivered in one transaction. */
7141 if (remote_sort_domains) sort_remote_deliveries();
7142 if (!do_remote_deliveries(FALSE))
7144 log_write(0, LOG_MAIN, "** mua_wrapper is set but recipients cannot all "
7145 "be delivered in one transaction");
7146 fprintf(stderr, "delivery to smarthost failed (configuration problem)\n");
7148 final_yield = DELIVER_MUA_FAILED;
7149 addr_failed = addr_defer = NULL; /* So that we remove the message */
7150 goto DELIVERY_TIDYUP;
7153 /* See if any of the addresses that failed got put on the queue for delivery
7154 to their fallback hosts. We do it this way because often the same fallback
7155 host is used for many domains, so all can be sent in a single transaction
7156 (if appropriately configured). */
7158 if (addr_fallback && !mua_wrapper)
7160 DEBUG(D_deliver) debug_printf("Delivering to fallback hosts\n");
7161 addr_remote = addr_fallback;
7162 addr_fallback = NULL;
7163 if (remote_sort_domains) sort_remote_deliveries();
7164 do_remote_deliveries(TRUE);
7166 f.disable_logging = FALSE;
7170 /* All deliveries are now complete. Ignore SIGTERM during this tidying up
7171 phase, to minimize cases of half-done things. */
7174 debug_printf(">>>>>>>>>>>>>>>> deliveries are done >>>>>>>>>>>>>>>>\n");
7175 cancel_cutthrough_connection(TRUE, US"deliveries are done");
7177 /* Root privilege is no longer needed */
7179 exim_setugid(exim_uid, exim_gid, FALSE, US"post-delivery tidying");
7181 set_process_info("tidying up after delivering %s", message_id);
7182 signal(SIGTERM, SIG_IGN);
7184 /* When we are acting as an MUA wrapper, the smtp transport will either have
7185 succeeded for all addresses, or failed them all in normal cases. However, there
7186 are some setup situations (e.g. when a named port does not exist) that cause an
7187 immediate exit with deferral of all addresses. Convert those into failures. We
7188 do not ever want to retry, nor do we want to send a bounce message. */
7194 address_item *addr, *nextaddr;
7195 for (addr = addr_defer; addr; addr = nextaddr)
7197 log_write(0, LOG_MAIN, "** %s mua_wrapper forced failure for deferred "
7198 "delivery", addr->address);
7199 nextaddr = addr->next;
7200 addr->next = addr_failed;
7206 /* Now all should either have succeeded or failed. */
7209 final_yield = DELIVER_MUA_SUCCEEDED;
7213 uschar *s = addr_failed->user_message;
7215 if (!s) s = addr_failed->message;
7217 fprintf(stderr, "Delivery failed: ");
7218 if (addr_failed->basic_errno > 0)
7220 fprintf(stderr, "%s", strerror(addr_failed->basic_errno));
7221 if (s) fprintf(stderr, ": ");
7223 if ((host = addr_failed->host_used))
7224 fprintf(stderr, "H=%s [%s]: ", host->name, host->address);
7226 fprintf(stderr, "%s", CS s);
7227 else if (addr_failed->basic_errno <= 0)
7228 fprintf(stderr, "unknown error");
7229 fprintf(stderr, "\n");
7231 final_yield = DELIVER_MUA_FAILED;
7236 /* In a normal configuration, we now update the retry database. This is done in
7237 one fell swoop at the end in order not to keep opening and closing (and
7238 locking) the database. The code for handling retries is hived off into a
7239 separate module for convenience. We pass it the addresses of the various
7240 chains, because deferred addresses can get moved onto the failed chain if the
7241 retry cutoff time has expired for all alternative destinations. Bypass the
7242 updating of the database if the -N flag is set, which is a debugging thing that
7243 prevents actual delivery. */
7245 else if (!f.dont_deliver)
7246 retry_update(&addr_defer, &addr_failed, &addr_succeed);
7248 /* Send DSN for successful messages if requested */
7249 addr_senddsn = NULL;
7251 for (addr_dsntmp = addr_succeed; addr_dsntmp; addr_dsntmp = addr_dsntmp->next)
7253 /* af_ignore_error not honored here. it's not an error */
7254 DEBUG(D_deliver) debug_printf("DSN: processing router : %s\n"
7255 "DSN: processing successful delivery address: %s\n"
7256 "DSN: Sender_address: %s\n"
7257 "DSN: orcpt: %s flags: %d\n"
7258 "DSN: envid: %s ret: %d\n"
7259 "DSN: Final recipient: %s\n"
7260 "DSN: Remote SMTP server supports DSN: %d\n",
7261 addr_dsntmp->router ? addr_dsntmp->router->name : US"(unknown)",
7262 addr_dsntmp->address,
7264 addr_dsntmp->dsn_orcpt ? addr_dsntmp->dsn_orcpt : US"NULL",
7265 addr_dsntmp->dsn_flags,
7266 dsn_envid ? dsn_envid : US"NULL", dsn_ret,
7267 addr_dsntmp->address,
7268 addr_dsntmp->dsn_aware
7271 /* send report if next hop not DSN aware or a router flagged "last DSN hop"
7272 and a report was requested */
7273 if ( ( addr_dsntmp->dsn_aware != dsn_support_yes
7274 || addr_dsntmp->dsn_flags & rf_dsnlasthop
7276 && addr_dsntmp->dsn_flags & rf_notify_success
7279 /* copy and relink address_item and send report with all of them at once later */
7280 address_item * addr_next = addr_senddsn;
7281 addr_senddsn = store_get(sizeof(address_item));
7282 *addr_senddsn = *addr_dsntmp;
7283 addr_senddsn->next = addr_next;
7286 DEBUG(D_deliver) debug_printf("DSN: not sending DSN success message\n");
7294 /* create exim process to send message */
7295 pid = child_open_exim(&fd);
7297 DEBUG(D_deliver) debug_printf("DSN: child_open_exim returns: %d\n", pid);
7299 if (pid < 0) /* Creation of child failed */
7301 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Process %d (parent %d) failed to "
7302 "create child process to send failure message: %s", getpid(),
7303 getppid(), strerror(errno));
7305 DEBUG(D_deliver) debug_printf("DSN: child_open_exim failed\n");
7307 else /* Creation of child succeeded */
7309 FILE *f = fdopen(fd, "wb");
7310 /* header only as required by RFC. only failure DSN needs to honor RET=FULL */
7312 transport_ctx tctx = {{0}};
7315 debug_printf("sending error message to: %s\n", sender_address);
7317 /* build unique id for MIME boundary */
7318 bound = string_sprintf(TIME_T_FMT "-eximdsn-%d", time(NULL), rand());
7319 DEBUG(D_deliver) debug_printf("DSN: MIME boundary: %s\n", bound);
7321 if (errors_reply_to)
7322 fprintf(f, "Reply-To: %s\n", errors_reply_to);
7324 fprintf(f, "Auto-Submitted: auto-generated\n"
7325 "From: Mail Delivery System <Mailer-Daemon@%s>\n"
7327 "Subject: Delivery Status Notification\n"
7328 "Content-Type: multipart/report; report-type=delivery-status; boundary=%s\n"
7329 "MIME-Version: 1.0\n\n"
7332 "Content-type: text/plain; charset=us-ascii\n\n"
7334 "This message was created automatically by mail delivery software.\n"
7335 " ----- The following addresses had successful delivery notifications -----\n",
7336 qualify_domain_sender, sender_address, bound, bound);
7338 for (addr_dsntmp = addr_senddsn; addr_dsntmp;
7339 addr_dsntmp = addr_dsntmp->next)
7340 fprintf(f, "<%s> (relayed %s)\n\n",
7341 addr_dsntmp->address,
7342 addr_dsntmp->dsn_flags & rf_dsnlasthop ? "via non DSN router"
7343 : addr_dsntmp->dsn_aware == dsn_support_no ? "to non-DSN-aware mailer"
7344 : "via non \"Remote SMTP\" router"
7348 "Content-type: message/delivery-status\n\n"
7349 "Reporting-MTA: dns; %s\n",
7350 bound, smtp_active_hostname);
7353 { /* must be decoded from xtext: see RFC 3461:6.3a */
7355 if (auth_xtextdecode(dsn_envid, &xdec_envid) > 0)
7356 fprintf(f, "Original-Envelope-ID: %s\n", dsn_envid);
7358 fprintf(f, "X-Original-Envelope-ID: error decoding xtext formatted ENVID\n");
7362 for (addr_dsntmp = addr_senddsn;
7364 addr_dsntmp = addr_dsntmp->next)
7366 if (addr_dsntmp->dsn_orcpt)
7367 fprintf(f,"Original-Recipient: %s\n", addr_dsntmp->dsn_orcpt);
7369 fprintf(f, "Action: delivered\n"
7370 "Final-Recipient: rfc822;%s\n"
7372 addr_dsntmp->address);
7374 if (addr_dsntmp->host_used && addr_dsntmp->host_used->name)
7375 fprintf(f, "Remote-MTA: dns; %s\nDiagnostic-Code: smtp; 250 Ok\n\n",
7376 addr_dsntmp->host_used->name);
7378 fprintf(f, "Diagnostic-Code: X-Exim; relayed via non %s router\n\n",
7379 addr_dsntmp->dsn_flags & rf_dsnlasthop ? "DSN" : "SMTP");
7382 fprintf(f, "--%s\nContent-type: text/rfc822-headers\n\n", bound);
7385 transport_filter_argv = NULL; /* Just in case */
7386 return_path = sender_address; /* In case not previously set */
7388 /* Write the original email out */
7390 tctx.u.fd = fileno(f);
7391 tctx.options = topt_add_return_path | topt_no_body;
7392 transport_write_message(&tctx, 0);
7395 fprintf(f,"\n--%s--\n", bound);
7399 rc = child_close(pid, 0); /* Waits for child to close, no timeout */
7403 /* If any addresses failed, we must send a message to somebody, unless
7404 af_ignore_error is set, in which case no action is taken. It is possible for
7405 several messages to get sent if there are addresses with different
7412 uschar *logtod = tod_stamp(tod_log);
7414 address_item *handled_addr = NULL;
7415 address_item **paddr;
7416 address_item *msgchain = NULL;
7417 address_item **pmsgchain = &msgchain;
7419 /* There are weird cases when logging is disabled in the transport. However,
7420 there may not be a transport (address failed by a router). */
7422 f.disable_logging = FALSE;
7423 if (addr_failed->transport)
7424 f.disable_logging = addr_failed->transport->disable_logging;
7427 debug_printf("processing failed address %s\n", addr_failed->address);
7429 /* There are only two ways an address in a bounce message can get here:
7431 (1) When delivery was initially deferred, but has now timed out (in the call
7432 to retry_update() above). We can detect this by testing for
7433 af_retry_timedout. If the address does not have its own errors address,
7434 we arrange to ignore the error.
7436 (2) If delivery failures for bounce messages are being ignored. We can detect
7437 this by testing for af_ignore_error. This will also be set if a bounce
7438 message has been autothawed and the ignore_bounce_errors_after time has
7439 passed. It might also be set if a router was explicitly configured to
7440 ignore errors (errors_to = "").
7442 If neither of these cases obtains, something has gone wrong. Log the
7443 incident, but then ignore the error. */
7445 if (sender_address[0] == 0 && !addr_failed->prop.errors_address)
7447 if ( !testflag(addr_failed, af_retry_timedout)
7448 && !addr_failed->prop.ignore_error)
7449 log_write(0, LOG_MAIN|LOG_PANIC, "internal error: bounce message "
7450 "failure is neither frozen nor ignored (it's been ignored)");
7452 addr_failed->prop.ignore_error = TRUE;
7455 /* If the first address on the list has af_ignore_error set, just remove
7456 it from the list, throw away any saved message file, log it, and
7457 mark the recipient done. */
7459 if ( addr_failed->prop.ignore_error
7460 || addr_failed->dsn_flags & (rf_dsnflags & ~rf_notify_failure)
7464 addr_failed = addr->next;
7465 if (addr->return_filename) Uunlink(addr->return_filename);
7467 #ifndef DISABLE_EVENT
7468 msg_event_raise(US"msg:fail:delivery", addr);
7470 log_write(0, LOG_MAIN, "%s%s%s%s: error ignored",
7472 !addr->parent ? US"" : US" <",
7473 !addr->parent ? US"" : addr->parent->address,
7474 !addr->parent ? US"" : US">");
7476 address_done(addr, logtod);
7477 child_done(addr, logtod);
7478 /* Panic-dies on error */
7479 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
7482 /* Otherwise, handle the sending of a message. Find the error address for
7483 the first address, then send a message that includes all failed addresses
7484 that have the same error address. Note the bounce_recipient is a global so
7485 that it can be accessed by $bounce_recipient while creating a customized
7490 if (!(bounce_recipient = addr_failed->prop.errors_address))
7491 bounce_recipient = sender_address;
7493 /* Make a subprocess to send a message */
7495 if ((pid = child_open_exim(&fd)) < 0)
7496 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Process %d (parent %d) failed to "
7497 "create child process to send failure message: %s", getpid(),
7498 getppid(), strerror(errno));
7500 /* Creation of child succeeded */
7507 uschar *bcc, *emf_text;
7508 FILE * fp = fdopen(fd, "wb");
7510 BOOL to_sender = strcmpic(sender_address, bounce_recipient) == 0;
7511 int max = (bounce_return_size_limit/DELIVER_IN_BUFFER_SIZE + 1) *
7512 DELIVER_IN_BUFFER_SIZE;
7514 uschar *dsnlimitmsg;
7515 uschar *dsnnotifyhdr;
7519 debug_printf("sending error message to: %s\n", bounce_recipient);
7521 /* Scan the addresses for all that have the same errors address, removing
7522 them from the addr_failed chain, and putting them on msgchain. */
7524 paddr = &addr_failed;
7525 for (addr = addr_failed; addr; addr = *paddr)
7526 if (Ustrcmp(bounce_recipient, addr->prop.errors_address
7527 ? addr->prop.errors_address : sender_address) == 0)
7528 { /* The same - dechain */
7529 *paddr = addr->next;
7532 pmsgchain = &(addr->next);
7535 paddr = &addr->next; /* Not the same; skip */
7537 /* Include X-Failed-Recipients: for automatic interpretation, but do
7538 not let any one header line get too long. We do this by starting a
7539 new header every 50 recipients. Omit any addresses for which the
7540 "hide_child" flag is set. */
7542 for (addr = msgchain; addr; addr = addr->next)
7544 if (testflag(addr, af_hide_child)) continue;
7552 ? "X-Failed-Recipients: "
7554 testflag(addr, af_pfr) && addr->parent
7555 ? string_printing(addr->parent->address)
7556 : string_printing(addr->address));
7558 if (rcount > 0) fprintf(fp, "\n");
7560 /* Output the standard headers */
7562 if (errors_reply_to)
7563 fprintf(fp, "Reply-To: %s\n", errors_reply_to);
7564 fprintf(fp, "Auto-Submitted: auto-replied\n");
7565 moan_write_from(fp);
7566 fprintf(fp, "To: %s\n", bounce_recipient);
7568 /* generate boundary string and output MIME-Headers */
7569 bound = string_sprintf(TIME_T_FMT "-eximdsn-%d", time(NULL), rand());
7571 fprintf(fp, "Content-Type: multipart/report;"
7572 " report-type=delivery-status; boundary=%s\n"
7573 "MIME-Version: 1.0\n",
7576 /* Open a template file if one is provided. Log failure to open, but
7577 carry on - default texts will be used. */
7579 if (bounce_message_file)
7580 if (!(emf = Ufopen(bounce_message_file, "rb")))
7581 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to open %s for error "
7582 "message texts: %s", bounce_message_file, strerror(errno));
7584 /* Quietly copy to configured additional addresses if required. */
7586 if ((bcc = moan_check_errorcopy(bounce_recipient)))
7587 fprintf(fp, "Bcc: %s\n", bcc);
7589 /* The texts for the message can be read from a template file; if there
7590 isn't one, or if it is too short, built-in texts are used. The first
7591 emf text is a Subject: and any other headers. */
7593 if ((emf_text = next_emf(emf, US"header")))
7594 fprintf(fp, "%s\n", emf_text);
7596 fprintf(fp, "Subject: Mail delivery failed%s\n\n",
7597 to_sender? ": returning message to sender" : "");
7599 /* output human readable part as text/plain section */
7600 fprintf(fp, "--%s\n"
7601 "Content-type: text/plain; charset=us-ascii\n\n",
7604 if ((emf_text = next_emf(emf, US"intro")))
7605 fprintf(fp, "%s", CS emf_text);
7609 /* This message has been reworded several times. It seems to be confusing to
7610 somebody, however it is worded. I have retreated to the original, simple
7612 "This message was created automatically by mail delivery software.\n");
7614 if (bounce_message_text)
7615 fprintf(fp, "%s", CS bounce_message_text);
7618 "\nA message that you sent could not be delivered to one or more of its\n"
7619 "recipients. This is a permanent error. The following address(es) failed:\n");
7622 "\nA message sent by\n\n <%s>\n\n"
7623 "could not be delivered to one or more of its recipients. The following\n"
7624 "address(es) failed:\n", sender_address);
7628 /* Process the addresses, leaving them on the msgchain if they have a
7629 file name for a return message. (There has already been a check in
7630 post_process_one() for the existence of data in the message file.) A TRUE
7631 return from print_address_information() means that the address is not
7635 for (addr = msgchain; addr; addr = *paddr)
7637 if (print_address_information(addr, fp, US" ", US"\n ", US""))
7638 print_address_error(addr, fp, US"");
7640 /* End the final line for the address */
7644 /* Leave on msgchain if there's a return file. */
7646 if (addr->return_file >= 0)
7648 paddr = &(addr->next);
7652 /* Else save so that we can tick off the recipient when the
7657 *paddr = addr->next;
7658 addr->next = handled_addr;
7659 handled_addr = addr;
7665 /* Get the next text, whether we need it or not, so as to be
7666 positioned for the one after. */
7668 emf_text = next_emf(emf, US"generated text");
7670 /* If there were any file messages passed by the local transports,
7671 include them in the message. Then put the address on the handled chain.
7672 In the case of a batch of addresses that were all sent to the same
7673 transport, the return_file field in all of them will contain the same
7674 fd, and the return_filename field in the *last* one will be set (to the
7675 name of the file). */
7679 address_item *nextaddr;
7682 fprintf(fp, "%s", CS emf_text);
7685 "The following text was generated during the delivery "
7686 "attempt%s:\n", (filecount > 1)? "s" : "");
7688 for (addr = msgchain; addr; addr = nextaddr)
7691 address_item *topaddr = addr;
7693 /* List all the addresses that relate to this file */
7696 while(addr) /* Insurance */
7698 print_address_information(addr, fp, US"------ ", US"\n ",
7700 if (addr->return_filename) break;
7705 /* Now copy the file */
7707 if (!(fm = Ufopen(addr->return_filename, "rb")))
7708 fprintf(fp, " +++ Exim error... failed to open text file: %s\n",
7712 while ((ch = fgetc(fm)) != EOF) fputc(ch, fp);
7715 Uunlink(addr->return_filename);
7717 /* Can now add to handled chain, first fishing off the next
7718 address on the msgchain. */
7720 nextaddr = addr->next;
7721 addr->next = handled_addr;
7722 handled_addr = topaddr;
7727 /* output machine readable part */
7729 if (message_smtputf8)
7730 fprintf(fp, "--%s\n"
7731 "Content-type: message/global-delivery-status\n\n"
7732 "Reporting-MTA: dns; %s\n",
7733 bound, smtp_active_hostname);
7736 fprintf(fp, "--%s\n"
7737 "Content-type: message/delivery-status\n\n"
7738 "Reporting-MTA: dns; %s\n",
7739 bound, smtp_active_hostname);
7743 /* must be decoded from xtext: see RFC 3461:6.3a */
7745 if (auth_xtextdecode(dsn_envid, &xdec_envid) > 0)
7746 fprintf(fp, "Original-Envelope-ID: %s\n", dsn_envid);
7748 fprintf(fp, "X-Original-Envelope-ID: error decoding xtext formatted ENVID\n");
7752 for (addr = handled_addr; addr; addr = addr->next)
7755 fprintf(fp, "Action: failed\n"
7756 "Final-Recipient: rfc822;%s\n"
7759 if ((hu = addr->host_used) && hu->name)
7761 fprintf(fp, "Remote-MTA: dns; %s\n", hu->name);
7762 #ifdef EXPERIMENTAL_DSN_INFO
7767 uschar * p = hu->port == 25
7768 ? US"" : string_sprintf(":%d", hu->port);
7769 fprintf(fp, "Remote-MTA: X-ip; [%s]%s\n", hu->address, p);
7771 if ((s = addr->smtp_greeting) && *s)
7772 fprintf(fp, "X-Remote-MTA-smtp-greeting: X-str; %s\n", s);
7773 if ((s = addr->helo_response) && *s)
7774 fprintf(fp, "X-Remote-MTA-helo-response: X-str; %s\n", s);
7775 if ((s = addr->message) && *s)
7776 fprintf(fp, "X-Exim-Diagnostic: X-str; %s\n", s);
7779 print_dsn_diagnostic_code(addr, fp);
7784 /* Now copy the message, trying to give an intelligible comment if
7785 it is too long for it all to be copied. The limit isn't strictly
7786 applied because of the buffering. There is, however, an option
7787 to suppress copying altogether. */
7789 emf_text = next_emf(emf, US"copy");
7792 we ignore the intro text from template and add
7793 the text for bounce_return_size_limit at the end.
7795 bounce_return_message is ignored
7796 in case RET= is defined we honor these values
7797 otherwise bounce_return_body is honored.
7799 bounce_return_size_limit is always honored.
7802 fprintf(fp, "--%s\n", bound);
7804 dsnlimitmsg = US"X-Exim-DSN-Information: Due to administrative limits only headers are returned";
7805 dsnnotifyhdr = NULL;
7806 topt = topt_add_return_path;
7808 /* RET=HDRS? top priority */
7809 if (dsn_ret == dsn_ret_hdrs)
7810 topt |= topt_no_body;
7813 struct stat statbuf;
7815 /* no full body return at all? */
7816 if (!bounce_return_body)
7818 topt |= topt_no_body;
7819 /* add header if we overrule RET=FULL */
7820 if (dsn_ret == dsn_ret_full)
7821 dsnnotifyhdr = dsnlimitmsg;
7823 /* line length limited... return headers only if oversize */
7824 /* size limited ... return headers only if limit reached */
7825 else if ( max_received_linelength > bounce_return_linesize_limit
7826 || ( bounce_return_size_limit > 0
7827 && fstat(deliver_datafile, &statbuf) == 0
7828 && statbuf.st_size > max
7831 topt |= topt_no_body;
7832 dsnnotifyhdr = dsnlimitmsg;
7837 if (message_smtputf8)
7838 fputs(topt & topt_no_body ? "Content-type: message/global-headers\n\n"
7839 : "Content-type: message/global\n\n",
7843 fputs(topt & topt_no_body ? "Content-type: text/rfc822-headers\n\n"
7844 : "Content-type: message/rfc822\n\n",
7848 transport_filter_argv = NULL; /* Just in case */
7849 return_path = sender_address; /* In case not previously set */
7850 { /* Dummy transport for headers add */
7851 transport_ctx tctx = {{0}};
7852 transport_instance tb = {0};
7854 tctx.u.fd = fileno(fp);
7856 tctx.options = topt;
7857 tb.add_headers = dsnnotifyhdr;
7859 transport_write_message(&tctx, 0);
7863 /* we never add the final text. close the file */
7867 fprintf(fp, "\n--%s--\n", bound);
7869 /* Close the file, which should send an EOF to the child process
7870 that is receiving the message. Wait for it to finish. */
7873 rc = child_close(pid, 0); /* Waits for child to close, no timeout */
7875 /* In the test harness, let the child do it's thing first. */
7877 if (f.running_in_test_harness) millisleep(500);
7879 /* If the process failed, there was some disaster in setting up the
7880 error message. Unless the message is very old, ensure that addr_defer
7881 is non-null, which will have the effect of leaving the message on the
7882 spool. The failed addresses will get tried again next time. However, we
7883 don't really want this to happen too often, so freeze the message unless
7884 there are some genuine deferred addresses to try. To do this we have
7885 to call spool_write_header() here, because with no genuine deferred
7886 addresses the normal code below doesn't get run. */
7891 if (now - received_time.tv_sec < retry_maximum_timeout && !addr_defer)
7893 addr_defer = (address_item *)(+1);
7894 f.deliver_freeze = TRUE;
7895 deliver_frozen_at = time(NULL);
7896 /* Panic-dies on error */
7897 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
7900 deliver_msglog("Process failed (%d) when writing error message "
7901 "to %s%s", rc, bounce_recipient, s);
7902 log_write(0, LOG_MAIN, "Process failed (%d) when writing error message "
7903 "to %s%s", rc, bounce_recipient, s);
7906 /* The message succeeded. Ensure that the recipients that failed are
7907 now marked finished with on the spool and their parents updated. */
7911 for (addr = handled_addr; addr; addr = addr->next)
7913 address_done(addr, logtod);
7914 child_done(addr, logtod);
7916 /* Panic-dies on error */
7917 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
7923 f.disable_logging = FALSE; /* In case left set */
7925 /* Come here from the mua_wrapper case if routing goes wrong */
7929 /* If there are now no deferred addresses, we are done. Preserve the
7930 message log if so configured, and we are using them. Otherwise, sling it.
7931 Then delete the message itself. */
7939 fname = spool_fname(US"msglog", message_subdir, id, US"");
7940 if (preserve_message_logs)
7943 uschar * moname = spool_fname(US"msglog.OLD", US"", id, US"");
7945 if ((rc = Urename(fname, moname)) < 0)
7947 (void)directory_make(spool_directory,
7948 spool_sname(US"msglog.OLD", US""),
7949 MSGLOG_DIRECTORY_MODE, TRUE);
7950 rc = Urename(fname, moname);
7953 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to move %s to the "
7954 "msglog.OLD directory", fname);
7957 if (Uunlink(fname) < 0)
7958 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s",
7959 fname, strerror(errno));
7962 /* Remove the two message files. */
7964 fname = spool_fname(US"input", message_subdir, id, US"-D");
7965 if (Uunlink(fname) < 0)
7966 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s",
7967 fname, strerror(errno));
7968 fname = spool_fname(US"input", message_subdir, id, US"-H");
7969 if (Uunlink(fname) < 0)
7970 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s",
7971 fname, strerror(errno));
7973 /* Log the end of this message, with queue time if requested. */
7975 if (LOGGING(queue_time_overall))
7976 log_write(0, LOG_MAIN, "Completed QT=%s", string_timesince(&received_time));
7978 log_write(0, LOG_MAIN, "Completed");
7980 /* Unset deliver_freeze so that we won't try to move the spool files further down */
7981 f.deliver_freeze = FALSE;
7983 #ifndef DISABLE_EVENT
7984 (void) event_raise(event_action, US"msg:complete", NULL);
7988 /* If there are deferred addresses, we are keeping this message because it is
7989 not yet completed. Lose any temporary files that were catching output from
7990 pipes for any of the deferred addresses, handle one-time aliases, and see if
7991 the message has been on the queue for so long that it is time to send a warning
7992 message to the sender, unless it is a mailer-daemon. If all deferred addresses
7993 have the same domain, we can set deliver_domain for the expansion of
7994 delay_warning_ condition - if any of them are pipes, files, or autoreplies, use
7995 the parent's domain.
7997 If all the deferred addresses have an error number that indicates "retry time
7998 not reached", skip sending the warning message, because it won't contain the
7999 reason for the delay. It will get sent at the next real delivery attempt.
8000 However, if at least one address has tried, we'd better include all of them in
8003 If we can't make a process to send the message, don't worry.
8005 For mailing list expansions we want to send the warning message to the
8006 mailing list manager. We can't do a perfect job here, as some addresses may
8007 have different errors addresses, but if we take the errors address from
8008 each deferred address it will probably be right in most cases.
8010 If addr_defer == +1, it means there was a problem sending an error message
8011 for failed addresses, and there were no "real" deferred addresses. The value
8012 was set just to keep the message on the spool, so there is nothing to do here.
8015 else if (addr_defer != (address_item *)(+1))
8018 uschar *recipients = US"";
8019 BOOL delivery_attempted = FALSE;
8021 deliver_domain = testflag(addr_defer, af_pfr)
8022 ? addr_defer->parent->domain : addr_defer->domain;
8024 for (addr = addr_defer; addr; addr = addr->next)
8026 address_item *otaddr;
8028 if (addr->basic_errno > ERRNO_RETRY_BASE) delivery_attempted = TRUE;
8032 const uschar *d = testflag(addr, af_pfr)
8033 ? addr->parent->domain : addr->domain;
8035 /* The domain may be unset for an address that has never been routed
8036 because the system filter froze the message. */
8038 if (!d || Ustrcmp(d, deliver_domain) != 0)
8039 deliver_domain = NULL;
8042 if (addr->return_filename) Uunlink(addr->return_filename);
8044 /* Handle the case of one-time aliases. If any address in the ancestry
8045 of this one is flagged, ensure it is in the recipients list, suitably
8046 flagged, and that its parent is marked delivered. */
8048 for (otaddr = addr; otaddr; otaddr = otaddr->parent)
8049 if (otaddr->onetime_parent) break;
8054 int t = recipients_count;
8056 for (i = 0; i < recipients_count; i++)
8058 uschar *r = recipients_list[i].address;
8059 if (Ustrcmp(otaddr->onetime_parent, r) == 0) t = i;
8060 if (Ustrcmp(otaddr->address, r) == 0) break;
8063 /* Didn't find the address already in the list, and did find the
8064 ultimate parent's address in the list, and they really are different
8065 (i.e. not from an identity-redirect). After adding the recipient,
8066 update the errors address in the recipients list. */
8068 if ( i >= recipients_count && t < recipients_count
8069 && Ustrcmp(otaddr->address, otaddr->parent->address) != 0)
8071 DEBUG(D_deliver) debug_printf("one_time: adding %s in place of %s\n",
8072 otaddr->address, otaddr->parent->address);
8073 receive_add_recipient(otaddr->address, t);
8074 recipients_list[recipients_count-1].errors_to = otaddr->prop.errors_address;
8075 tree_add_nonrecipient(otaddr->parent->address);
8076 update_spool = TRUE;
8080 /* Except for error messages, ensure that either the errors address for
8081 this deferred address or, if there is none, the sender address, is on the
8082 list of recipients for a warning message. */
8084 if (sender_address[0])
8086 uschar * s = addr->prop.errors_address;
8087 if (!s) s = sender_address;
8088 if (Ustrstr(recipients, s) == NULL)
8089 recipients = string_sprintf("%s%s%s", recipients,
8090 recipients[0] ? "," : "", s);
8094 /* Send a warning message if the conditions are right. If the condition check
8095 fails because of a lookup defer, there is nothing we can do. The warning
8096 is not sent. Another attempt will be made at the next delivery attempt (if
8099 if ( !f.queue_2stage
8100 && delivery_attempted
8101 && ( !(addr_defer->dsn_flags & rf_dsnflags)
8102 || addr_defer->dsn_flags & rf_notify_delay
8104 && delay_warning[1] > 0
8105 && sender_address[0] != 0
8106 && ( !delay_warning_condition
8107 || expand_check_condition(delay_warning_condition,
8108 US"delay_warning", US"option")
8114 int queue_time = time(NULL) - received_time.tv_sec;
8116 /* When running in the test harness, there's an option that allows us to
8117 fudge this time so as to get repeatability of the tests. Take the first
8118 time off the list. In queue runs, the list pointer gets updated in the
8121 if (f.running_in_test_harness && fudged_queue_times[0] != 0)
8123 int qt = readconf_readtime(fudged_queue_times, '/', FALSE);
8126 DEBUG(D_deliver) debug_printf("fudged queue_times = %s\n",
8127 fudged_queue_times);
8132 /* See how many warnings we should have sent by now */
8134 for (count = 0; count < delay_warning[1]; count++)
8135 if (queue_time < delay_warning[count+2]) break;
8137 show_time = delay_warning[count+1];
8139 if (count >= delay_warning[1])
8142 int last_gap = show_time;
8143 if (count > 1) last_gap -= delay_warning[count];
8144 extra = (queue_time - delay_warning[count+1])/last_gap;
8145 show_time += last_gap * extra;
8151 debug_printf("time on queue = %s\n", readconf_printtime(queue_time));
8152 debug_printf("warning counts: required %d done %d\n", count,
8156 /* We have computed the number of warnings there should have been by now.
8157 If there haven't been enough, send one, and up the count to what it should
8160 if (warning_count < count)
8164 pid_t pid = child_open_exim(&fd);
8170 FILE *f = fdopen(fd, "wb");
8172 transport_ctx tctx = {{0}};
8174 if (warn_message_file)
8175 if (!(wmf = Ufopen(warn_message_file, "rb")))
8176 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to open %s for warning "
8177 "message texts: %s", warn_message_file, strerror(errno));
8179 warnmsg_recipients = recipients;
8180 warnmsg_delay = queue_time < 120*60
8181 ? string_sprintf("%d minutes", show_time/60)
8182 : string_sprintf("%d hours", show_time/3600);
8184 if (errors_reply_to)
8185 fprintf(f, "Reply-To: %s\n", errors_reply_to);
8186 fprintf(f, "Auto-Submitted: auto-replied\n");
8188 fprintf(f, "To: %s\n", recipients);
8190 /* generated boundary string and output MIME-Headers */
8191 bound = string_sprintf(TIME_T_FMT "-eximdsn-%d", time(NULL), rand());
8193 fprintf(f, "Content-Type: multipart/report;"
8194 " report-type=delivery-status; boundary=%s\n"
8195 "MIME-Version: 1.0\n",
8198 if ((wmf_text = next_emf(wmf, US"header")))
8199 fprintf(f, "%s\n", wmf_text);
8201 fprintf(f, "Subject: Warning: message %s delayed %s\n\n",
8202 message_id, warnmsg_delay);
8204 /* output human readable part as text/plain section */
8206 "Content-type: text/plain; charset=us-ascii\n\n",
8209 if ((wmf_text = next_emf(wmf, US"intro")))
8210 fprintf(f, "%s", CS wmf_text);
8214 "This message was created automatically by mail delivery software.\n");
8216 if (Ustrcmp(recipients, sender_address) == 0)
8218 "A message that you sent has not yet been delivered to one or more of its\n"
8219 "recipients after more than ");
8223 "A message sent by\n\n <%s>\n\n"
8224 "has not yet been delivered to one or more of its recipients after more than \n",
8227 fprintf(f, "%s on the queue on %s.\n\n"
8228 "The message identifier is: %s\n",
8229 warnmsg_delay, primary_hostname, message_id);
8231 for (h = header_list; h; h = h->next)
8232 if (strncmpic(h->text, US"Subject:", 8) == 0)
8233 fprintf(f, "The subject of the message is: %s", h->text + 9);
8234 else if (strncmpic(h->text, US"Date:", 5) == 0)
8235 fprintf(f, "The date of the message is: %s", h->text + 6);
8238 fprintf(f, "The address%s to which the message has not yet been "
8240 !addr_defer->next ? "" : "es",
8241 !addr_defer->next ? "is": "are");
8244 /* List the addresses, with error information if allowed */
8246 /* store addr_defer for machine readable part */
8247 address_item *addr_dsndefer = addr_defer;
8251 address_item *addr = addr_defer;
8252 addr_defer = addr->next;
8253 if (print_address_information(addr, f, US" ", US"\n ", US""))
8254 print_address_error(addr, f, US"Delay reason: ");
8263 if ((wmf_text = next_emf(wmf, US"final")))
8264 fprintf(f, "%s", CS wmf_text);
8270 "No action is required on your part. Delivery attempts will continue for\n"
8271 "some time, and this warning may be repeated at intervals if the message\n"
8272 "remains undelivered. Eventually the mail delivery software will give up,\n"
8273 "and when that happens, the message will be returned to you.\n");
8276 /* output machine readable part */
8277 fprintf(f, "\n--%s\n"
8278 "Content-type: message/delivery-status\n\n"
8279 "Reporting-MTA: dns; %s\n",
8281 smtp_active_hostname);
8286 /* must be decoded from xtext: see RFC 3461:6.3a */
8288 if (auth_xtextdecode(dsn_envid, &xdec_envid) > 0)
8289 fprintf(f,"Original-Envelope-ID: %s\n", dsn_envid);
8291 fprintf(f,"X-Original-Envelope-ID: error decoding xtext formatted ENVID\n");
8295 for ( ; addr_dsndefer; addr_dsndefer = addr_dsndefer->next)
8297 if (addr_dsndefer->dsn_orcpt)
8298 fprintf(f, "Original-Recipient: %s\n", addr_dsndefer->dsn_orcpt);
8300 fprintf(f, "Action: delayed\n"
8301 "Final-Recipient: rfc822;%s\n"
8303 addr_dsndefer->address);
8304 if (addr_dsndefer->host_used && addr_dsndefer->host_used->name)
8306 fprintf(f, "Remote-MTA: dns; %s\n",
8307 addr_dsndefer->host_used->name);
8308 print_dsn_diagnostic_code(addr_dsndefer, f);
8314 "Content-type: text/rfc822-headers\n\n",
8318 /* header only as required by RFC. only failure DSN needs to honor RET=FULL */
8319 tctx.u.fd = fileno(f);
8320 tctx.options = topt_add_return_path | topt_no_body;
8321 transport_filter_argv = NULL; /* Just in case */
8322 return_path = sender_address; /* In case not previously set */
8324 /* Write the original email out */
8325 transport_write_message(&tctx, 0);
8328 fprintf(f,"\n--%s--\n", bound);
8332 /* Close and wait for child process to complete, without a timeout.
8333 If there's an error, don't update the count. */
8336 if (child_close(pid, 0) == 0)
8338 warning_count = count;
8339 update_spool = TRUE; /* Ensure spool rewritten */
8345 /* Clear deliver_domain */
8347 deliver_domain = NULL;
8349 /* If this was a first delivery attempt, unset the first time flag, and
8350 ensure that the spool gets updated. */
8352 if (f.deliver_firsttime)
8354 f.deliver_firsttime = FALSE;
8355 update_spool = TRUE;
8358 /* If delivery was frozen and freeze_tell is set, generate an appropriate
8359 message, unless the message is a local error message (to avoid loops). Then
8360 log the freezing. If the text in "frozen_info" came from a system filter,
8361 it has been escaped into printing characters so as not to mess up log lines.
8362 For the "tell" message, we turn \n back into newline. Also, insert a newline
8363 near the start instead of the ": " string. */
8365 if (f.deliver_freeze)
8367 if (freeze_tell && freeze_tell[0] != 0 && !f.local_error_message)
8369 uschar *s = string_copy(frozen_info);
8370 uschar *ss = Ustrstr(s, " by the system filter: ");
8381 if (*ss == '\\' && ss[1] == 'n')
8388 moan_tell_someone(freeze_tell, addr_defer, US"Message frozen",
8389 "Message %s has been frozen%s.\nThe sender is <%s>.\n", message_id,
8393 /* Log freezing just before we update the -H file, to minimize the chance
8394 of a race problem. */
8396 deliver_msglog("*** Frozen%s\n", frozen_info);
8397 log_write(0, LOG_MAIN, "Frozen%s", frozen_info);
8400 /* If there have been any updates to the non-recipients list, or other things
8401 that get written to the spool, we must now update the spool header file so
8402 that it has the right information for the next delivery attempt. If there
8403 was more than one address being delivered, the header_change update is done
8404 earlier, in case one succeeds and then something crashes. */
8407 debug_printf("delivery deferred: update_spool=%d header_rewritten=%d\n",
8408 update_spool, f.header_rewritten);
8410 if (update_spool || f.header_rewritten)
8411 /* Panic-dies on error */
8412 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
8415 /* Finished with the message log. If the message is complete, it will have
8416 been unlinked or renamed above. */
8418 if (message_logs) (void)fclose(message_log);
8420 /* Now we can close and remove the journal file. Its only purpose is to record
8421 successfully completed deliveries asap so that this information doesn't get
8422 lost if Exim (or the machine) crashes. Forgetting about a failed delivery is
8423 not serious, as trying it again is not harmful. The journal might not be open
8424 if all addresses were deferred at routing or directing. Nevertheless, we must
8425 remove it if it exists (may have been lying around from a crash during the
8426 previous delivery attempt). We don't remove the journal if a delivery
8427 subprocess failed to pass back delivery information; this is controlled by
8428 the remove_journal flag. When the journal is left, we also don't move the
8429 message off the main spool if frozen and the option is set. It should get moved
8430 at the next attempt, after the journal has been inspected. */
8432 if (journal_fd >= 0) (void)close(journal_fd);
8436 uschar * fname = spool_fname(US"input", message_subdir, id, US"-J");
8438 if (Uunlink(fname) < 0 && errno != ENOENT)
8439 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s", fname,
8442 /* Move the message off the spool if requested */
8444 #ifdef SUPPORT_MOVE_FROZEN_MESSAGES
8445 if (f.deliver_freeze && move_frozen_messages)
8446 (void)spool_move_message(id, message_subdir, US"", US"F");
8450 /* Closing the data file frees the lock; if the file has been unlinked it
8451 will go away. Otherwise the message becomes available for another process
8454 (void)close(deliver_datafile);
8455 deliver_datafile = -1;
8456 DEBUG(D_deliver) debug_printf("end delivery of %s\n", id);
8458 /* It is unlikely that there will be any cached resources, since they are
8459 released after routing, and in the delivery subprocesses. However, it's
8460 possible for an expansion for something afterwards (for example,
8461 expand_check_condition) to do a lookup. We must therefore be sure everything is
8465 acl_where = ACL_WHERE_UNKNOWN;
8474 #ifdef EXIM_TFO_PROBE
8477 f.tcp_fastopen_ok = TRUE;
8481 if (!regex_PIPELINING) regex_PIPELINING =
8482 regex_must_compile(US"\\n250[\\s\\-]PIPELINING(\\s|\\n|$)", FALSE, TRUE);
8484 if (!regex_SIZE) regex_SIZE =
8485 regex_must_compile(US"\\n250[\\s\\-]SIZE(\\s|\\n|$)", FALSE, TRUE);
8487 if (!regex_AUTH) regex_AUTH =
8488 regex_must_compile(US"\\n250[\\s\\-]AUTH\\s+([\\-\\w\\s]+)(?:\\n|$)",
8492 if (!regex_STARTTLS) regex_STARTTLS =
8493 regex_must_compile(US"\\n250[\\s\\-]STARTTLS(\\s|\\n|$)", FALSE, TRUE);
8495 # ifdef EXPERIMENTAL_REQUIRETLS
8496 if (!regex_REQUIRETLS) regex_REQUIRETLS =
8497 regex_must_compile(US"\\n250[\\s\\-]REQUIRETLS(\\s|\\n|$)", FALSE, TRUE);
8501 if (!regex_CHUNKING) regex_CHUNKING =
8502 regex_must_compile(US"\\n250[\\s\\-]CHUNKING(\\s|\\n|$)", FALSE, TRUE);
8504 #ifndef DISABLE_PRDR
8505 if (!regex_PRDR) regex_PRDR =
8506 regex_must_compile(US"\\n250[\\s\\-]PRDR(\\s|\\n|$)", FALSE, TRUE);
8510 if (!regex_UTF8) regex_UTF8 =
8511 regex_must_compile(US"\\n250[\\s\\-]SMTPUTF8(\\s|\\n|$)", FALSE, TRUE);
8514 if (!regex_DSN) regex_DSN =
8515 regex_must_compile(US"\\n250[\\s\\-]DSN(\\s|\\n|$)", FALSE, TRUE);
8517 if (!regex_IGNOREQUOTA) regex_IGNOREQUOTA =
8518 regex_must_compile(US"\\n250[\\s\\-]IGNOREQUOTA(\\s|\\n|$)", FALSE, TRUE);
8523 deliver_get_sender_address (uschar * id)
8526 uschar * new_sender_address,
8527 * save_sender_address;
8528 BOOL save_qr = f.queue_running;
8531 /* make spool_open_datafile non-noisy on fail */
8533 f.queue_running = TRUE;
8535 /* Side effect: message_subdir is set for the (possibly split) spool directory */
8537 deliver_datafile = spool_open_datafile(id);
8538 f.queue_running = save_qr;
8539 if (deliver_datafile < 0)
8542 /* Save and restore the global sender_address. I'm not sure if we should
8543 not save/restore all the other global variables too, because
8544 spool_read_header() may change all of them. But OTOH, when this
8545 deliver_get_sender_address() gets called, the current message is done
8546 already and nobody needs the globals anymore. (HS12, 2015-08-21) */
8548 spoolname = string_sprintf("%s-H", id);
8549 save_sender_address = sender_address;
8551 rc = spool_read_header(spoolname, TRUE, TRUE);
8553 new_sender_address = sender_address;
8554 sender_address = save_sender_address;
8556 if (rc != spool_read_OK)
8559 assert(new_sender_address);
8561 (void)close(deliver_datafile);
8562 deliver_datafile = -1;
8564 return new_sender_address;
8570 delivery_re_exec(int exec_type)
8574 if (cutthrough.cctx.sock >= 0 && cutthrough.callout_hold_only)
8576 int channel_fd = cutthrough.cctx.sock;
8578 smtp_peer_options = cutthrough.peer_options;
8579 continue_sequence = 0;
8582 if (cutthrough.is_tls)
8586 smtp_peer_options |= OPTION_TLS;
8587 sending_ip_address = cutthrough.snd_ip;
8588 sending_port = cutthrough.snd_port;
8590 where = US"socketpair";
8591 if (socketpair(AF_UNIX, SOCK_STREAM, 0, pfd) != 0)
8595 if ((pid = fork()) < 0)
8598 else if (pid == 0) /* child: fork again to totally disconnect */
8600 if (f.running_in_test_harness) millisleep(100); /* let parent debug out */
8601 /* does not return */
8602 smtp_proxy_tls(cutthrough.cctx.tls_ctx, big_buffer, big_buffer_size,
8606 DEBUG(D_transport) debug_printf("proxy-proc inter-pid %d\n", pid);
8608 waitpid(pid, NULL, 0);
8609 (void) close(channel_fd); /* release the client socket */
8610 channel_fd = pfd[1];
8614 transport_do_pass_socket(cutthrough.transport, cutthrough.host.name,
8615 cutthrough.host.address, message_id, channel_fd);
8619 cancel_cutthrough_connection(TRUE, US"non-continued delivery");
8620 (void) child_exec_exim(exec_type, FALSE, NULL, FALSE, 2, US"-Mc", message_id);
8622 return; /* compiler quietening; control does not reach here. */
8627 LOG_MAIN | (exec_type == CEE_EXEC_EXIT ? LOG_PANIC : LOG_PANIC_DIE),
8628 "delivery re-exec %s failed: %s", where, strerror(errno));
8630 /* Get here if exec_type == CEE_EXEC_EXIT.
8631 Note: this must be _exit(), not exit(). */
8633 _exit(EX_EXECFAILED);
8639 /* End of deliver.c */