liable to incompatible change.
-Brightmail AntiSpam (BMI) suppport
+Brightmail AntiSpam (BMI) support
--------------------------------------------------------------
Brightmail AntiSpam is a commercial package. Please see
1) Adding support for BMI at compile time
To compile with BMI support, you need to link Exim against
- the Brighmail client SDK, consisting of a library
+ the Brightmail client SDK, consisting of a library
(libbmiclient_single.so) and a header file (bmi_api.h).
You'll also need to explicitly set a flag in the Makefile to
include BMI support in the Exim binary. Both can be achieved
-Sender Policy Framework (SPF) support
---------------------------------------------------------------
-
-To learn more about SPF, visit http://www.openspf.org. This
-document does not explain the SPF fundamentals, you should
-read and understand the implications of deploying SPF on your
-system before doing so.
-
-SPF support is added via the libspf2 library. Visit
-
- http://www.libspf2.org/
-
-to obtain a copy, then compile and install it. By default,
-this will put headers in /usr/local/include and the static
-library in /usr/local/lib.
-
-To compile Exim with SPF support, set these additional flags in
-Local/Makefile:
-
-EXPERIMENTAL_SPF=yes
-CFLAGS=-DSPF -I/usr/local/include
-EXTRALIBS_EXIM=-L/usr/local/lib -lspf2
-
-This assumes that the libspf2 files are installed in
-their default locations.
-
-You can now run SPF checks in incoming SMTP by using the "spf"
-ACL condition in either the MAIL, RCPT or DATA ACLs. When
-using it in the RCPT ACL, you can make the checks dependent on
-the RCPT address (or domain), so you can check SPF records
-only for certain target domains. This gives you the
-possibility to opt-out certain customers that do not want
-their mail to be subject to SPF checking.
-
-The spf condition takes a list of strings on its right-hand
-side. These strings describe the outcome of the SPF check for
-which the spf condition should succeed. Valid strings are:
-
- o pass The SPF check passed, the sending host
- is positively verified by SPF.
- o fail The SPF check failed, the sending host
- is NOT allowed to send mail for the domain
- in the envelope-from address.
- o softfail The SPF check failed, but the queried
- domain can't absolutely confirm that this
- is a forgery.
- o none The queried domain does not publish SPF
- records.
- o neutral The SPF check returned a "neutral" state.
- This means the queried domain has published
- a SPF record, but wants to allow outside
- servers to send mail under its domain as well.
- This should be treated like "none".
- o permerror This indicates a syntax error in the SPF
- record of the queried domain. You may deny
- messages when this occurs. (Changed in 4.83)
- o temperror This indicates a temporary error during all
- processing, including Exim's SPF processing.
- You may defer messages when this occurs.
- (Changed in 4.83)
- o err_temp Same as permerror, deprecated in 4.83, will be
- removed in a future release.
- o err_perm Same as temperror, deprecated in 4.83, will be
- removed in a future release.
-
-You can prefix each string with an exclamation mark to invert
-its meaning, for example "!fail" will match all results but
-"fail". The string list is evaluated left-to-right, in a
-short-circuit fashion. When a string matches the outcome of
-the SPF check, the condition succeeds. If none of the listed
-strings matches the outcome of the SPF check, the condition
-fails.
-
-Here is an example to fail forgery attempts from domains that
-publish SPF records:
-
-/* -----------------
-deny message = $sender_host_address is not allowed to send mail from ${if def:sender_address_domain {$sender_address_domain}{$sender_helo_name}}. \
- Please see http://www.openspf.org/Why?scope=${if def:sender_address_domain {mfrom}{helo}};identity=${if def:sender_address_domain {$sender_address}{$sender_helo_name}};ip=$sender_host_address
- spf = fail
---------------------- */
-
-You can also give special treatment to specific domains:
-
-/* -----------------
-deny message = AOL sender, but not from AOL-approved relay.
- sender_domains = aol.com
- spf = fail:neutral
---------------------- */
-
-Explanation: AOL publishes SPF records, but is liberal and
-still allows non-approved relays to send mail from aol.com.
-This will result in a "neutral" state, while mail from genuine
-AOL servers will result in "pass". The example above takes
-this into account and treats "neutral" like "fail", but only
-for aol.com. Please note that this violates the SPF draft.
-
-When the spf condition has run, it sets up several expansion
-variables.
-
- $spf_header_comment
- This contains a human-readable string describing the outcome
- of the SPF check. You can add it to a custom header or use
- it for logging purposes.
-
- $spf_received
- This contains a complete Received-SPF: header that can be
- added to the message. Please note that according to the SPF
- draft, this header must be added at the top of the header
- list. Please see section 10 on how you can do this.
-
- Note: in case of "Best-guess" (see below), the convention is
- to put this string in a header called X-SPF-Guess: instead.
-
- $spf_result
- This contains the outcome of the SPF check in string form,
- one of pass, fail, softfail, none, neutral, permerror or
- temperror.
-
- $spf_smtp_comment
- This contains a string that can be used in a SMTP response
- to the calling party. Useful for "fail".
-
-In addition to SPF, you can also perform checks for so-called
-"Best-guess". Strictly speaking, "Best-guess" is not standard
-SPF, but it is supported by the same framework that enables SPF
-capability. Refer to http://www.openspf.org/FAQ/Best_guess_record
-for a description of what it means.
-
-To access this feature, simply use the spf_guess condition in place
-of the spf one. For example:
-
-/* -----------------
-deny message = $sender_host_address doesn't look trustworthy to me
- spf_guess = fail
---------------------- */
-
-In case you decide to reject messages based on this check, you
-should note that although it uses the same framework, "Best-guess"
-is NOT SPF, and therefore you should not mention SPF at all in your
-reject message.
-
-When the spf_guess condition has run, it sets up the same expansion
-variables as when spf condition is run, described above.
-
-Additionally, since Best-guess is not standardized, you may redefine
-what "Best-guess" means to you by redefining spf_guess variable in
-global config. For example, the following:
-
-/* -----------------
-spf_guess = v=spf1 a/16 mx/16 ptr ?all
---------------------- */
-
-would relax host matching rules to a broader network range.
-
-
-A lookup expansion is also available. It takes an email
-address as the key and an IP address as the database:
-
- $lookup (username@domain} spf {ip.ip.ip.ip}}
-
-The lookup will return the same result strings as they can appear in
-$spf_result (pass,fail,softfail,neutral,none,err_perm,err_temp).
-Currently, only IPv4 addresses are supported.
-
-
-
SRS (Sender Rewriting Scheme) Support
--------------------------------------------------------------
Exiscan currently includes SRS support via Miles Wilton's
libsrs_alt library. The current version of the supported
-library is 0.5.
+library is 0.5, there are reports of 1.0 working.
In order to use SRS, you must get a copy of libsrs_alt from
-http://srs.mirtol.com/
+https://opsec.eu/src/srs/
+
+(not the original source, which has disappeared.)
Unpack the tarball, then refer to MTAs/README.EXIM
to proceed. You need to set
in your Local/Makefile.
+
DCC Support
--------------------------------------------------------------
Distributed Checksum Clearinghouse; http://www.rhyolite.com/dcc/
mout-xforward.gmx.net 82.165.159.12
mout.gmx.net 212.227.15.16
-Use a reasonable IP. eg. one the sending cluster acutally uses.
+Use a reasonable IP. eg. one the sending cluster actually uses.
+
+
DMARC Support
--------------------------------------------------------------
are in /usr/local/lib.
1. To compile Exim with DMARC support, you must first enable SPF.
-Please read the above section on enabling the EXPERIMENTAL_SPF
+Please read the Local/Makefile comments on enabling the SUPPORT_SPF
feature. You must also have DKIM support, so you cannot set the
DISABLE_DKIM feature. Once both of those conditions have been met
you can enable DMARC in Local/Makefile:
during domain parsing. Maintained by Mozilla,
the most current version can be downloaded
from a link at http://publicsuffix.org/list/.
+ See also util/renew-opendmarc-tlds.sh script.
Optional:
dmarc_history_file Defines the location of a file to log results
directory of this file is writable by the user
exim runs as.
-dmarc_forensic_sender The email address to use when sending a
+dmarc_forensic_sender Alternate email address to use when sending a
forensic report detailing alignment failures
if a sender domain's dmarc record specifies it
and you have configured Exim to send them.
- Default: do-not-reply@$default_hostname
+
+ If set, this is expanded and used for the
+ From: header line; the address is extracted
+ from it and used for the envelope from.
+ If not set, the From: header is expanded from
+ the dsn_from option, and <> is used for the
+ envelope from.
+
+ Default: unset.
3. By default, the DMARC processing will run for any remote,
supports, including LDAP, Postgres, MySQL, etc, as long as the
result is a list of colon-separated strings.
+Performing the check sets up information used by the
+${authresults } expansion item.
+
Several expansion variables are set before the DATA ACL is
processed, and you can use them in this ACL. The following
expansion variables are available:
are "none", "reject" and "quarantine". It is blank when there
is any error, including no DMARC record.
- o $dmarc_ar_header
- This is the entire Authentication-Results header which you can
- add using an add_header modifier.
+A now-redundant variable $dmarc_ar_header has now been withdrawn.
+Use the ${authresults } expansion instead.
5. How to enable DMARC advanced operation:
warn dmarc_status = accept : none : off
!authenticated = *
log_message = DMARC DEBUG: $dmarc_status $dmarc_used_domain
- add_header = $dmarc_ar_header
warn dmarc_status = !accept
!authenticated = *
!authenticated = *
message = Message from $dmarc_used_domain failed sender's DMARC policy, REJECT
+ warn add_header = :at_start:${authresults {$primary_hostname}}
-Event Actions
---------------------------------------------------------------
-
-(Renamed from TPDA, Transport post-delivery actions)
-
-An arbitrary per-transport string can be expanded upon various transport events.
-Additionally a main-section configuration option can be expanded on some
-per-message events.
-This feature may be used, for example, to write exim internal log information
-(not available otherwise) into a database.
-
-In order to use the feature, you must compile with
-
-EXPERIMENTAL_EVENT=yes
-
-in your Local/Makefile
-
-and define one or both of
-- the event_action option in the transport
-- the event_action main option
-to be expanded when the event fires.
-
-A new variable, $event_name, is set to the event type when the
-expansion is done. The current list of events is:
-
- msg:complete after main per message
- msg:delivery after transport per recipient
- msg:rcpt:host:defer after transport per recipient per host
- msg:rcpt:defer after transport per recipient
- msg:host:defer after transport per attempt
- msg:fail:delivery after main per recipient
- msg:fail:internal after main per recipient
- tcp:connect before transport per connection
- tcp:close after transport per connection
- tls:cert before both per certificate in verification chain
- smtp:connect after transport per connection
-
-The expansion is called for all event types, and should use the $event_name
-variable to decide when to act. The value of the variable is a colon-separated
-list, defining a position in the tree of possible events; it may be used as
-a list or just matched on as a whole. There will be no whitespace.
-
-New event types may be added in the future.
-
-
-There is an auxilary variable, $event_data, for which the
-content is event_dependent:
-
- msg:delivery smtp confirmation mssage
- msg:rcpt:host:defer error string
- msg:rcpt:defer error string
- msg:host:defer error string
- tls:cert verification chain depth
- smtp:connect smtp banner
-
-The :defer events populate one extra variable, $event_defer_errno.
-
-The following variables are likely to be useful depending on the event type:
-
- router_name, transport_name
- local_part, domain
- host, host_address, host_port
- tls_out_peercert
- lookup_dnssec_authenticated, tls_out_dane
- sending_ip_address, sending_port
- message_exim_id, verify_mode
-
-
-An example might look like:
-
-event_action = ${if eq {msg:delivery}{$event_name} \
-{${lookup pgsql {SELECT * FROM record_Delivery( \
- '${quote_pgsql:$sender_address_domain}',\
- '${quote_pgsql:${lc:$sender_address_local_part}}', \
- '${quote_pgsql:$domain}', \
- '${quote_pgsql:${lc:$local_part}}', \
- '${quote_pgsql:$host_address}', \
- '${quote_pgsql:${lc:$host}}', \
- '${quote_pgsql:$message_exim_id}')}} \
-} {}}
-
-The string is expanded when each of the supported events occur
-and any side-effects of the expansion will happen.
-
-Note that for complex operations an ACL expansion can be used,
-however due to the multiple contexts the Exim operates in
-a) variables set in events raised from transports will not
- be visible outside that transport call.
-b) acl_m variables in a server context are lost on a new connection,
- and after helo/ehlo/mail/starttls/rset commands
-Using an ACL expansion with the logwrite modifier can be a
-useful way of writing to the main log.
-
+DSN extra information
+---------------------
+If compiled with EXPERIMENTAL_DSN_INFO extra information will be added
+to DSN fail messages ("bounces"), when available. The intent is to aid
+tracing of specific failing messages, when presented with a "bounce"
+complaint and needing to search logs.
-The expansion of the event_action option should normally
-return an empty string. Should it return anything else the
-following will be forced:
- msg:delivery (ignored)
- msg:host:defer (ignored)
- msg:fail:delivery (ignored)
- tcp:connect do not connect
- tcp:close (ignored)
- tls:cert refuse verification
- smtp:connect close connection
+The remote MTA IP address, with port number if nonstandard.
+Example:
+ Remote-MTA: X-ip; [127.0.0.1]:587
+Rationale:
+ Several addresses may correspond to the (already available)
+ dns name for the remote MTA.
-No other use is made of the result string.
+The remote MTA connect-time greeting.
+Example:
+ X-Remote-MTA-smtp-greeting: X-str; 220 the.local.host.name ESMTP Exim x.yz Tue, 2 Mar 1999 09:44:33 +0000
+Rationale:
+ This string sometimes presents the remote MTA's idea of its
+ own name, and sometimes identifies the MTA software.
-If transport proxying is used, the remote IP/port during a
-tcp:connect event will be that of the proxy.
+The remote MTA response to HELO or EHLO.
+Example:
+ X-Remote-MTA-helo-response: X-str; 250-the.local.host.name Hello localhost [127.0.0.1]
+Limitations:
+ Only the first line of a multiline response is recorded.
+Rationale:
+ This string sometimes presents the remote MTA's view of
+ the peer IP connecting to it.
+The reporting MTA detailed diagnostic.
+Example:
+ X-Exim-Diagnostic: X-str; SMTP error from remote mail server after RCPT TO:<d3@myhost.test.ex>: 550 hard error
+Rationale:
+ This string sometimes give extra information over the
+ existing (already available) Diagnostic-Code field.
-Known issues:
-- the tls:cert event is only called for the cert chain elements
- received over the wire, with GnuTLS. OpenSSL gives the entire
- chain including those loaded locally.
+Note that non-RFC-documented field names and data types are used.
-Redis Lookup
---------------------------------------------------------------
-Redis is open source advanced key-value data store. This document
-does not explain the fundamentals, you should read and understand how
-it works by visiting the website at http://www.redis.io/.
+LMDB Lookup support
+-------------------
+LMDB is an ultra-fast, ultra-compact, crash-proof key-value embedded data store.
+It is modeled loosely on the BerkeleyDB API. You should read about the feature
+set as well as operation modes at https://symas.com/products/lightning-memory-mapped-database/
-Redis lookup support is added via the hiredis library. Visit:
+LMDB single key lookup support is provided by linking to the LMDB C library.
+The current implementation does not support writing to the LMDB database.
- https://github.com/redis/hiredis
+Visit https://github.com/LMDB/lmdb to download the library or find it in your
+operating systems package repository.
-to obtain a copy, or find it in your operating systems package repository.
If building from source, this description assumes that headers will be in
/usr/local/include, and that the libraries are in /usr/local/lib.
-1. In order to build exim with Redis lookup support add
+1. In order to build exim with LMDB lookup support add or uncomment
-EXPERIMENTAL_REDIS=yes
+EXPERIMENTAL_LMDB=yes
to your Local/Makefile. (Re-)build/install exim. exim -d should show
-Experimental_Redis in the line "Support for:".
+Experimental_LMDB in the line "Support for:".
-EXPERIMENTAL_REDIS=yes
-LDFLAGS += -lhiredis
+EXPERIMENTAL_LMDB=yes
+LDFLAGS += -llmdb
# CFLAGS += -I/usr/local/include
# LDFLAGS += -L/usr/local/lib
The first line sets the feature to include the correct code, and
-the second line says to link the hiredis libraries into the
+the second line says to link the LMDB libraries into the
exim binary. The commented out lines should be uncommented if you
-built hiredis from source and installed in the default location.
+built LMDB from source and installed in the default location.
Adjust the paths if you installed them elsewhere, but you do not
need to uncomment them if an rpm (or you) installed them in the
package controlled locations (/usr/include and /usr/lib).
+2. Create your LMDB files, you can use the mdb_load utility which is
+part of the LMDB distribution our your favourite language bindings.
-2. Use the following global settings to configure Redis lookup support:
+3. Add the single key lookups to your exim.conf file, example lookups
+are below.
-Required:
-redis_servers This option provides a list of Redis servers
- and associated connection data, to be used in
- conjunction with redis lookups. The option is
- only available if Exim is configured with Redis
- support.
-
-For example:
-
-redis_servers = 127.0.0.1/10/ - using database 10 with no password
-redis_servers = 127.0.0.1//password - to make use of the default database of 0 with a password
-redis_servers = 127.0.0.1// - for default database of 0 with no password
-
-3. Once you have the Redis servers defined you can then make use of the
-experimental Redis lookup by specifying ${lookup redis{}} in a lookup query.
-
-4. Example usage:
-
-(Host List)
-hostlist relay_from_ips = <\n ${lookup redis{SMEMBERS relay_from_ips}}
-
-Where relay_from_ips is a Redis set which contains entries such as "192.168.0.0/24" "10.0.0.0/8" and so on.
-The result set is returned as
-192.168.0.0/24
-10.0.0.0/8
-..
-.
-
-(Domain list)
-domainlist virtual_domains = ${lookup redis {HGET $domain domain}}
-
-Where $domain is a hash which includes the key 'domain' and the value '$domain'.
-
-(Adding or updating an existing key)
-set acl_c_spammer = ${if eq{${lookup redis{SPAMMER_SET}}}{OK}}
-
-Where SPAMMER_SET is a macro and it is defined as
-
-"SET SPAMMER <some_value>"
-
-(Getting a value from Redis)
-
-set acl_c_spam_host = ${lookup redis{GET...}}
-
-
-DANE
-------------------------------------------------------------
-DNS-based Authentication of Named Entities, as applied
-to SMTP over TLS, provides assurance to a client that
-it is actually talking to the server it wants to rather
-than some attacker operating a Man In The Middle (MITM)
-operation. The latter can terminate the TLS connection
-you make, and make another one to the server (so both
-you and the server still think you have an encrypted
-connection) and, if one of the "well known" set of
-Certificate Authorities has been suborned - something
-which *has* been seen already (2014), a verifiable
-certificate (if you're using normal root CAs, eg. the
-Mozilla set, as your trust anchors).
-
-What DANE does is replace the CAs with the DNS as the
-trust anchor. The assurance is limited to a) the possibility
-that the DNS has been suborned, b) mistakes made by the
-admins of the target server. The attack surface presented
-by (a) is thought to be smaller than that of the set
-of root CAs.
-
-It also allows the server to declare (implicitly) that
-connections to it should use TLS. An MITM could simply
-fail to pass on a server's STARTTLS.
-
-DANE scales better than having to maintain (and
-side-channel communicate) copies of server certificates
-for every possible target server. It also scales
-(slightly) better than having to maintain on an SMTP
-client a copy of the standard CAs bundle. It also
-means not having to pay a CA for certificates.
-
-DANE requires a server operator to do three things:
-1) run DNSSEC. This provides assurance to clients
-that DNS lookups they do for the server have not
-been tampered with. The domain MX record applying
-to this server, its A record, its TLSA record and
-any associated CNAME records must all be covered by
-DNSSEC.
-2) add TLSA DNS records. These say what the server
-certificate for a TLS connection should be.
-3) offer a server certificate, or certificate chain,
-in TLS connections which is traceable to the one
-defined by (one of?) the TSLA records
-
-There are no changes to Exim specific to server-side
-operation of DANE.
-
-The TLSA record for the server may have "certificate
-usage" of DANE-TA(2) or DANE-EE(3). The latter specifies
-the End Entity directly, i.e. the certificate involved
-is that of the server (and should be the sole one transmitted
-during the TLS handshake); this is appropriate for a
-single system, using a self-signed certificate.
- DANE-TA usage is effectively declaring a specific CA
-to be used; this might be a private CA or a public,
-well-known one. A private CA at simplest is just
-a self-signed certificate which is used to sign
-cerver certificates, but running one securely does
-require careful arrangement. If a private CA is used
-then either all clients must be primed with it, or
-(probably simpler) the server TLS handshake must transmit
-the entire certificate chain from CA to server-certificate.
-If a public CA is used then all clients must be primed with it
-(losing one advantage of DANE) - but the attack surface is
-reduced from all public CAs to that single CA.
-DANE-TA is commonly used for several services and/or
-servers, each having a TLSA query-domain CNAME record,
-all of which point to a single TLSA record.
-
-The TLSA record should have a Selector field of SPKI(1)
-and a Matching Type field of SHA2-512(2).
-
-At the time of writing, https://www.huque.com/bin/gen_tlsa
-is useful for quickly generating TLSA records; and commands like
-
- openssl x509 -in -pubkey -noout <certificate.pem \
- | openssl rsa -outform der -pubin 2>/dev/null \
- | openssl sha512 \
- | awk '{print $2}'
-
-are workable for 4th-field hashes.
-
-For use with the DANE-TA model, server certificates
-must have a correct name (SubjectName or SubjectAltName).
-
-The use of OCSP-stapling should be considered, allowing
-for fast revocation of certificates (which would otherwise
-be limited by the DNS TTL on the TLSA records). However,
-this is likely to only be usable with DANE-TA. NOTE: the
-default of requesting OCSP for all hosts is modified iff
-DANE is in use, to:
-
- hosts_request_ocsp = ${if or { {= {0}{$tls_out_tlsa_usage}} \
- {= {4}{$tls_out_tlsa_usage}} } \
- {*}{}}
-
-The (new) variable $tls_out_tlsa_usage is a bitfield with
-numbered bits set for TLSA record usage codes.
-The zero above means DANE was not in use,
-the four means that only DANE-TA usage TLSA records were
-found. If the definition of hosts_request_ocsp includes the
-string "tls_out_tlsa_usage", they are re-expanded in time to
-control the OCSP request.
-
-This modification of hosts_request_ocsp is only done if
-it has the default value of "*". Admins who change it, and
-those who use hosts_require_ocsp, should consider the interaction
-with DANE in their OCSP settings.
-
-
-For client-side DANE there are two new smtp transport options,
-hosts_try_dane and hosts_require_dane. They do the obvious thing.
-[ should they be domain-based rather than host-based? ]
-
-DANE will only be usable if the target host has DNSSEC-secured
-MX, A and TLSA records.
-
-A TLSA lookup will be done if either of the above options match
-and the host-lookup succeded using dnssec.
-If a TLSA lookup is done and succeeds, a DANE-verified TLS connection
-will be required for the host.
-
-(TODO: specify when fallback happens vs. when the host is not used)
-
-If DANE is requested and useable (see above) the following transport
-options are ignored:
- hosts_require_tls
- tls_verify_hosts
- tls_try_verify_hosts
- tls_verify_certificates
- tls_crl
- tls_verify_cert_hostnames
-
-If DANE is not usable, whether requested or not, and CA-anchored
-verification evaluation is wanted, the above variables should be set
-appropriately.
-
-Currently dnssec_request_domains must be active (need to think about that)
-and dnssec_require_domains is ignored.
-
-If verification was successful using DANE then the "CV" item
-in the delivery log line will show as "CV=dane".
-
-There is a new variable $tls_out_dane which will have "yes" if
-verification succeeded using DANE and "no" otherwise (only useful
-in combination with EXPERIMENTAL_EVENT), and a new variable
-$tls_out_tlsa_usage (detailed above).
-
-
-
-INTERNATIONAL
-------------------------------------------------------------
-SMTPUTF8
-Internationalised mail name handling.
-RFCs 6530, 6533, 5890
+${lookup{$sender_address_domain}lmdb{/var/lib/baruwa/data/db/relaydomains.mdb}{$value}}
+${lookup{$sender_address_domain}lmdb{/var/lib/baruwa/data/db/relaydomains.mdb}{$value}fail}
+${lookup{$sender_address_domain}lmdb{/var/lib/baruwa/data/db/relaydomains.mdb}}
-Compile with EXPERIMENTAL_INTERNATIONAL and libidn.
-New main config option smtputf8_advertise_hosts, default '*',
-a host list. If this matches the sending host and
-accept_8bitmime is true (the default) then the ESMTP option
-SMTPUTF8 will be advertised.
+Queuefile transport
+-------------------
+Queuefile is a pseudo transport which does not perform final delivery.
+It simply copies the exim spool files out of the spool directory into
+an external directory retaining the exim spool format.
-If the sender specifies the SMTPUTF8 option on a MAIL command
-international handling for the message is enabled and
-the expansion variable $message_smtputf8 will have value TRUE.
+The spool files can then be processed by external processes and then
+requeued into exim spool directories for final delivery.
+However, note carefully the warnings in the main documentation on
+qpool file formats.
-The option allow_utf8_domains is set to true for this
-message. All DNS lookups are converted to a-label form
-whatever the setting of allow_utf8_domains.
+The motivation/inspiration for the transport is to allow external
+processes to access email queued by exim and have access to all the
+information which would not be available if the messages were delivered
+to the process in the standard email formats.
-Both localparts and domain are maintained as the original
-utf8 form internally; any matching or regex use will
-require appropriate care. Filenames created, eg. by
-the appendfile transport, will have utf8 name.
+The mailscanner package is one of the processes that can take advantage
+of this transport to filter email.
-Helo names sent by the smtp transport will have any utf8
-components expanded to a-label form.
+The transport can be used in the same way as the other existing transports,
+i.e by configuring a router to route mail to a transport configured with
+the queuefile driver.
-Any certificate name checks will be done using the a-label
-form of the name.
+The transport only takes one option:
-Log lines and Received-by: header lines will aquire a "utf8"
-prefix on the protocol element, eg. utf8esmtp.
+* directory - This is used to specify the directory messages should be
+copied to. Expanded.
-New expansion operators:
- ${utf8_domain_to_alabel:str}
- ${utf8_domain_from_alabel:str}
- ${utf8_localpart_to_alabel:str}
- ${utf8_localpart_from_alabel:str}
+The generic transport options (body_only, current_directory, disable_logging,
+debug_print, delivery_date_add, envelope_to_add, event_action, group,
+headers_add, headers_only, headers_remove, headers_rewrite, home_directory,
+initgroups, max_parallel, message_size_limit, rcpt_include_affixes,
+retry_use_local_part, return_path, return_path_add, shadow_condition,
+shadow_transport, transport_filter, transport_filter_timeout, user) are
+ignored.
-New "control = utf8_downconvert" ACL modifier,
-sets a flag requiring that addresses are converted to
-a-label form before smtp delivery, for use in a
-Message Submission Agent context. Can also be
-phrased as "control = utf8_downconvert/1" and is
-mandatory. The flag defaults to zero and can be cleared
-by "control = utf8_downconvert/0". The value "-1"
-may also be used, to use a-label for only if the
-destination host does not support SMTPUTF8.
+Sample configuration:
-If mua_wrapper is set, the utf8_downconvert control
-defaults to -1 (convert if needed).
+(Router)
+scan:
+ driver = accept
+ transport = scan
-There is no explicit support for VRFY and EXPN.
-Configurations supporting these should inspect
-$smtp_command_argument for an SMTPUTF8 argument.
+(Transport)
-There is no support for LMTP on Unix sockets.
-Using the "lmtp" protocol option on an smtp transport,
-for LMTP over TCP, should work as expected.
+scan:
+ driver = queuefile
+ directory = /var/spool/baruwa-scanner/input
-Known issues:
- - DSN unitext handling is not present
- - no provision for converting logging from or to UTF-8
-----
-IMAP folder names
+In order to build exim with Queuefile transport support add or uncomment
-New expansion operator:
+EXPERIMENTAL_QUEUEFILE=yes
-${imapfolder {<string>} {<sep>} {<specials>}}
+to your Local/Makefile. (Re-)build/install exim. exim -d should show
+Experimental_QUEUEFILE in the line "Support for:".
-The string is converted from the charset specified by the headers charset
-command (in a filter file) or headers_charset global option, to the
-modified UTF-7 encoding specified by RFC 2060, with the following
-exception: All occurences of <sep> (which has to be a single character)
-are replaced with periods ("."), and all periods and slashes that aren't
-<sep> and are not in the <specials> string are BASE64 encoded.
-The third argument can be omitted, defaulting to an empty string.
-The second argument can be omitted, defaulting to "/".
+ARC support
+-----------
+Specification: https://tools.ietf.org/html/draft-ietf-dmarc-arc-protocol-11
+Note that this is not an RFC yet, so may change.
-This is the encoding used by Courier for Maildir names on disk, and followed
-by many other IMAP servers.
+ARC is intended to support the utility of SPF and DKIM in the presence of
+intermediaries in the transmission path - forwarders and mailinglists -
+by establishing a cryptographically-signed chain in headers.
- Example 1: ${imapfolder {Foo/Bar}} yields "Foo.Bar".
- Example 2: ${imapfolder {Foo/Bar}{.}{/}} yields "Foo&AC8-Bar".
- Example 3: ${imapfolder {Räksmörgås}} yields "R&AOQ-ksm&APY-rg&AOU-s".
+Normally one would only bother doing ARC-signing when functioning as
+an intermediary. One might do verify for local destinations.
-Note that the source charset setting is vital, and also that characters
-must be representable in UTF-16.
+ARC uses the notion of a "ADministrative Management Domain" (ADMD).
+Described in RFC 5598 (section 2.3), this is essentially the set of
+mail-handling systems that the mail transits. A label should be chosen to
+identify the ADMD. Messages should be ARC-verified on entry to the ADMD,
+and ARC-signed on exit from it.
+Verification
+--
+An ACL condition is provided to perform the "verifier actions" detailed
+in section 6 of the above specification. It may be called from the DATA ACL
+and succeeds if the result matches any of a given list.
+It also records the highest ARC instance number (the chain size)
+and verification result for later use in creating an Authentication-Results:
+standard header.
-DSN extra information
----------------------
-If compiled with EXPERIMENTAL_DSN_INFO extra information will be added
-to DSN fail messages ("bounces"), when available. The intent is to aid
-tracing of specific failing messages, when presented with a "bounce"
-complaint and needing to search logs.
+ verify = arc/<acceptable_list> none:fail:pass
+ add_header = :at_start:${authresults {<admd-identifier>}}
-The remote MTA IP address, with port number if nonstandard.
-Example:
- Remote-MTA: X-ip; [127.0.0.1]:587
-Rationale:
- Several addresses may correspond to the (already available)
- dns name for the remote MTA.
+ Note that it would be wise to strip incoming messages of A-R headers
+ that claim to be from our own <admd-identifier>.
-The remote MTA connect-time greeting.
-Example:
- X-Remote-MTA-smtp-greeting: X-str; 220 the.local.host.name ESMTP Exim x.yz Tue, 2 Mar 1999 09:44:33 +0000
-Rationale:
- This string sometimes presents the remote MTA's idea of its
- own name, and sometimes identifies the MTA software.
+There are four new variables:
-The remote MTA response to HELO or EHLO.
-Example:
- X-Remote-MTA-helo-response: X-str; 250-the.local.host.name Hello localhost [127.0.0.1]
-Limitations:
- Only the first line of a multiline response is recorded.
-Rationale:
- This string sometimes presents the remote MTA's view of
- the peer IP connecting to it.
+ $arc_state One of pass, fail, none
+ $arc_state_reason (if fail, why)
+ $arc_domains colon-sep list of ARC chain domains, in chain order.
+ problematic elements may have empty list elements
+ $arc_oldest_pass lowest passing instance number of chain
-The reporting MTA detailed diagnostic.
Example:
- X-Exim-Diagnostic: X-str; SMTP error from remote mail server after RCPT TO:<d3@myhost.test.ex>: 550 hard error
-Rationale:
- This string somtimes give extra information over the
- existing (already available) Diagnostic-Code field.
+ logwrite = oldest-p-ams: <${reduce {$lh_ARC-Authentication-Results:} \
+ {} \
+ {${if = {$arc_oldest_pass} \
+ {${extract {i}{${extract {1}{;}{$item}}}}} \
+ {$item} {$value}}} \
+ }>
+
+Receive log lines for an ARC pass will be tagged "ARC".
+
+
+Signing
+--
+arc_sign = <admd-identifier> : <selector> : <privkey> [ : <options> ]
+An option on the smtp transport, which constructs and prepends to the message
+an ARC set of headers. The textually-first Authentication-Results: header
+is used as a basis (you must have added one on entry to the ADMD).
+Expanded as a whole; if unset, empty or forced-failure then no signing is done.
+If it is set, all of the first three elements must be non-empty.
+
+The fourth element is optional, and if present consists of a comma-separated list
+of options. The options implemented are
+
+ timestamps Add a t= tag to the generated AMS and AS headers, with the
+ current time.
+ expire[=<val>] Add an x= tag to the generated AMS header, with an expiry time.
+ If the value <val> is an plain number it is used unchanged.
+ If it starts with a '+' then the following number is added
+ to the current time, as an offset in seconds.
+ If a value is not given it defaults to a one month offset.
+
+[As of writing, gmail insist that a t= tag on the AS is mandatory]
+
+Caveats:
+ * There must be an Authentication-Results header, presumably added by an ACL
+ while receiving the message, for the same ADMD, for arc_sign to succeed.
+ This requires careful coordination between inbound and outbound logic.
+
+ Only one A-R header is taken account of. This is a limitation versus
+ the ARC spec (which says that all A-R headers from within the ADMD must
+ be used).
+
+ * If passing a message to another system, such as a mailing-list manager
+ (MLM), between receipt and sending, be wary of manipulations to headers made
+ by the MLM.
+ + For instance, Mailman with REMOVE_DKIM_HEADERS==3 might improve
+ deliverability in a pre-ARC world, but that option also renames the
+ Authentication-Results header, which breaks signing.
+
+ * Even if you use multiple DKIM keys for different domains, the ARC concept
+ should try to stick to one ADMD, so pick a primary domain and use that for
+ AR headers and outbound signing.
+
+Signing is not compatible with cutthrough delivery; any (before expansion)
+value set for the option will result in cutthrough delivery not being
+used via the transport in question.
+
+
+
+
+REQUIRETLS support
+------------------
+Ref: https://tools.ietf.org/html/draft-ietf-uta-smtp-require-tls-03
+
+If compiled with EXPERIMENTAL_REQUIRETLS support is included for this
+feature, where a REQUIRETLS option is added to the MAIL command.
+The client may not retry in clear if the MAIL+REQUIRETLS fails (or was never
+offered), and the server accepts an obligation that any onward transmission
+by SMTP of the messages accepted will also use REQUIRETLS - or generate a
+fail DSN.
+
+The Exim implementation includes
+- a main-part option tls_advertise_requiretls; host list, default "*"
+- an observability variable $requiretls returning yes/no
+- an ACL "control = requiretls" modifier for setting the requirement
+- Log lines and Received: headers capitalise the S in the protocol
+ element: "P=esmtpS"
+
+Differences from spec:
+- we support upgrading the requirement for REQUIRETLS, including adding
+ it from cold, within an MTA. The spec only define the sourcing MUA
+ as being able to source the requirement, and makes no mention of upgrade.
+- No support is coded for the RequireTLS header (which can be used
+ to annul DANE and/or STS policiy). [this can _almost_ be done in
+ transport option expansions, but not quite: it requires tha DANE-present
+ but STARTTLS-failing targets fallback to cleartext, which current DANE
+ coding specifically blocks]
+
+Note that REQUIRETLS is only advertised once a TLS connection is achieved
+(in contrast to STARTTLS). If you want to check the advertising, do something
+like "swaks -s 127.0.0.1 -tls -q HELO".
+
+
+
+
+Early pipelining support
+------------------------
+Ref: https://datatracker.ietf.org/doc/draft-harris-early-pipe/
+
+If compiled with EXPERIMENTAL_PIPE_CONNECT support is included for this feature.
+The server advertises the feature in its EHLO response, currently using the name
+"X_PIPE_CONNECT" (this will change, some time in the future).
+A client may cache this information, along with the rest of the EHLO response,
+and use it for later connections. Those later ones can send esmtp commands before
+a banner is received.
+
+Up to 1.5 roundtrip times can be taken out of cleartext connections, 2.5 on
+STARTTLS connections.
+
+In combination with the traditional PIPELINING feature the following example
+sequences are possible (among others):
+
+(client) (server)
+
+EHLO,MAIL,RCPT,DATA ->
+ <- banner,EHLO-resp,MAIL-ack,RCPT-ack,DATA-goahead
+message-data ->
+------
+
+EHLO,MAIL,RCPT,BDAT ->
+ <- banner,EHLO-resp,MAIL-ack,RCPT-ack
+message-data ->
+------
+
+EHLO,STARTTLS ->
+ <- banner,EHLO-resp,TLS-goahead
+TLS1.2-client-hello ->
+ <- TLS-server-hello,cert,hello-done
+client-Kex,change-cipher,finished ->
+ <- change-cipher,finished
+EHLO,MAIL,RCPT,DATA ->
+ <- EHLO-resp,MAIL-ack,RCPT-ack,DATA-goahead
+
+------
+(tls-on-connect)
+TLS1.2-client-hello ->
+ <- TLS-server-hello,cert,hello-done
+client-Kex,change-cipher,finished ->
+ <- change-cipher,finshed
+ <- banner
+EHLO,MAIL,RCPT,DATA ->
+ <- EHLO-resp,MAIL-ack,RCPT-ack,DATA-goahead
+
+Where the initial client packet is SMTP, it can combine with the TCP Fast Open
+feature and be sent in the TCP SYN.
-Note that non-RFC-documented field names and data types are used.
+A main-section option "pipelining_connect_advertise_hosts" (default: *)
+and an smtp transport option "hosts_pipe_connect" (default: unset)
+control the feature.
+
+If the "pipelining" log_selector is enabled, the "L" field in server <=
+log lines has a period appended if the feature was advertised but not used;
+or has an asterisk appended if the feature was used. In client => lines
+the "L" field has an asterisk appended if the feature was used.
+
+The "retry_data_expire" option controls cache invalidation.
+Entries are also rewritten (or cleared) if the adverised features
+change.
+
+
+NOTE: since the EHLO command must be constructed before the connection is
+made it cannot depend on the interface IP address that will be used.
+Transport configurations should be checked for this. An example avoidance:
+
+ helo_data = ${if def:sending_ip_address \
+ {${lookup dnsdb{>! ptr=$sending_ip_address} \
+ {${sg{$value} {^([^!]*).*\$} {\$1}}} fail}} \
+ {$primary_hostname}}