1 /* $Cambridge: exim/src/src/deliver.c,v 1.9 2005/03/22 14:50:10 ph10 Exp $ */
3 /*************************************************
4 * Exim - an Internet mail transport agent *
5 *************************************************/
7 /* Copyright (c) University of Cambridge 1995 - 2005 */
8 /* See the file NOTICE for conditions of use and distribution. */
10 /* The main code for delivering a message. */
16 /* Data block for keeping track of subprocesses for parallel remote
19 typedef struct pardata {
20 address_item *addrlist; /* chain of addresses */
21 address_item *addr; /* next address data expected for */
22 pid_t pid; /* subprocess pid */
23 int fd; /* pipe fd for getting result from subprocess */
24 int transport_count; /* returned transport count value */
25 BOOL done; /* no more data needed */
26 uschar *msg; /* error message */
27 uschar *return_path; /* return_path for these addresses */
30 /* Values for the process_recipients variable */
32 enum { RECIP_ACCEPT, RECIP_IGNORE, RECIP_DEFER,
33 RECIP_FAIL, RECIP_FAIL_FILTER, RECIP_FAIL_TIMEOUT,
36 /* Mutually recursive functions for marking addresses done. */
38 static void child_done(address_item *, uschar *);
39 static void address_done(address_item *, uschar *);
41 /* Table for turning base-62 numbers into binary */
43 static uschar tab62[] =
44 {0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, /* 0-9 */
45 0,10,11,12,13,14,15,16,17,18,19,20, /* A-K */
46 21,22,23,24,25,26,27,28,29,30,31,32, /* L-W */
47 33,34,35, 0, 0, 0, 0, 0, /* X-Z */
48 0,36,37,38,39,40,41,42,43,44,45,46, /* a-k */
49 47,48,49,50,51,52,53,54,55,56,57,58, /* l-w */
53 /*************************************************
54 * Local static variables *
55 *************************************************/
57 /* addr_duplicate is global because it needs to be seen from the Envelope-To
60 static address_item *addr_defer = NULL;
61 static address_item *addr_failed = NULL;
62 static address_item *addr_fallback = NULL;
63 static address_item *addr_local = NULL;
64 static address_item *addr_new = NULL;
65 static address_item *addr_remote = NULL;
66 static address_item *addr_route = NULL;
67 static address_item *addr_succeed = NULL;
69 static FILE *message_log = NULL;
70 static BOOL update_spool;
71 static BOOL remove_journal;
72 static int parcount = 0;
73 static pardata *parlist = NULL;
74 static int return_count;
75 static uschar *frozen_info = US"";
76 static uschar *used_return_path = NULL;
78 static uschar spoolname[PATH_MAX];
82 /*************************************************
83 * Make a new address item *
84 *************************************************/
86 /* This function gets the store and initializes with default values. The
87 transport_return value defaults to DEFER, so that any unexpected failure to
88 deliver does not wipe out the message. The default unique string is set to a
89 copy of the address, so that its domain can be lowercased.
92 address the RFC822 address string
93 copy force a copy of the address
95 Returns: a pointer to an initialized address_item
99 deliver_make_addr(uschar *address, BOOL copy)
101 address_item *addr = store_get(sizeof(address_item));
102 *addr = address_defaults;
103 if (copy) address = string_copy(address);
104 addr->address = address;
105 addr->unique = string_copy(address);
112 /*************************************************
113 * Set expansion values for an address *
114 *************************************************/
116 /* Certain expansion variables are valid only when handling an address or
117 address list. This function sets them up or clears the values, according to its
121 addr the address in question, or NULL to clear values
126 deliver_set_expansions(address_item *addr)
130 uschar ***p = address_expansions;
131 while (*p != NULL) **p++ = NULL;
135 /* Exactly what gets set depends on whether there is one or more addresses, and
136 what they contain. These first ones are always set, taking their values from
137 the first address. */
139 if (addr->host_list == NULL)
141 deliver_host = deliver_host_address = US"";
145 deliver_host = addr->host_list->name;
146 deliver_host_address = addr->host_list->address;
149 deliver_recipients = addr;
150 deliver_address_data = addr->p.address_data;
151 deliver_domain_data = addr->p.domain_data;
152 deliver_localpart_data = addr->p.localpart_data;
154 /* These may be unset for multiple addresses */
156 deliver_domain = addr->domain;
157 self_hostname = addr->self_hostname;
159 #ifdef EXPERIMENTAL_BRIGHTMAIL
160 bmi_deliver = 1; /* deliver by default */
161 bmi_alt_location = NULL;
162 bmi_base64_verdict = NULL;
163 bmi_base64_tracker_verdict = NULL;
166 /* If there's only one address we can set everything. */
168 if (addr->next == NULL)
170 address_item *addr_orig;
172 deliver_localpart = addr->local_part;
173 deliver_localpart_prefix = addr->prefix;
174 deliver_localpart_suffix = addr->suffix;
176 for (addr_orig = addr; addr_orig->parent != NULL;
177 addr_orig = addr_orig->parent);
178 deliver_domain_orig = addr_orig->domain;
180 /* Re-instate any prefix and suffix in the original local part. In all
181 normal cases, the address will have a router associated with it, and we can
182 choose the caseful or caseless version accordingly. However, when a system
183 filter sets up a pipe, file, or autoreply delivery, no router is involved.
184 In this case, though, there won't be any prefix or suffix to worry about. */
186 deliver_localpart_orig = (addr_orig->router == NULL)? addr_orig->local_part :
187 addr_orig->router->caseful_local_part?
188 addr_orig->cc_local_part : addr_orig->lc_local_part;
190 /* If there's a parent, make its domain and local part available, and if
191 delivering to a pipe or file, or sending an autoreply, get the local
192 part from the parent. For pipes and files, put the pipe or file string
193 into address_pipe and address_file. */
195 if (addr->parent != NULL)
197 deliver_domain_parent = addr->parent->domain;
198 deliver_localpart_parent = (addr->parent->router == NULL)?
199 addr->parent->local_part :
200 addr->parent->router->caseful_local_part?
201 addr->parent->cc_local_part : addr->parent->lc_local_part;
203 /* File deliveries have their own flag because they need to be picked out
204 as special more often. */
206 if (testflag(addr, af_pfr))
208 if (testflag(addr, af_file)) address_file = addr->local_part;
209 else if (deliver_localpart[0] == '|') address_pipe = addr->local_part;
210 deliver_localpart = addr->parent->local_part;
211 deliver_localpart_prefix = addr->parent->prefix;
212 deliver_localpart_suffix = addr->parent->suffix;
216 #ifdef EXPERIMENTAL_BRIGHTMAIL
217 /* Set expansion variables related to Brightmail AntiSpam */
218 bmi_base64_verdict = bmi_get_base64_verdict(deliver_localpart_orig, deliver_domain_orig);
219 bmi_base64_tracker_verdict = bmi_get_base64_tracker_verdict(bmi_base64_verdict);
220 /* get message delivery status (0 - don't deliver | 1 - deliver) */
221 bmi_deliver = bmi_get_delivery_status(bmi_base64_verdict);
222 /* if message is to be delivered, get eventual alternate location */
223 if (bmi_deliver == 1) {
224 bmi_alt_location = bmi_get_alt_location(bmi_base64_verdict);
230 /* For multiple addresses, don't set local part, and leave the domain and
231 self_hostname set only if it is the same for all of them. */
236 for (addr2 = addr->next; addr2 != NULL; addr2 = addr2->next)
238 if (deliver_domain != NULL &&
239 Ustrcmp(deliver_domain, addr2->domain) != 0)
240 deliver_domain = NULL;
241 if (self_hostname != NULL && (addr2->self_hostname == NULL ||
242 Ustrcmp(self_hostname, addr2->self_hostname) != 0))
243 self_hostname = NULL;
244 if (deliver_domain == NULL && self_hostname == NULL) break;
252 /*************************************************
253 * Open a msglog file *
254 *************************************************/
256 /* This function is used both for normal message logs, and for files in the
257 msglog directory that are used to catch output from pipes. Try to create the
258 directory if it does not exist. From release 4.21, normal message logs should
259 be created when the message is received.
262 filename the file name
263 mode the mode required
264 error used for saying what failed
266 Returns: a file descriptor, or -1 (with errno set)
270 open_msglog_file(uschar *filename, int mode, uschar **error)
272 int fd = Uopen(filename, O_WRONLY|O_APPEND|O_CREAT, mode);
274 if (fd < 0 && errno == ENOENT)
277 sprintf(CS temp, "msglog/%s", message_subdir);
278 if (message_subdir[0] == 0) temp[6] = 0;
279 (void)directory_make(spool_directory, temp, MSGLOG_DIRECTORY_MODE, TRUE);
280 fd = Uopen(filename, O_WRONLY|O_APPEND|O_CREAT, mode);
283 /* Set the close-on-exec flag and change the owner to the exim uid/gid (this
284 function is called as root). Double check the mode, because the group setting
285 doesn't always get set automatically. */
289 fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
290 if (fchown(fd, exim_uid, exim_gid) < 0)
295 if (fchmod(fd, mode) < 0)
301 else *error = US"create";
309 /*************************************************
310 * Write to msglog if required *
311 *************************************************/
313 /* Write to the message log, if configured. This function may also be called
317 format a string format
323 deliver_msglog(const char *format, ...)
326 if (!message_logs) return;
327 va_start(ap, format);
328 vfprintf(message_log, format, ap);
336 /*************************************************
337 * Replicate status for batch *
338 *************************************************/
340 /* When a transport handles a batch of addresses, it may treat them
341 individually, or it may just put the status in the first one, and return FALSE,
342 requesting that the status be copied to all the others externally. This is the
343 replication function. As well as the status, it copies the transport pointer,
344 which may have changed if appendfile passed the addresses on to a different
347 Argument: pointer to the first address in a chain
352 replicate_status(address_item *addr)
355 for (addr2 = addr->next; addr2 != NULL; addr2 = addr2->next)
357 addr2->transport = addr->transport;
358 addr2->transport_return = addr->transport_return;
359 addr2->basic_errno = addr->basic_errno;
360 addr2->more_errno = addr->more_errno;
361 addr2->special_action = addr->special_action;
362 addr2->message = addr->message;
363 addr2->user_message = addr->user_message;
369 /*************************************************
370 * Compare lists of hosts *
371 *************************************************/
373 /* This function is given two pointers to chains of host items, and it yields
374 TRUE if the lists refer to the same hosts in the same order, except that
376 (1) Multiple hosts with the same non-negative MX values are permitted to appear
377 in different orders. Round-robinning nameservers can cause this to happen.
379 (2) Multiple hosts with the same negative MX values less than MX_NONE are also
380 permitted to appear in different orders. This is caused by randomizing
383 This enables Exim to use a single SMTP transaction for sending to two entirely
384 different domains that happen to end up pointing at the same hosts.
387 one points to the first host list
388 two points to the second host list
390 Returns: TRUE if the lists refer to the same host set
394 same_hosts(host_item *one, host_item *two)
396 while (one != NULL && two != NULL)
398 if (Ustrcmp(one->name, two->name) != 0)
401 host_item *end_one = one;
402 host_item *end_two = two;
404 /* Batch up only if there was no MX and the list was not randomized */
406 if (mx == MX_NONE) return FALSE;
408 /* Find the ends of the shortest sequence of identical MX values */
410 while (end_one->next != NULL && end_one->next->mx == mx &&
411 end_two->next != NULL && end_two->next->mx == mx)
413 end_one = end_one->next;
414 end_two = end_two->next;
417 /* If there aren't any duplicates, there's no match. */
419 if (end_one == one) return FALSE;
421 /* For each host in the 'one' sequence, check that it appears in the 'two'
422 sequence, returning FALSE if not. */
427 for (hi = two; hi != end_two->next; hi = hi->next)
428 if (Ustrcmp(one->name, hi->name) == 0) break;
429 if (hi == end_two->next) return FALSE;
430 if (one == end_one) break;
434 /* All the hosts in the 'one' sequence were found in the 'two' sequence.
435 Ensure both are pointing at the last host, and carry on as for equality. */
446 /* True if both are NULL */
453 /*************************************************
454 * Compare header lines *
455 *************************************************/
457 /* This function is given two pointers to chains of header items, and it yields
458 TRUE if they are the same header texts in the same order.
461 one points to the first header list
462 two points to the second header list
464 Returns: TRUE if the lists refer to the same header set
468 same_headers(header_line *one, header_line *two)
472 if (one == two) return TRUE; /* Includes the case where both NULL */
473 if (one == NULL || two == NULL) return FALSE;
474 if (Ustrcmp(one->text, two->text) != 0) return FALSE;
482 /*************************************************
483 * Compare string settings *
484 *************************************************/
486 /* This function is given two pointers to strings, and it returns
487 TRUE if they are the same pointer, or if the two strings are the same.
490 one points to the first string
491 two points to the second string
493 Returns: TRUE or FALSE
497 same_strings(uschar *one, uschar *two)
499 if (one == two) return TRUE; /* Includes the case where both NULL */
500 if (one == NULL || two == NULL) return FALSE;
501 return (Ustrcmp(one, two) == 0);
506 /*************************************************
507 * Compare uid/gid for addresses *
508 *************************************************/
510 /* This function is given a transport and two addresses. It yields TRUE if the
511 uid/gid/initgroups settings for the two addresses are going to be the same when
516 addr1 the first address
517 addr2 the second address
519 Returns: TRUE or FALSE
523 same_ugid(transport_instance *tp, address_item *addr1, address_item *addr2)
525 if (!tp->uid_set && tp->expand_uid == NULL && !tp->deliver_as_creator)
527 if (testflag(addr1, af_uid_set) != testflag(addr2, af_gid_set) ||
528 (testflag(addr1, af_uid_set) &&
529 (addr1->uid != addr2->uid ||
530 testflag(addr1, af_initgroups) != testflag(addr2, af_initgroups))))
534 if (!tp->gid_set && tp->expand_gid == NULL)
536 if (testflag(addr1, af_gid_set) != testflag(addr2, af_gid_set) ||
537 (testflag(addr1, af_gid_set) && addr1->gid != addr2->gid))
547 /*************************************************
548 * Record that an address is complete *
549 *************************************************/
551 /* This function records that an address is complete. This is straightforward
552 for most addresses, where the unique address is just the full address with the
553 domain lower cased. For homonyms (addresses that are the same as one of their
554 ancestors) their are complications. Their unique addresses have \x\ prepended
555 (where x = 0, 1, 2...), so that de-duplication works correctly for siblings and
558 Exim used to record the unique addresses of homonyms as "complete". This,
559 however, fails when the pattern of redirection varies over time (e.g. if taking
560 unseen copies at only some times of day) because the prepended numbers may vary
561 from one delivery run to the next. This problem is solved by never recording
562 prepended unique addresses as complete. Instead, when a homonymic address has
563 actually been delivered via a transport, we record its basic unique address
564 followed by the name of the transport. This is checked in subsequent delivery
565 runs whenever an address is routed to a transport.
567 If the completed address is a top-level one (has no parent, which means it
568 cannot be homonymic) we also add the original address to the non-recipients
569 tree, so that it gets recorded in the spool file and therefore appears as
570 "done" in any spool listings. The original address may differ from the unique
571 address in the case of the domain.
573 Finally, this function scans the list of duplicates, marks as done any that
574 match this address, and calls child_done() for their ancestors.
577 addr address item that has been completed
578 now current time as a string
584 address_done(address_item *addr, uschar *now)
588 update_spool = TRUE; /* Ensure spool gets updated */
590 /* Top-level address */
592 if (addr->parent == NULL)
594 tree_add_nonrecipient(addr->unique);
595 tree_add_nonrecipient(addr->address);
598 /* Homonymous child address */
600 else if (testflag(addr, af_homonym))
602 if (addr->transport != NULL)
604 tree_add_nonrecipient(
605 string_sprintf("%s/%s", addr->unique + 3, addr->transport->name));
609 /* Non-homonymous child address */
611 else tree_add_nonrecipient(addr->unique);
613 /* Check the list of duplicate addresses and ensure they are now marked
616 for (dup = addr_duplicate; dup != NULL; dup = dup->next)
618 if (Ustrcmp(addr->unique, dup->unique) == 0)
620 tree_add_nonrecipient(dup->address);
621 child_done(dup, now);
629 /*************************************************
630 * Decrease counts in parents and mark done *
631 *************************************************/
633 /* This function is called when an address is complete. If there is a parent
634 address, its count of children is decremented. If there are still other
635 children outstanding, the function exits. Otherwise, if the count has become
636 zero, address_done() is called to mark the parent and its duplicates complete.
637 Then loop for any earlier ancestors.
640 addr points to the completed address item
641 now the current time as a string, for writing to the message log
647 child_done(address_item *addr, uschar *now)
650 while (addr->parent != NULL)
653 if ((addr->child_count -= 1) > 0) return; /* Incomplete parent */
654 address_done(addr, now);
656 /* Log the completion of all descendents only when there is no ancestor with
657 the same original address. */
659 for (aa = addr->parent; aa != NULL; aa = aa->parent)
660 if (Ustrcmp(aa->address, addr->address) == 0) break;
661 if (aa != NULL) continue;
663 deliver_msglog("%s %s: children all complete\n", now, addr->address);
664 DEBUG(D_deliver) debug_printf("%s: children all complete\n", addr->address);
671 /*************************************************
672 * Actions at the end of handling an address *
673 *************************************************/
675 /* This is a function for processing a single address when all that can be done
676 with it has been done.
679 addr points to the address block
680 result the result of the delivery attempt
681 logflags flags for log_write() (LOG_MAIN and/or LOG_PANIC)
682 driver_type indicates which type of driver (transport, or router) was last
683 to process the address
684 logchar '=' or '-' for use when logging deliveries with => or ->
690 post_process_one(address_item *addr, int result, int logflags, int driver_type,
693 uschar *now = tod_stamp(tod_log);
694 uschar *driver_kind = NULL;
695 uschar *driver_name = NULL;
698 int size = 256; /* Used for a temporary, */
699 int ptr = 0; /* expanding buffer, for */
700 uschar *s; /* building log lines; */
701 void *reset_point; /* released afterwards. */
704 DEBUG(D_deliver) debug_printf("post-process %s (%d)\n", addr->address, result);
706 /* Set up driver kind and name for logging. Disable logging if the router or
707 transport has disabled it. */
709 if (driver_type == DTYPE_TRANSPORT)
711 if (addr->transport != NULL)
713 driver_name = addr->transport->name;
714 driver_kind = US" transport";
715 disable_logging = addr->transport->disable_logging;
717 else driver_kind = US"transporting";
719 else if (driver_type == DTYPE_ROUTER)
721 if (addr->router != NULL)
723 driver_name = addr->router->name;
724 driver_kind = US" router";
725 disable_logging = addr->router->disable_logging;
727 else driver_kind = US"routing";
730 /* If there's an error message set, ensure that it contains only printing
731 characters - it should, but occasionally things slip in and this at least
732 stops the log format from getting wrecked. We also scan the message for an LDAP
733 expansion item that has a password setting, and flatten the password. This is a
734 fudge, but I don't know a cleaner way of doing this. (If the item is badly
735 malformed, it won't ever have gone near LDAP.) */
737 if (addr->message != NULL)
739 addr->message = string_printing(addr->message);
740 if (Ustrstr(addr->message, "failed to expand") != NULL &&
741 (Ustrstr(addr->message, "ldap:") != NULL ||
742 Ustrstr(addr->message, "ldapdn:") != NULL ||
743 Ustrstr(addr->message, "ldapm:") != NULL))
745 uschar *p = Ustrstr(addr->message, "pass=");
749 while (*p != 0 && !isspace(*p)) *p++ = 'x';
754 /* If we used a transport that has one of the "return_output" options set, and
755 if it did in fact generate some output, then for return_output we treat the
756 message as failed if it was not already set that way, so that the output gets
757 returned to the sender, provided there is a sender to send it to. For
758 return_fail_output, do this only if the delivery failed. Otherwise we just
759 unlink the file, and remove the name so that if the delivery failed, we don't
760 try to send back an empty or unwanted file. The log_output options operate only
763 In any case, we close the message file, because we cannot afford to leave a
764 file-descriptor for one address while processing (maybe very many) others. */
766 if (addr->return_file >= 0 && addr->return_filename != NULL)
768 BOOL return_output = FALSE;
770 fsync(addr->return_file);
772 /* If there is no output, do nothing. */
774 if (fstat(addr->return_file, &statbuf) == 0 && statbuf.st_size > 0)
776 transport_instance *tb = addr->transport;
778 /* Handle logging options */
780 if (tb->log_output || (result == FAIL && tb->log_fail_output) ||
781 (result == DEFER && tb->log_defer_output))
784 FILE *f = Ufopen(addr->return_filename, "rb");
786 log_write(0, LOG_MAIN|LOG_PANIC, "failed to open %s to log output "
787 "from %s transport: %s", addr->return_filename, tb->name,
791 s = US Ufgets(big_buffer, big_buffer_size, f);
794 uschar *p = big_buffer + Ustrlen(big_buffer);
795 while (p > big_buffer && isspace(p[-1])) p--;
797 s = string_printing(big_buffer);
798 log_write(0, LOG_MAIN, "<%s>: %s transport output: %s",
799 addr->address, tb->name, s);
805 /* Handle returning options, but only if there is an address to return
808 if (sender_address[0] != 0 || addr->p.errors_address != NULL)
810 if (tb->return_output)
812 addr->transport_return = result = FAIL;
813 if (addr->basic_errno == 0 && addr->message == NULL)
814 addr->message = US"return message generated";
815 return_output = TRUE;
818 if (tb->return_fail_output && result == FAIL) return_output = TRUE;
822 /* Get rid of the file unless it might be returned, but close it in
827 Uunlink(addr->return_filename);
828 addr->return_filename = NULL;
829 addr->return_file = -1;
832 close(addr->return_file);
835 /* Create the address string for logging. Must not do this earlier, because
836 an OK result may be changed to FAIL when a pipe returns text. */
838 log_address = string_log_address(addr,
839 (log_write_selector & L_all_parents) != 0, result == OK);
841 /* The sucess case happens only after delivery by a transport. */
845 addr->next = addr_succeed;
848 /* Call address_done() to ensure that we don't deliver to this address again,
849 and write appropriate things to the message log. If it is a child address, we
850 call child_done() to scan the ancestors and mark them complete if this is the
851 last child to complete. */
853 address_done(addr, now);
854 DEBUG(D_deliver) debug_printf("%s delivered\n", addr->address);
856 if (addr->parent == NULL)
858 deliver_msglog("%s %s: %s%s succeeded\n", now, addr->address,
859 driver_name, driver_kind);
863 deliver_msglog("%s %s <%s>: %s%s succeeded\n", now, addr->address,
864 addr->parent->address, driver_name, driver_kind);
865 child_done(addr, now);
868 /* Log the delivery on the main log. We use an extensible string to build up
869 the log line, and reset the store afterwards. Remote deliveries should always
870 have a pointer to the host item that succeeded; local deliveries can have a
871 pointer to a single host item in their host list, for use by the transport. */
873 s = reset_point = store_get(size);
876 s = string_append(s, &size, &ptr, 2, US"> ", log_address);
878 if ((log_extra_selector & LX_sender_on_delivery) != 0)
879 s = string_append(s, &size, &ptr, 3, US" F=<", sender_address, US">");
881 /* You might think that the return path must always be set for a successful
882 delivery; indeed, I did for some time, until this statement crashed. The case
883 when it is not set is for a delivery to /dev/null which is optimised by not
886 if (used_return_path != NULL &&
887 (log_extra_selector & LX_return_path_on_delivery) != 0)
888 s = string_append(s, &size, &ptr, 3, US" P=<", used_return_path, US">");
890 /* For a delivery from a system filter, there may not be a router */
892 if (addr->router != NULL)
893 s = string_append(s, &size, &ptr, 2, US" R=", addr->router->name);
895 s = string_append(s, &size, &ptr, 2, US" T=", addr->transport->name);
897 if ((log_extra_selector & LX_delivery_size) != 0)
898 s = string_append(s, &size, &ptr, 2, US" S=",
899 string_sprintf("%d", transport_count));
903 if (addr->transport->info->local)
905 if (addr->host_list != NULL)
906 s = string_append(s, &size, &ptr, 2, US" H=", addr->host_list->name);
907 if (addr->shadow_message != NULL)
908 s = string_cat(s, &size, &ptr, addr->shadow_message,
909 Ustrlen(addr->shadow_message));
912 /* Remote delivery */
916 if (addr->host_used != NULL)
918 s = string_append(s, &size, &ptr, 5, US" H=", addr->host_used->name,
919 US" [", addr->host_used->address, US"]");
920 if ((log_extra_selector & LX_outgoing_port) != 0)
921 s = string_append(s, &size, &ptr, 2, US":", string_sprintf("%d",
922 addr->host_used->port));
923 if (continue_sequence > 1)
924 s = string_cat(s, &size, &ptr, US"*", 1);
928 if ((log_extra_selector & LX_tls_cipher) != 0 && addr->cipher != NULL)
929 s = string_append(s, &size, &ptr, 2, US" X=", addr->cipher);
930 if ((log_extra_selector & LX_tls_certificate_verified) != 0 &&
931 addr->cipher != NULL)
932 s = string_append(s, &size, &ptr, 2, US" CV=",
933 testflag(addr, af_cert_verified)? "yes":"no");
934 if ((log_extra_selector & LX_tls_peerdn) != 0 && addr->peerdn != NULL)
935 s = string_append(s, &size, &ptr, 3, US" DN=\"", addr->peerdn, US"\"");
938 if ((log_extra_selector & LX_smtp_confirmation) != 0 &&
939 addr->message != NULL)
942 uschar *p = big_buffer;
943 uschar *ss = addr->message;
945 for (i = 0; i < 100 && ss[i] != 0; i++)
947 if (ss[i] == '\"' || ss[i] == '\\') *p++ = '\\';
952 s = string_append(s, &size, &ptr, 2, US" C=", big_buffer);
956 /* Time on queue and actual time taken to deliver */
958 if ((log_extra_selector & LX_queue_time) != 0)
960 s = string_append(s, &size, &ptr, 2, US" QT=",
961 readconf_printtime(time(NULL) - received_time));
964 if ((log_extra_selector & LX_deliver_time) != 0)
966 s = string_append(s, &size, &ptr, 2, US" DT=",
967 readconf_printtime(addr->more_errno));
970 /* string_cat() always leaves room for the terminator. Release the
971 store we used to build the line after writing it. */
974 log_write(0, LOG_MAIN, "%s", s);
975 store_reset(reset_point);
979 /* Soft failure, or local delivery process failed; freezing may be
982 else if (result == DEFER || result == PANIC)
984 if (result == PANIC) logflags |= LOG_PANIC;
986 /* This puts them on the chain in reverse order. Do not change this, because
987 the code for handling retries assumes that the one with the retry
988 information is last. */
990 addr->next = addr_defer;
993 /* The only currently implemented special action is to freeze the
994 message. Logging of this is done later, just before the -H file is
997 if (addr->special_action == SPECIAL_FREEZE)
999 deliver_freeze = TRUE;
1000 deliver_frozen_at = time(NULL);
1001 update_spool = TRUE;
1004 /* If doing a 2-stage queue run, we skip writing to either the message
1005 log or the main log for SMTP defers. */
1007 if (!queue_2stage || addr->basic_errno != 0)
1011 /* For errors of the type "retry time not reached" (also remotes skipped
1012 on queue run), logging is controlled by L_retry_defer. Note that this kind
1013 of error number is negative, and all the retry ones are less than any
1016 unsigned int use_log_selector = (addr->basic_errno <= ERRNO_RETRY_BASE)?
1019 /* Build up the line that is used for both the message log and the main
1022 s = reset_point = store_get(size);
1023 s = string_cat(s, &size, &ptr, log_address, Ustrlen(log_address));
1025 /* Either driver_name contains something and driver_kind contains
1026 " router" or " transport" (note the leading space), or driver_name is
1027 a null string and driver_kind contains "routing" without the leading
1028 space, if all routing has been deferred. When a domain has been held,
1029 so nothing has been done at all, both variables contain null strings. */
1031 if (driver_name == NULL)
1033 if (driver_kind != NULL)
1034 s = string_append(s, &size, &ptr, 2, US" ", driver_kind);
1038 if (driver_kind[1] == 't' && addr->router != NULL)
1039 s = string_append(s, &size, &ptr, 2, US" R=", addr->router->name);
1041 ss[1] = toupper(driver_kind[1]);
1042 s = string_append(s, &size, &ptr, 2, ss, driver_name);
1045 sprintf(CS ss, " defer (%d)", addr->basic_errno);
1046 s = string_cat(s, &size, &ptr, ss, Ustrlen(ss));
1048 if (addr->basic_errno > 0)
1049 s = string_append(s, &size, &ptr, 2, US": ",
1050 US strerror(addr->basic_errno));
1052 if (addr->message != NULL)
1053 s = string_append(s, &size, &ptr, 2, US": ", addr->message);
1057 /* Log the deferment in the message log, but don't clutter it
1058 up with retry-time defers after the first delivery attempt. */
1060 if (deliver_firsttime || addr->basic_errno > ERRNO_RETRY_BASE)
1061 deliver_msglog("%s %s\n", now, s);
1063 /* Write the main log and reset the store */
1065 log_write(use_log_selector, logflags, "== %s", s);
1066 store_reset(reset_point);
1071 /* Hard failure. If there is an address to which an error message can be sent,
1072 put this address on the failed list. If not, put it on the deferred list and
1073 freeze the mail message for human attention. The latter action can also be
1074 explicitly requested by a router or transport. */
1078 /* If this is a delivery error, or a message for which no replies are
1079 wanted, and the message's age is greater than ignore_bounce_errors_after,
1080 force the af_ignore_error flag. This will cause the address to be discarded
1081 later (with a log entry). */
1083 if (sender_address[0] == 0 && message_age >= ignore_bounce_errors_after)
1084 setflag(addr, af_ignore_error);
1086 /* Freeze the message if requested, or if this is a bounce message (or other
1087 message with null sender) and this address does not have its own errors
1088 address. However, don't freeze if errors are being ignored. The actual code
1089 to ignore occurs later, instead of sending a message. Logging of freezing
1090 occurs later, just before writing the -H file. */
1092 if (!testflag(addr, af_ignore_error) &&
1093 (addr->special_action == SPECIAL_FREEZE ||
1094 (sender_address[0] == 0 && addr->p.errors_address == NULL)
1097 frozen_info = (addr->special_action == SPECIAL_FREEZE)? US"" :
1098 (sender_local && !local_error_message)?
1099 US" (message created with -f <>)" : US" (delivery error message)";
1100 deliver_freeze = TRUE;
1101 deliver_frozen_at = time(NULL);
1102 update_spool = TRUE;
1104 /* The address is put on the defer rather than the failed queue, because
1105 the message is being retained. */
1107 addr->next = addr_defer;
1111 /* Don't put the address on the nonrecipients tree yet; wait until an
1112 error message has been successfully sent. */
1116 addr->next = addr_failed;
1120 /* Build up the log line for the message and main logs */
1122 s = reset_point = store_get(size);
1123 s = string_cat(s, &size, &ptr, log_address, Ustrlen(log_address));
1125 if ((log_extra_selector & LX_sender_on_delivery) != 0)
1126 s = string_append(s, &size, &ptr, 3, US" F=<", sender_address, US">");
1128 /* Return path may not be set if no delivery actually happened */
1130 if (used_return_path != NULL &&
1131 (log_extra_selector & LX_return_path_on_delivery) != 0)
1133 s = string_append(s, &size, &ptr, 3, US" P=<", used_return_path, US">");
1136 if (addr->router != NULL)
1137 s = string_append(s, &size, &ptr, 2, US" R=", addr->router->name);
1138 if (addr->transport != NULL)
1139 s = string_append(s, &size, &ptr, 2, US" T=", addr->transport->name);
1141 if (addr->host_used != NULL)
1142 s = string_append(s, &size, &ptr, 5, US" H=", addr->host_used->name,
1143 US" [", addr->host_used->address, US"]");
1145 if (addr->basic_errno > 0)
1146 s = string_append(s, &size, &ptr, 2, US": ",
1147 US strerror(addr->basic_errno));
1149 if (addr->message != NULL)
1150 s = string_append(s, &size, &ptr, 2, US": ", addr->message);
1154 /* Do the logging. For the message log, "routing failed" for those cases,
1155 just to make it clearer. */
1157 if (driver_name == NULL)
1158 deliver_msglog("%s %s failed for %s\n", now, driver_kind, s);
1160 deliver_msglog("%s %s\n", now, s);
1162 log_write(0, LOG_MAIN, "** %s", s);
1163 store_reset(reset_point);
1166 /* Ensure logging is turned on again in all cases */
1168 disable_logging = FALSE;
1174 /*************************************************
1175 * Address-independent error *
1176 *************************************************/
1178 /* This function is called when there's an error that is not dependent on a
1179 particular address, such as an expansion string failure. It puts the error into
1180 all the addresses in a batch, logs the incident on the main and panic logs, and
1181 clears the expansions. It is mostly called from local_deliver(), but can be
1182 called for a remote delivery via findugid().
1185 logit TRUE if (MAIN+PANIC) logging required
1186 addr the first of the chain of addresses
1188 format format string for error message, or NULL if already set in addr
1189 ... arguments for the format
1195 common_error(BOOL logit, address_item *addr, int code, uschar *format, ...)
1197 address_item *addr2;
1198 addr->basic_errno = code;
1204 va_start(ap, format);
1205 if (!string_vformat(buffer, sizeof(buffer), CS format, ap))
1206 log_write(0, LOG_MAIN|LOG_PANIC_DIE,
1207 "common_error expansion was longer than %d", sizeof(buffer));
1209 addr->message = string_copy(buffer);
1212 for (addr2 = addr->next; addr2 != NULL; addr2 = addr2->next)
1214 addr2->basic_errno = code;
1215 addr2->message = addr->message;
1218 if (logit) log_write(0, LOG_MAIN|LOG_PANIC, "%s", addr->message);
1219 deliver_set_expansions(NULL);
1225 /*************************************************
1226 * Check a "never users" list *
1227 *************************************************/
1229 /* This function is called to check whether a uid is on one of the two "never
1233 uid the uid to be checked
1234 nusers the list to be scanned; the first item in the list is the count
1236 Returns: TRUE if the uid is on the list
1240 check_never_users(uid_t uid, uid_t *nusers)
1243 if (nusers == NULL) return FALSE;
1244 for (i = 1; i <= (int)(nusers[0]); i++) if (nusers[i] == uid) return TRUE;
1250 /*************************************************
1251 * Find uid and gid for a transport *
1252 *************************************************/
1254 /* This function is called for both local and remote deliveries, to find the
1255 uid/gid under which to run the delivery. The values are taken preferentially
1256 from the transport (either explicit or deliver_as_creator), then from the
1257 address (i.e. the router), and if nothing is set, the exim uid/gid are used. If
1258 the resulting uid is on the "never_users" or the "fixed_never_users" list, a
1259 panic error is logged, and the function fails (which normally leads to delivery
1263 addr the address (possibly a chain)
1265 uidp pointer to uid field
1266 gidp pointer to gid field
1267 igfp pointer to the use_initgroups field
1269 Returns: FALSE if failed - error has been set in address(es)
1273 findugid(address_item *addr, transport_instance *tp, uid_t *uidp, gid_t *gidp,
1276 uschar *nuname = NULL;
1277 BOOL gid_set = FALSE;
1279 /* Default initgroups flag comes from the transport */
1281 *igfp = tp->initgroups;
1283 /* First see if there's a gid on the transport, either fixed or expandable.
1284 The expanding function always logs failure itself. */
1291 else if (tp->expand_gid != NULL)
1293 if (route_find_expanded_group(tp->expand_gid, tp->name, US"transport", gidp,
1294 &(addr->message))) gid_set = TRUE;
1297 common_error(FALSE, addr, ERRNO_GIDFAIL, NULL);
1302 /* Pick up a uid from the transport if one is set. */
1304 if (tp->uid_set) *uidp = tp->uid;
1306 /* Otherwise, try for an expandable uid field. If it ends up as a numeric id,
1307 it does not provide a passwd value from which a gid can be taken. */
1309 else if (tp->expand_uid != NULL)
1312 if (!route_find_expanded_user(tp->expand_uid, tp->name, US"transport", &pw,
1313 uidp, &(addr->message)))
1315 common_error(FALSE, addr, ERRNO_UIDFAIL, NULL);
1318 if (!gid_set && pw != NULL)
1325 /* If the transport doesn't set the uid, test the deliver_as_creator flag. */
1327 else if (tp->deliver_as_creator)
1329 *uidp = originator_uid;
1332 *gidp = originator_gid;
1337 /* Otherwise see if the address specifies the uid and if so, take its
1338 initgroups flag. The gid from the address is taken only if the transport hasn't
1339 set it. In other words, a gid on the transport overrides the gid on the
1342 else if (testflag(addr, af_uid_set))
1345 *igfp = testflag(addr, af_initgroups);
1353 /* Nothing has specified the uid - default to the Exim user, and group if the
1366 /* If no gid is set, it is a disaster. */
1370 common_error(TRUE, addr, ERRNO_GIDFAIL, US"User set without group for "
1371 "%s transport", tp->name);
1375 /* Check that the uid is not on the lists of banned uids that may not be used
1376 for delivery processes. */
1378 if (check_never_users(*uidp, never_users))
1379 nuname = US"never_users";
1380 else if (check_never_users(*uidp, fixed_never_users))
1381 nuname = US"fixed_never_users";
1385 common_error(TRUE, addr, ERRNO_UIDFAIL, US"User %ld set for %s transport "
1386 "is on the %s list", (long int)(*uidp), tp->name, nuname);
1398 /*************************************************
1399 * Check the size of a message for a transport *
1400 *************************************************/
1402 /* Checks that the message isn't too big for the selected transport.
1403 This is called only when it is known that the limit is set.
1407 addr the (first) address being delivered
1410 DEFER expansion failed or did not yield an integer
1411 FAIL message too big
1415 check_message_size(transport_instance *tp, address_item *addr)
1420 deliver_set_expansions(addr);
1421 size_limit = expand_string_integer(tp->message_size_limit);
1422 deliver_set_expansions(NULL);
1427 if (size_limit == -1)
1428 addr->message = string_sprintf("failed to expand message_size_limit "
1429 "in %s transport: %s", tp->name, expand_string_message);
1431 addr->message = string_sprintf("invalid message_size_limit "
1432 "in %s transport: %s", tp->name, expand_string_message);
1434 else if (size_limit > 0 && message_size > size_limit)
1438 string_sprintf("message is too big (transport limit = %d)",
1447 /*************************************************
1448 * Transport-time check for a previous delivery *
1449 *************************************************/
1451 /* Check that this base address hasn't previously been delivered to its routed
1452 transport. The check is necessary at delivery time in order to handle homonymic
1453 addresses correctly in cases where the pattern of redirection changes between
1454 delivery attempts (so the unique fields change). Non-homonymic previous
1455 delivery is detected earlier, at routing time (which saves unnecessary
1458 Argument: the address item
1459 Returns: TRUE if previously delivered by the transport
1463 previously_transported(address_item *addr)
1465 (void)string_format(big_buffer, big_buffer_size, "%s/%s",
1466 addr->unique + (testflag(addr, af_homonym)? 3:0), addr->transport->name);
1468 if (tree_search(tree_nonrecipients, big_buffer) != 0)
1470 DEBUG(D_deliver|D_route|D_transport)
1471 debug_printf("%s was previously delivered (%s transport): discarded\n",
1472 addr->address, addr->transport->name);
1473 child_done(addr, tod_stamp(tod_log));
1483 /*************************************************
1484 * Perform a local delivery *
1485 *************************************************/
1487 /* Each local delivery is performed in a separate process which sets its
1488 uid and gid as specified. This is a safer way than simply changing and
1489 restoring using seteuid(); there is a body of opinion that seteuid() cannot be
1490 used safely. From release 4, Exim no longer makes any use of it. Besides, not
1491 all systems have seteuid().
1493 If the uid/gid are specified in the transport_instance, they are used; the
1494 transport initialization must ensure that either both or neither are set.
1495 Otherwise, the values associated with the address are used. If neither are set,
1496 it is a configuration error.
1498 The transport or the address may specify a home directory (transport over-
1499 rides), and if they do, this is set as $home. If neither have set a working
1500 directory, this value is used for that as well. Otherwise $home is left unset
1501 and the cwd is set to "/" - a directory that should be accessible to all users.
1503 Using a separate process makes it more complicated to get error information
1504 back. We use a pipe to pass the return code and also an error code and error
1505 text string back to the parent process.
1508 addr points to an address block for this delivery; for "normal" local
1509 deliveries this is the only address to be delivered, but for
1510 pseudo-remote deliveries (e.g. by batch SMTP to a file or pipe)
1511 a number of addresses can be handled simultaneously, and in this
1512 case addr will point to a chain of addresses with the same
1515 shadowing TRUE if running a shadow transport; this causes output from pipes
1522 deliver_local(address_item *addr, BOOL shadowing)
1524 BOOL use_initgroups;
1527 int status, len, rc;
1530 uschar *working_directory;
1531 address_item *addr2;
1532 transport_instance *tp = addr->transport;
1534 /* Set up the return path from the errors or sender address. If the transport
1535 has its own return path setting, expand it and replace the existing value. */
1537 return_path = (addr->p.errors_address != NULL)?
1538 addr->p.errors_address : sender_address;
1540 if (tp->return_path != NULL)
1542 uschar *new_return_path = expand_string(tp->return_path);
1543 if (new_return_path == NULL)
1545 if (!expand_string_forcedfail)
1547 common_error(TRUE, addr, ERRNO_EXPANDFAIL,
1548 US"Failed to expand return path \"%s\" in %s transport: %s",
1549 tp->return_path, tp->name, expand_string_message);
1553 else return_path = new_return_path;
1556 /* For local deliveries, one at a time, the value used for logging can just be
1557 set directly, once and for all. */
1559 used_return_path = return_path;
1561 /* Sort out the uid, gid, and initgroups flag. If an error occurs, the message
1562 gets put into the address(es), and the expansions are unset, so we can just
1565 if (!findugid(addr, tp, &uid, &gid, &use_initgroups)) return;
1567 /* See if either the transport or the address specifies a home and/or a current
1568 working directory. Expand it if necessary. If nothing is set, use "/", for the
1569 working directory, which is assumed to be a directory to which all users have
1570 access. It is necessary to be in a visible directory for some operating systems
1571 when running pipes, as some commands (e.g. "rm" under Solaris 2.5) require
1574 deliver_home = (tp->home_dir != NULL)? tp->home_dir :
1575 (addr->home_dir != NULL)? addr->home_dir : NULL;
1577 if (deliver_home != NULL && !testflag(addr, af_home_expanded))
1579 uschar *rawhome = deliver_home;
1580 deliver_home = NULL; /* in case it contains $home */
1581 deliver_home = expand_string(rawhome);
1582 if (deliver_home == NULL)
1584 common_error(TRUE, addr, ERRNO_EXPANDFAIL, US"home directory \"%s\" failed "
1585 "to expand for %s transport: %s", rawhome, tp->name,
1586 expand_string_message);
1589 if (*deliver_home != '/')
1591 common_error(TRUE, addr, ERRNO_NOTABSOLUTE, US"home directory path \"%s\" "
1592 "is not absolute for %s transport", deliver_home, tp->name);
1597 working_directory = (tp->current_dir != NULL)? tp->current_dir :
1598 (addr->current_dir != NULL)? addr->current_dir : NULL;
1600 if (working_directory != NULL)
1602 uschar *raw = working_directory;
1603 working_directory = expand_string(raw);
1604 if (working_directory == NULL)
1606 common_error(TRUE, addr, ERRNO_EXPANDFAIL, US"current directory \"%s\" "
1607 "failed to expand for %s transport: %s", raw, tp->name,
1608 expand_string_message);
1611 if (*working_directory != '/')
1613 common_error(TRUE, addr, ERRNO_NOTABSOLUTE, US"current directory path "
1614 "\"%s\" is not absolute for %s transport", working_directory, tp->name);
1618 else working_directory = (deliver_home == NULL)? US"/" : deliver_home;
1620 /* If one of the return_output flags is set on the transport, create and open a
1621 file in the message log directory for the transport to write its output onto.
1622 This is mainly used by pipe transports. The file needs to be unique to the
1623 address. This feature is not available for shadow transports. */
1625 if (!shadowing && (tp->return_output || tp->return_fail_output ||
1626 tp->log_output || tp->log_fail_output))
1629 addr->return_filename =
1630 string_sprintf("%s/msglog/%s/%s-%d-%d", spool_directory, message_subdir,
1631 message_id, getpid(), return_count++);
1632 addr->return_file = open_msglog_file(addr->return_filename, 0400, &error);
1633 if (addr->return_file < 0)
1635 common_error(TRUE, addr, errno, US"Unable to %s file for %s transport "
1636 "to return message: %s", error, tp->name, strerror(errno));
1641 /* Create the pipe for inter-process communication. */
1645 common_error(TRUE, addr, ERRNO_PIPEFAIL, US"Creation of pipe failed: %s",
1650 /* Now fork the process to do the real work in the subprocess, but first
1651 ensure that all cached resources are freed so that the subprocess starts with
1652 a clean slate and doesn't interfere with the parent process. */
1656 if ((pid = fork()) == 0)
1658 BOOL replicate = TRUE;
1660 /* Prevent core dumps, as we don't want them in users' home directories.
1661 HP-UX doesn't have RLIMIT_CORE; I don't know how to do this in that
1662 system. Some experimental/developing systems (e.g. GNU/Hurd) may define
1663 RLIMIT_CORE but not support it in setrlimit(). For such systems, do not
1664 complain if the error is "not supported". */
1670 if (setrlimit(RLIMIT_CORE, &rl) < 0)
1672 #ifdef SETRLIMIT_NOT_SUPPORTED
1673 if (errno != ENOSYS && errno != ENOTSUP)
1675 log_write(0, LOG_MAIN|LOG_PANIC, "setrlimit(RLIMIT_CORE) failed: %s",
1680 /* Reset the random number generator, so different processes don't all
1681 have the same sequence. */
1685 /* If the transport has a setup entry, call this first, while still
1686 privileged. (Appendfile uses this to expand quota, for example, while
1687 able to read private files.) */
1689 if (addr->transport->setup != NULL)
1691 switch((addr->transport->setup)(addr->transport, addr, NULL,
1695 addr->transport_return = DEFER;
1699 addr->transport_return = PANIC;
1704 /* Ignore SIGINT and SIGTERM during delivery. Also ignore SIGUSR1, as
1705 when the process becomes unprivileged, it won't be able to write to the
1706 process log. SIGHUP is ignored throughout exim, except when it is being
1709 signal(SIGINT, SIG_IGN);
1710 signal(SIGTERM, SIG_IGN);
1711 signal(SIGUSR1, SIG_IGN);
1713 /* Close the unwanted half of the pipe, and set close-on-exec for the other
1714 half - for transports that exec things (e.g. pipe). Then set the required
1717 close(pfd[pipe_read]);
1718 fcntl(pfd[pipe_write], F_SETFD, fcntl(pfd[pipe_write], F_GETFD) |
1720 exim_setugid(uid, gid, use_initgroups,
1721 string_sprintf("local delivery to %s <%s> transport=%s", addr->local_part,
1722 addr->address, addr->transport->name));
1726 address_item *batched;
1727 debug_printf(" home=%s current=%s\n", deliver_home, working_directory);
1728 for (batched = addr->next; batched != NULL; batched = batched->next)
1729 debug_printf("additional batched address: %s\n", batched->address);
1732 /* Set an appropriate working directory. */
1734 if (Uchdir(working_directory) < 0)
1736 addr->transport_return = DEFER;
1737 addr->basic_errno = errno;
1738 addr->message = string_sprintf("failed to chdir to %s", working_directory);
1741 /* If successful, call the transport */
1746 set_process_info("delivering %s to %s using %s", message_id,
1747 addr->local_part, addr->transport->name);
1749 /* If a transport filter has been specified, set up its argument list.
1750 Any errors will get put into the address, and FALSE yielded. */
1752 if (addr->transport->filter_command != NULL)
1754 ok = transport_set_up_command(&transport_filter_argv,
1755 addr->transport->filter_command,
1756 TRUE, PANIC, addr, US"transport filter", NULL);
1757 transport_filter_timeout = addr->transport->filter_timeout;
1759 else transport_filter_argv = NULL;
1763 debug_print_string(addr->transport->debug_string);
1764 replicate = !(addr->transport->info->code)(addr->transport, addr);
1768 /* Pass the results back down the pipe. If necessary, first replicate the
1769 status in the top address to the others in the batch. The label is the
1770 subject of a goto when a call to the transport's setup function fails. We
1771 pass the pointer to the transport back in case it got changed as a result of
1772 file_format in appendfile. */
1776 if (replicate) replicate_status(addr);
1777 for (addr2 = addr; addr2 != NULL; addr2 = addr2->next)
1780 int local_part_length = Ustrlen(addr2->local_part);
1783 write(pfd[pipe_write], (void *)&(addr2->transport_return), sizeof(int));
1784 write(pfd[pipe_write], (void *)&transport_count, sizeof(transport_count));
1785 write(pfd[pipe_write], (void *)&(addr2->flags), sizeof(addr2->flags));
1786 write(pfd[pipe_write], (void *)&(addr2->basic_errno), sizeof(int));
1787 write(pfd[pipe_write], (void *)&(addr2->more_errno), sizeof(int));
1788 write(pfd[pipe_write], (void *)&(addr2->special_action), sizeof(int));
1789 write(pfd[pipe_write], (void *)&(addr2->transport),
1790 sizeof(transport_instance *));
1792 /* For a file delivery, pass back the local part, in case the original
1793 was only part of the final delivery path. This gives more complete
1796 if (testflag(addr2, af_file))
1798 write(pfd[pipe_write], (void *)&local_part_length, sizeof(int));
1799 write(pfd[pipe_write], addr2->local_part, local_part_length);
1802 /* Now any messages */
1804 for (i = 0, s = addr2->message; i < 2; i++, s = addr2->user_message)
1806 int message_length = (s == NULL)? 0 : Ustrlen(s) + 1;
1807 write(pfd[pipe_write], (void *)&message_length, sizeof(int));
1808 if (message_length > 0) write(pfd[pipe_write], s, message_length);
1812 /* OK, this process is now done. Free any cached resources that it opened,
1813 and close the pipe we were writing down before exiting. */
1815 close(pfd[pipe_write]);
1820 /* Back in the main process: panic if the fork did not succeed. This seems
1821 better than returning an error - if forking is failing it is probably best
1822 not to try other deliveries for this message. */
1825 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Fork failed for local delivery to %s",
1828 /* Read the pipe to get the delivery status codes and error messages. Our copy
1829 of the writing end must be closed first, as otherwise read() won't return zero
1830 on an empty pipe. We check that a status exists for each address before
1831 overwriting the address structure. If data is missing, the default DEFER status
1832 will remain. Afterwards, close the reading end. */
1834 close(pfd[pipe_write]);
1836 for (addr2 = addr; addr2 != NULL; addr2 = addr2->next)
1838 len = read(pfd[pipe_read], (void *)&status, sizeof(int));
1844 addr2->transport_return = status;
1845 len = read(pfd[pipe_read], (void *)&transport_count,
1846 sizeof(transport_count));
1847 len = read(pfd[pipe_read], (void *)&(addr2->flags), sizeof(addr2->flags));
1848 len = read(pfd[pipe_read], (void *)&(addr2->basic_errno), sizeof(int));
1849 len = read(pfd[pipe_read], (void *)&(addr2->more_errno), sizeof(int));
1850 len = read(pfd[pipe_read], (void *)&(addr2->special_action), sizeof(int));
1851 len = read(pfd[pipe_read], (void *)&(addr2->transport),
1852 sizeof(transport_instance *));
1854 if (testflag(addr2, af_file))
1856 int local_part_length;
1857 len = read(pfd[pipe_read], (void *)&local_part_length, sizeof(int));
1858 len = read(pfd[pipe_read], (void *)big_buffer, local_part_length);
1859 big_buffer[local_part_length] = 0;
1860 addr2->local_part = string_copy(big_buffer);
1863 for (i = 0, sptr = &(addr2->message); i < 2;
1864 i++, sptr = &(addr2->user_message))
1867 len = read(pfd[pipe_read], (void *)&message_length, sizeof(int));
1868 if (message_length > 0)
1870 len = read(pfd[pipe_read], (void *)big_buffer, message_length);
1871 if (len > 0) *sptr = string_copy(big_buffer);
1878 log_write(0, LOG_MAIN|LOG_PANIC, "failed to read delivery status for %s "
1879 "from delivery subprocess", addr2->unique);
1884 close(pfd[pipe_read]);
1886 /* Unless shadowing, write all successful addresses immediately to the journal
1887 file, to ensure they are recorded asap. For homonymic addresses, use the base
1888 address plus the transport name. Failure to write the journal is panic-worthy,
1889 but don't stop, as it may prove possible subsequently to update the spool file
1890 in order to record the delivery. */
1894 for (addr2 = addr; addr2 != NULL; addr2 = addr2->next)
1896 if (addr2->transport_return != OK) continue;
1898 if (testflag(addr2, af_homonym))
1899 sprintf(CS big_buffer, "%.500s/%s\n", addr2->unique + 3, tp->name);
1901 sprintf(CS big_buffer, "%.500s\n", addr2->unique);
1903 /* In the test harness, wait just a bit to let the subprocess finish off
1904 any debug output etc first. */
1906 if (running_in_test_harness) millisleep(300);
1908 DEBUG(D_deliver) debug_printf("journalling %s", big_buffer);
1909 len = Ustrlen(big_buffer);
1910 if (write(journal_fd, big_buffer, len) != len)
1911 log_write(0, LOG_MAIN|LOG_PANIC, "failed to update journal for %s: %s",
1912 big_buffer, strerror(errno));
1915 /* Ensure the journal file is pushed out to disk. */
1917 if (fsync(journal_fd) < 0)
1918 log_write(0, LOG_MAIN|LOG_PANIC, "failed to fsync journal: %s",
1922 /* Wait for the process to finish. If it terminates with a non-zero code,
1923 freeze the message (except for SIGTERM, SIGKILL and SIGQUIT), but leave the
1924 status values of all the addresses as they are. Take care to handle the case
1925 when the subprocess doesn't seem to exist. This has been seen on one system
1926 when Exim was called from an MUA that set SIGCHLD to SIG_IGN. When that
1927 happens, wait() doesn't recognize the termination of child processes. Exim now
1928 resets SIGCHLD to SIG_DFL, but this code should still be robust. */
1930 while ((rc = wait(&status)) != pid)
1932 if (rc < 0 && errno == ECHILD) /* Process has vanished */
1934 log_write(0, LOG_MAIN, "%s transport process vanished unexpectedly",
1935 addr->transport->driver_name);
1941 if ((status & 0xffff) != 0)
1943 int msb = (status >> 8) & 255;
1944 int lsb = status & 255;
1945 int code = (msb == 0)? (lsb & 0x7f) : msb;
1946 if (msb != 0 || (code != SIGTERM && code != SIGKILL && code != SIGQUIT))
1947 addr->special_action = SPECIAL_FREEZE;
1948 log_write(0, LOG_MAIN|LOG_PANIC, "%s transport process returned non-zero "
1949 "status 0x%04x: %s %d",
1950 addr->transport->driver_name,
1952 (msb == 0)? "terminated by signal" : "exit code",
1956 /* If SPECIAL_WARN is set in the top address, send a warning message. */
1958 if (addr->special_action == SPECIAL_WARN &&
1959 addr->transport->warn_message != NULL)
1962 uschar *warn_message;
1964 DEBUG(D_deliver) debug_printf("Warning message requested by transport\n");
1966 warn_message = expand_string(addr->transport->warn_message);
1967 if (warn_message == NULL)
1968 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand \"%s\" (warning "
1969 "message for %s transport): %s", addr->transport->warn_message,
1970 addr->transport->name, expand_string_message);
1973 pid_t pid = child_open_exim(&fd);
1976 FILE *f = fdopen(fd, "wb");
1978 if (errors_reply_to != NULL)
1979 fprintf(f, "Reply-To: %s\n", errors_reply_to);
1980 fprintf(f, "Auto-Submitted: auto-generated\n");
1981 fprintf(f, "From: Mail Delivery System <Mailer-Daemon@%s>\n",
1982 qualify_domain_sender);
1983 fprintf(f, "%s", CS warn_message);
1985 /* Close and wait for child process to complete, without a timeout. */
1988 (void)child_close(pid, 0);
1992 addr->special_action = SPECIAL_NONE;
1998 /*************************************************
1999 * Do local deliveries *
2000 *************************************************/
2002 /* This function processes the list of addresses in addr_local. True local
2003 deliveries are always done one address at a time. However, local deliveries can
2004 be batched up in some cases. Typically this is when writing batched SMTP output
2005 files for use by some external transport mechanism, or when running local
2006 deliveries over LMTP.
2013 do_local_deliveries(void)
2016 open_db *dbm_file = NULL;
2017 time_t now = time(NULL);
2019 /* Loop until we have exhausted the supply of local deliveries */
2021 while (addr_local != NULL)
2023 time_t delivery_start;
2025 address_item *addr2, *addr3, *nextaddr;
2026 int logflags = LOG_MAIN;
2027 int logchar = dont_deliver? '*' : '=';
2028 transport_instance *tp;
2030 /* Pick the first undelivered address off the chain */
2032 address_item *addr = addr_local;
2033 addr_local = addr->next;
2036 DEBUG(D_deliver|D_transport)
2037 debug_printf("--------> %s <--------\n", addr->address);
2039 /* An internal disaster if there is no transport. Should not occur! */
2041 if ((tp = addr->transport) == NULL)
2043 logflags |= LOG_PANIC;
2044 disable_logging = FALSE; /* Jic */
2046 (addr->router != NULL)?
2047 string_sprintf("No transport set by %s router", addr->router->name)
2049 string_sprintf("No transport set by system filter");
2050 post_process_one(addr, DEFER, logflags, DTYPE_TRANSPORT, 0);
2054 /* Check that this base address hasn't previously been delivered to this
2055 transport. The check is necessary at this point to handle homonymic addresses
2056 correctly in cases where the pattern of redirection changes between delivery
2057 attempts. Non-homonymic previous delivery is detected earlier, at routing
2060 if (previously_transported(addr)) continue;
2062 /* There are weird cases where logging is disabled */
2064 disable_logging = tp->disable_logging;
2066 /* Check for batched addresses and possible amalgamation. File deliveries can
2067 never be batched. Skip all the work if either batch_max <= 1 or there aren't
2068 any other addresses for local delivery. */
2070 if (!testflag(addr, af_file) && tp->batch_max > 1 && addr_local != NULL)
2072 int batch_count = 1;
2073 BOOL uses_dom = readconf_depends((driver_instance *)tp, US"domain");
2074 BOOL uses_lp = readconf_depends((driver_instance *)tp, US"local_part");
2075 uschar *batch_id = NULL;
2076 address_item **anchor = &addr_local;
2077 address_item *last = addr;
2080 /* Expand the batch_id string for comparison with other addresses.
2081 Expansion failure suppresses batching. */
2083 if (tp->batch_id != NULL)
2085 deliver_set_expansions(addr);
2086 batch_id = expand_string(tp->batch_id);
2087 deliver_set_expansions(NULL);
2088 if (batch_id == NULL)
2090 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand batch_id option "
2091 "in %s transport (%s): %s", tp->name, addr->address,
2092 expand_string_message);
2093 batch_count = tp->batch_max;
2097 /* Until we reach the batch_max limit, pick off addresses which have the
2098 same characteristics. These are:
2101 not previously delivered (see comment about 50 lines above)
2102 same local part if the transport's configuration contains $local_part
2103 same domain if the transport's configuration contains $domain
2105 same additional headers
2106 same headers to be removed
2107 same uid/gid for running the transport
2108 same first host if a host list is set
2111 while ((next = *anchor) != NULL && batch_count < tp->batch_max)
2114 tp == next->transport &&
2115 !previously_transported(next) &&
2116 (!uses_lp || Ustrcmp(next->local_part, addr->local_part) == 0) &&
2117 (!uses_dom || Ustrcmp(next->domain, addr->domain) == 0) &&
2118 same_strings(next->p.errors_address, addr->p.errors_address) &&
2119 same_headers(next->p.extra_headers, addr->p.extra_headers) &&
2120 same_strings(next->p.remove_headers, addr->p.remove_headers) &&
2121 same_ugid(tp, addr, next) &&
2122 ((addr->host_list == NULL && next->host_list == NULL) ||
2123 (addr->host_list != NULL && next->host_list != NULL &&
2124 Ustrcmp(addr->host_list->name, next->host_list->name) == 0));
2126 /* If the transport has a batch_id setting, batch_id will be non-NULL
2127 from the expansion outside the loop. Expand for this address and compare.
2128 Expansion failure makes this address ineligible for batching. */
2130 if (ok && batch_id != NULL)
2133 address_item *save_nextnext = next->next;
2134 next->next = NULL; /* Expansion for a single address */
2135 deliver_set_expansions(next);
2136 next->next = save_nextnext;
2137 bid = expand_string(tp->batch_id);
2138 deliver_set_expansions(NULL);
2141 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand batch_id option "
2142 "in %s transport (%s): %s", tp->name, next->address,
2143 expand_string_message);
2146 else ok = (Ustrcmp(batch_id, bid) == 0);
2149 /* Take address into batch if OK. */
2153 *anchor = next->next; /* Include the address */
2159 else anchor = &(next->next); /* Skip the address */
2163 /* We now have one or more addresses that can be delivered in a batch. Check
2164 whether the transport is prepared to accept a message of this size. If not,
2165 fail them all forthwith. If the expansion fails, or does not yield an
2166 integer, defer delivery. */
2168 if (tp->message_size_limit != NULL)
2170 int rc = check_message_size(tp, addr);
2173 replicate_status(addr);
2174 while (addr != NULL)
2177 post_process_one(addr, rc, logflags, DTYPE_TRANSPORT, 0);
2180 continue; /* With next batch of addresses */
2184 /* If we are not running the queue, or if forcing, all deliveries will be
2185 attempted. Otherwise, we must respect the retry times for each address. Even
2186 when not doing this, we need to set up the retry key string, and determine
2187 whether a retry record exists, because after a successful delivery, a delete
2188 retry item must be set up. Keep the retry database open only for the duration
2189 of these checks, rather than for all local deliveries, because some local
2190 deliveries (e.g. to pipes) can take a substantial time. */
2192 dbm_file = dbfn_open(US"retry", O_RDONLY, &dbblock, FALSE);
2193 if (dbm_file == NULL)
2195 DEBUG(D_deliver|D_retry|D_hints_lookup)
2196 debug_printf("no retry data available\n");
2201 while (addr2 != NULL)
2203 BOOL ok = TRUE; /* to deliver this address */
2206 /* Set up the retry key to include the domain or not, and change its
2207 leading character from "R" to "T". Must make a copy before doing this,
2208 because the old key may be pointed to from a "delete" retry item after
2211 retry_key = string_copy(
2212 (tp->retry_use_local_part)? addr2->address_retry_key :
2213 addr2->domain_retry_key);
2216 /* Inspect the retry data. If there is no hints file, delivery happens. */
2218 if (dbm_file != NULL)
2220 dbdata_retry *retry_record = dbfn_read(dbm_file, retry_key);
2222 /* If there is no retry record, delivery happens. If there is,
2223 remember it exists so it can be deleted after a successful delivery. */
2225 if (retry_record != NULL)
2227 setflag(addr2, af_lt_retry_exists);
2229 /* A retry record exists for this address. If queue running and not
2230 forcing, inspect its contents. If the record is too old, or if its
2231 retry time has come, or if it has passed its cutoff time, delivery
2236 debug_printf("retry record exists: age=%d (max=%d)\n",
2237 (int)(now - retry_record->time_stamp), retry_data_expire);
2238 debug_printf(" time to retry = %d expired = %d\n",
2239 (int)(now - retry_record->next_try), retry_record->expired);
2242 if (queue_running && !deliver_force)
2244 ok = (now - retry_record->time_stamp > retry_data_expire) ||
2245 (now >= retry_record->next_try) ||
2246 retry_record->expired;
2248 /* If we haven't reached the retry time, there is one more check
2249 to do, which is for the ultimate address timeout. */
2253 retry_config *retry =
2254 retry_find_config(retry_key+2, addr2->domain,
2255 retry_record->basic_errno,
2256 retry_record->more_errno);
2258 DEBUG(D_deliver|D_retry)
2259 debug_printf("retry time not reached for %s: "
2260 "checking ultimate address timeout\n", addr2->address);
2262 if (retry != NULL && retry->rules != NULL)
2264 retry_rule *last_rule;
2265 for (last_rule = retry->rules;
2266 last_rule->next != NULL;
2267 last_rule = last_rule->next);
2268 if (now - received_time > last_rule->timeout) ok = TRUE;
2270 else ok = TRUE; /* No rule => timed out */
2272 DEBUG(D_deliver|D_retry)
2274 if (ok) debug_printf("on queue longer than maximum retry for "
2275 "address - allowing delivery\n");
2280 else DEBUG(D_retry) debug_printf("no retry record exists\n");
2283 /* This address is to be delivered. Leave it on the chain. */
2288 addr2 = addr2->next;
2291 /* This address is to be deferred. Take it out of the chain, and
2292 post-process it as complete. Must take it out of the chain first,
2293 because post processing puts it on another chain. */
2297 address_item *this = addr2;
2298 this->message = US"Retry time not yet reached";
2299 this->basic_errno = ERRNO_LRETRY;
2300 if (addr3 == NULL) addr2 = addr = addr2->next;
2301 else addr2 = addr3->next = addr2->next;
2302 post_process_one(this, DEFER, logflags, DTYPE_TRANSPORT, 0);
2306 if (dbm_file != NULL) dbfn_close(dbm_file);
2308 /* If there are no addresses left on the chain, they all deferred. Loop
2309 for the next set of addresses. */
2311 if (addr == NULL) continue;
2313 /* So, finally, we do have some addresses that can be passed to the
2314 transport. Before doing so, set up variables that are relevant to a
2317 deliver_set_expansions(addr);
2318 delivery_start = time(NULL);
2319 deliver_local(addr, FALSE);
2320 deliver_time = (int)(time(NULL) - delivery_start);
2322 /* If a shadow transport (which must perforce be another local transport), is
2323 defined, and its condition is met, we must pass the message to the shadow
2324 too, but only those addresses that succeeded. We do this by making a new
2325 chain of addresses - also to keep the original chain uncontaminated. We must
2326 use a chain rather than doing it one by one, because the shadow transport may
2329 NOTE: if the condition fails because of a lookup defer, there is nothing we
2332 if (tp->shadow != NULL &&
2333 (tp->shadow_condition == NULL ||
2334 expand_check_condition(tp->shadow_condition, tp->name, US"transport")))
2336 transport_instance *stp;
2337 address_item *shadow_addr = NULL;
2338 address_item **last = &shadow_addr;
2340 for (stp = transports; stp != NULL; stp = stp->next)
2341 if (Ustrcmp(stp->name, tp->shadow) == 0) break;
2344 log_write(0, LOG_MAIN|LOG_PANIC, "shadow transport \"%s\" not found ",
2347 /* Pick off the addresses that have succeeded, and make clones. Put into
2348 the shadow_message field a pointer to the shadow_message field of the real
2351 else for (addr2 = addr; addr2 != NULL; addr2 = addr2->next)
2353 if (addr2->transport_return != OK) continue;
2354 addr3 = store_get(sizeof(address_item));
2357 addr3->shadow_message = (uschar *)(&(addr2->shadow_message));
2358 addr3->transport = stp;
2359 addr3->transport_return = DEFER;
2360 addr3->return_filename = NULL;
2361 addr3->return_file = -1;
2363 last = &(addr3->next);
2366 /* If we found any addresses to shadow, run the delivery, and stick any
2367 message back into the shadow_message field in the original. */
2369 if (shadow_addr != NULL)
2371 int save_count = transport_count;
2373 DEBUG(D_deliver|D_transport)
2374 debug_printf(">>>>>>>>>>>>>>>> Shadow delivery >>>>>>>>>>>>>>>>\n");
2375 deliver_local(shadow_addr, TRUE);
2377 for(; shadow_addr != NULL; shadow_addr = shadow_addr->next)
2379 int sresult = shadow_addr->transport_return;
2380 *((uschar **)(shadow_addr->shadow_message)) = (sresult == OK)?
2381 string_sprintf(" ST=%s", stp->name) :
2382 string_sprintf(" ST=%s (%s%s%s)", stp->name,
2383 (shadow_addr->basic_errno <= 0)?
2384 US"" : US strerror(shadow_addr->basic_errno),
2385 (shadow_addr->basic_errno <= 0 || shadow_addr->message == NULL)?
2387 (shadow_addr->message != NULL)? shadow_addr->message :
2388 (shadow_addr->basic_errno <= 0)? US"unknown error" : US"");
2390 DEBUG(D_deliver|D_transport)
2391 debug_printf("%s shadow transport returned %s for %s\n",
2393 (sresult == OK)? "OK" :
2394 (sresult == DEFER)? "DEFER" :
2395 (sresult == FAIL)? "FAIL" :
2396 (sresult == PANIC)? "PANIC" : "?",
2397 shadow_addr->address);
2400 DEBUG(D_deliver|D_transport)
2401 debug_printf(">>>>>>>>>>>>>>>> End shadow delivery >>>>>>>>>>>>>>>>\n");
2403 transport_count = save_count; /* Restore original transport count */
2407 /* Cancel the expansions that were set up for the delivery. */
2409 deliver_set_expansions(NULL);
2411 /* Now we can process the results of the real transport. We must take each
2412 address off the chain first, because post_process_one() puts it on another
2415 for (addr2 = addr; addr2 != NULL; addr2 = nextaddr)
2417 int result = addr2->transport_return;
2418 nextaddr = addr2->next;
2420 DEBUG(D_deliver|D_transport)
2421 debug_printf("%s transport returned %s for %s\n",
2423 (result == OK)? "OK" :
2424 (result == DEFER)? "DEFER" :
2425 (result == FAIL)? "FAIL" :
2426 (result == PANIC)? "PANIC" : "?",
2429 /* If there is a retry_record, or if delivery is deferred, build a retry
2430 item for setting a new retry time or deleting the old retry record from
2431 the database. These items are handled all together after all addresses
2432 have been handled (so the database is open just for a short time for
2435 if (result == DEFER || testflag(addr2, af_lt_retry_exists))
2437 int flags = (result == DEFER)? 0 : rf_delete;
2438 uschar *retry_key = string_copy((tp->retry_use_local_part)?
2439 addr2->address_retry_key : addr2->domain_retry_key);
2441 retry_add_item(addr2, retry_key, flags);
2444 /* Done with this address */
2446 if (result == OK) addr2->more_errno = deliver_time;
2447 post_process_one(addr2, result, logflags, DTYPE_TRANSPORT, logchar);
2449 /* If a pipe delivery generated text to be sent back, the result may be
2450 changed to FAIL, and we must copy this for subsequent addresses in the
2453 if (addr2->transport_return != result)
2455 for (addr3 = nextaddr; addr3 != NULL; addr3 = addr3->next)
2457 addr3->transport_return = addr2->transport_return;
2458 addr3->basic_errno = addr2->basic_errno;
2459 addr3->message = addr2->message;
2461 result = addr2->transport_return;
2464 /* Whether or not the result was changed to FAIL, we need to copy the
2465 return_file value from the first address into all the addresses of the
2466 batch, so they are all listed in the error message. */
2468 addr2->return_file = addr->return_file;
2470 /* Change log character for recording successful deliveries. */
2472 if (result == OK) logchar = '-';
2474 } /* Loop back for next batch of addresses */
2480 /*************************************************
2481 * Sort remote deliveries *
2482 *************************************************/
2484 /* This function is called if remote_sort_domains is set. It arranges that the
2485 chain of addresses for remote deliveries is ordered according to the strings
2486 specified. Try to make this shuffling reasonably efficient by handling
2487 sequences of addresses rather than just single ones.
2494 sort_remote_deliveries(void)
2497 address_item **aptr = &addr_remote;
2498 uschar *listptr = remote_sort_domains;
2502 while (*aptr != NULL &&
2503 (pattern = string_nextinlist(&listptr, &sep, patbuf, sizeof(patbuf)))
2506 address_item *moved = NULL;
2507 address_item **bptr = &moved;
2509 while (*aptr != NULL)
2511 address_item **next;
2512 deliver_domain = (*aptr)->domain; /* set $domain */
2513 if (match_isinlist(deliver_domain, &pattern, UCHAR_MAX+1,
2514 &domainlist_anchor, NULL, MCL_DOMAIN, TRUE, NULL) == OK)
2516 aptr = &((*aptr)->next);
2520 next = &((*aptr)->next);
2521 while (*next != NULL &&
2522 (deliver_domain = (*next)->domain, /* Set $domain */
2523 match_isinlist(deliver_domain, &pattern, UCHAR_MAX+1,
2524 &domainlist_anchor, NULL, MCL_DOMAIN, TRUE, NULL)) != OK)
2525 next = &((*next)->next);
2527 /* If the batch of non-matchers is at the end, add on any that were
2528 extracted further up the chain, and end this iteration. Otherwise,
2529 extract them from the chain and hang on the moved chain. */
2541 aptr = &((*aptr)->next);
2544 /* If the loop ended because the final address matched, *aptr will
2545 be NULL. Add on to the end any extracted non-matching addresses. If
2546 *aptr is not NULL, the loop ended via "break" when *next is null, that
2547 is, there was a string of non-matching addresses at the end. In this
2548 case the extracted addresses have already been added on the end. */
2550 if (*aptr == NULL) *aptr = moved;
2556 debug_printf("remote addresses after sorting:\n");
2557 for (addr = addr_remote; addr != NULL; addr = addr->next)
2558 debug_printf(" %s\n", addr->address);
2564 /*************************************************
2565 * Read from pipe for remote delivery subprocess *
2566 *************************************************/
2568 /* This function is called when the subprocess is complete, but can also be
2569 called before it is complete, in order to empty a pipe that is full (to prevent
2570 deadlock). It must therefore keep track of its progress in the parlist data
2573 We read the pipe to get the delivery status codes and a possible error message
2574 for each address, optionally preceded by unusability data for the hosts and
2575 also by optional retry data.
2577 Read in large chunks into the big buffer and then scan through, interpreting
2578 the data therein. In most cases, only a single read will be necessary. No
2579 individual item will ever be anywhere near 2500 bytes in length, so by ensuring
2580 that we read the next chunk when there is less than 2500 bytes left in the
2581 non-final chunk, we can assume each item is complete in the buffer before
2582 handling it. Each item is written using a single write(), which is atomic for
2583 small items (less than PIPE_BUF, which seems to be at least 512 in any Unix and
2584 often bigger) so even if we are reading while the subprocess is still going, we
2585 should never have only a partial item in the buffer.
2588 poffset the offset of the parlist item
2589 eop TRUE if the process has completed
2591 Returns: TRUE if the terminating 'Z' item has been read,
2592 or there has been a disaster (i.e. no more data needed);
2597 par_read_pipe(int poffset, BOOL eop)
2600 pardata *p = parlist + poffset;
2601 address_item *addrlist = p->addrlist;
2602 address_item *addr = p->addr;
2605 uschar *endptr = big_buffer;
2606 uschar *ptr = endptr;
2607 uschar *msg = p->msg;
2608 BOOL done = p->done;
2609 BOOL unfinished = TRUE;
2611 /* Loop through all items, reading from the pipe when necessary. The pipe
2612 is set up to be non-blocking, but there are two different Unix mechanisms in
2613 use. Exim uses O_NONBLOCK if it is defined. This returns 0 for end of file,
2614 and EAGAIN for no more data. If O_NONBLOCK is not defined, Exim uses O_NDELAY,
2615 which returns 0 for both end of file and no more data. We distinguish the
2616 two cases by taking 0 as end of file only when we know the process has
2619 Each separate item is written to the pipe in a single write(), and as they are
2620 all short items, the writes will all be atomic and we should never find
2621 ourselves in the position of having read an incomplete item. "Short" in this
2622 case can mean up to about 1K in the case when there is a long error message
2623 associated with an address. */
2625 DEBUG(D_deliver) debug_printf("reading pipe for subprocess %d (%s)\n",
2626 (int)p->pid, eop? "ended" : "not ended");
2630 retry_item *r, **rp;
2631 int remaining = endptr - ptr;
2633 /* Read (first time) or top up the chars in the buffer if necessary.
2634 There will be only one read if we get all the available data (i.e. don't
2635 fill the buffer completely). */
2637 if (remaining < 2500 && unfinished)
2640 int available = big_buffer_size - remaining;
2642 if (remaining > 0) memmove(big_buffer, ptr, remaining);
2645 endptr = big_buffer + remaining;
2646 len = read(fd, endptr, available);
2648 DEBUG(D_deliver) debug_printf("read() yielded %d\n", len);
2650 /* If the result is EAGAIN and the process is not complete, just
2651 stop reading any more and process what we have already. */
2655 if (!eop && errno == EAGAIN) len = 0; else
2657 msg = string_sprintf("failed to read pipe from transport process "
2658 "%d for transport %s: %s", pid, addr->transport->driver_name,
2664 /* If the length is zero (eof or no-more-data), just process what we
2665 already have. Note that if the process is still running and we have
2666 read all the data in the pipe (but less that "available") then we
2667 won't read any more, as "unfinished" will get set FALSE. */
2670 unfinished = len == available;
2673 /* If we are at the end of the available data, exit the loop. */
2675 if (ptr >= endptr) break;
2677 /* Handle each possible type of item, assuming the complete item is
2678 available in store. */
2682 /* Host items exist only if any hosts were marked unusable. Match
2683 up by checking the IP address. */
2686 for (h = addrlist->host_list; h != NULL; h = h->next)
2688 if (h->address == NULL || Ustrcmp(h->address, ptr+2) != 0) continue;
2696 /* Retry items are sent in a preceding R item for each address. This is
2697 kept separate to keep each message short enough to guarantee it won't
2698 be split in the pipe. Hopefully, in the majority of cases, there won't in
2699 fact be any retry items at all.
2701 The complete set of retry items might include an item to delete a
2702 routing retry if there was a previous routing delay. However, routing
2703 retries are also used when a remote transport identifies an address error.
2704 In that case, there may also be an "add" item for the same key. Arrange
2705 that a "delete" item is dropped in favour of an "add" item. */
2708 if (addr == NULL) goto ADDR_MISMATCH;
2710 DEBUG(D_deliver|D_retry)
2711 debug_printf("reading retry information for %s from subprocess\n",
2714 /* Cut out any "delete" items on the list. */
2716 for (rp = &(addr->retries); (r = *rp) != NULL; rp = &(r->next))
2718 if (Ustrcmp(r->key, ptr+1) == 0) /* Found item with same key */
2720 if ((r->flags & rf_delete) == 0) break; /* It was not "delete" */
2721 *rp = r->next; /* Excise a delete item */
2722 DEBUG(D_deliver|D_retry)
2723 debug_printf(" existing delete item dropped\n");
2727 /* We want to add a delete item only if there is no non-delete item;
2728 however we still have to step ptr through the data. */
2730 if (r == NULL || (*ptr & rf_delete) == 0)
2732 r = store_get(sizeof(retry_item));
2733 r->next = addr->retries;
2736 r->key = string_copy(ptr);
2738 memcpy(&(r->basic_errno), ptr, sizeof(r->basic_errno));
2739 ptr += sizeof(r->basic_errno);
2740 memcpy(&(r->more_errno), ptr, sizeof(r->more_errno));
2741 ptr += sizeof(r->more_errno);
2742 r->message = (*ptr)? string_copy(ptr) : NULL;
2743 DEBUG(D_deliver|D_retry)
2744 debug_printf(" added %s item\n",
2745 ((r->flags & rf_delete) == 0)? "retry" : "delete");
2750 DEBUG(D_deliver|D_retry)
2751 debug_printf(" delete item not added: non-delete item exists\n");
2754 ptr += sizeof(r->basic_errno) + sizeof(r->more_errno);
2760 /* Put the amount of data written into the parlist block */
2763 memcpy(&(p->transport_count), ptr, sizeof(transport_count));
2764 ptr += sizeof(transport_count);
2767 /* Address items are in the order of items on the address chain. We
2768 remember the current address value in case this function is called
2769 several times to empty the pipe in stages. Information about delivery
2770 over TLS is sent in a preceding X item for each address. We don't put
2771 it in with the other info, in order to keep each message short enough to
2772 guarantee it won't be split in the pipe. */
2776 if (addr == NULL) goto ADDR_MISMATCH; /* Below, in 'A' handler */
2777 addr->cipher = (*ptr)? string_copy(ptr) : NULL;
2779 addr->peerdn = (*ptr)? string_copy(ptr) : NULL;
2788 msg = string_sprintf("address count mismatch for data read from pipe "
2789 "for transport process %d for transport %s", pid,
2790 addrlist->transport->driver_name);
2795 addr->transport_return = *ptr++;
2796 addr->special_action = *ptr++;
2797 memcpy(&(addr->basic_errno), ptr, sizeof(addr->basic_errno));
2798 ptr += sizeof(addr->basic_errno);
2799 memcpy(&(addr->more_errno), ptr, sizeof(addr->more_errno));
2800 ptr += sizeof(addr->more_errno);
2801 memcpy(&(addr->flags), ptr, sizeof(addr->flags));
2802 ptr += sizeof(addr->flags);
2803 addr->message = (*ptr)? string_copy(ptr) : NULL;
2805 addr->user_message = (*ptr)? string_copy(ptr) : NULL;
2808 /* Always two strings for host information, followed by the port number */
2812 h = store_get(sizeof(host_item));
2813 h->name = string_copy(ptr);
2815 h->address = string_copy(ptr);
2817 memcpy(&(h->port), ptr, sizeof(h->port));
2818 ptr += sizeof(h->port);
2819 addr->host_used = h;
2823 /* Finished with this address */
2828 /* Z marks the logical end of the data. It is followed by '0' if
2829 continue_transport was NULL at the end of transporting, otherwise '1'.
2830 We need to know when it becomes NULL during a delivery down a passed SMTP
2831 channel so that we don't try to pass anything more down it. Of course, for
2832 most normal messages it will remain NULL all the time. */
2837 continue_transport = NULL;
2838 continue_hostname = NULL;
2841 DEBUG(D_deliver) debug_printf("Z%c item read\n", *ptr);
2844 /* Anything else is a disaster. */
2847 msg = string_sprintf("malformed data (%d) read from pipe for transport "
2848 "process %d for transport %s", ptr[-1], pid,
2849 addr->transport->driver_name);
2855 /* The done flag is inspected externally, to determine whether or not to
2856 call the function again when the process finishes. */
2860 /* If the process hadn't finished, and we haven't seen the end of the data
2861 or suffered a disaster, update the rest of the state, and return FALSE to
2862 indicate "not finished". */
2871 /* Close our end of the pipe, to prevent deadlock if the far end is still
2872 pushing stuff into it. */
2877 /* If we have finished without error, but haven't had data for every address,
2878 something is wrong. */
2880 if (msg == NULL && addr != NULL)
2881 msg = string_sprintf("insufficient address data read from pipe "
2882 "for transport process %d for transport %s", pid,
2883 addr->transport->driver_name);
2885 /* If an error message is set, something has gone wrong in getting back
2886 the delivery data. Put the message into each address and freeze it. */
2890 for (addr = addrlist; addr != NULL; addr = addr->next)
2892 addr->transport_return = DEFER;
2893 addr->special_action = SPECIAL_FREEZE;
2894 addr->message = msg;
2898 /* Return TRUE to indicate we have got all we need from this process, even
2899 if it hasn't actually finished yet. */
2906 /*************************************************
2907 * Post-process a set of remote addresses *
2908 *************************************************/
2910 /* Do what has to be done immediately after a remote delivery for each set of
2911 addresses, then re-write the spool if necessary. Note that post_process_one
2912 puts the address on an appropriate queue; hence we must fish off the next
2913 one first. This function is also called if there is a problem with setting
2914 up a subprocess to do a remote delivery in parallel. In this case, the final
2915 argument contains a message, and the action must be forced to DEFER.
2918 addr pointer to chain of address items
2919 logflags flags for logging
2920 msg NULL for normal cases; -> error message for unexpected problems
2921 fallback TRUE if processing fallback hosts
2927 remote_post_process(address_item *addr, int logflags, uschar *msg,
2932 /* If any host addresses were found to be unusable, add them to the unusable
2933 tree so that subsequent deliveries don't try them. */
2935 for (h = addr->host_list; h != NULL; h = h->next)
2937 if (h->address == NULL) continue;
2938 if (h->status >= hstatus_unusable) tree_add_unusable(h);
2941 /* Now handle each address on the chain. The transport has placed '=' or '-'
2942 into the special_action field for each successful delivery. */
2944 while (addr != NULL)
2946 address_item *next = addr->next;
2948 /* If msg == NULL (normal processing) and the result is DEFER and we are
2949 processing the main hosts and there are fallback hosts available, put the
2950 address on the list for fallback delivery. */
2952 if (addr->transport_return == DEFER &&
2953 addr->fallback_hosts != NULL &&
2957 addr->host_list = addr->fallback_hosts;
2958 addr->next = addr_fallback;
2959 addr_fallback = addr;
2960 DEBUG(D_deliver) debug_printf("%s queued for fallback host(s)\n", addr->address);
2963 /* If msg is set (=> unexpected problem), set it in the address before
2964 doing the ordinary post processing. */
2970 addr->message = msg;
2971 addr->transport_return = DEFER;
2973 (void)post_process_one(addr, addr->transport_return, logflags,
2974 DTYPE_TRANSPORT, addr->special_action);
2982 /* If we have just delivered down a passed SMTP channel, and that was
2983 the last address, the channel will have been closed down. Now that
2984 we have logged that delivery, set continue_sequence to 1 so that
2985 any subsequent deliveries don't get "*" incorrectly logged. */
2987 if (continue_transport == NULL) continue_sequence = 1;
2992 /*************************************************
2993 * Wait for one remote delivery subprocess *
2994 *************************************************/
2996 /* This function is called while doing remote deliveries when either the
2997 maximum number of processes exist and we need one to complete so that another
2998 can be created, or when waiting for the last ones to complete. It must wait for
2999 the completion of one subprocess, empty the control block slot, and return a
3000 pointer to the address chain.
3003 Returns: pointer to the chain of addresses handled by the process;
3004 NULL if no subprocess found - this is an unexpected error
3007 static address_item *
3010 int poffset, status;
3011 address_item *addr, *addrlist;
3014 set_process_info("delivering %s: waiting for a remote delivery subprocess "
3015 "to finish", message_id);
3017 /* Loop until either a subprocess completes, or there are no subprocesses in
3018 existence - in which case give an error return. We cannot proceed just by
3019 waiting for a completion, because a subprocess may have filled up its pipe, and
3020 be waiting for it to be emptied. Therefore, if no processes have finished, we
3021 wait for one of the pipes to acquire some data by calling select(), with a
3022 timeout just in case.
3024 The simple approach is just to iterate after reading data from a ready pipe.
3025 This leads to non-ideal behaviour when the subprocess has written its final Z
3026 item, closed the pipe, and is in the process of exiting (the common case). A
3027 call to waitpid() yields nothing completed, but select() shows the pipe ready -
3028 reading it yields EOF, so you end up with busy-waiting until the subprocess has
3031 To avoid this, if all the data that is needed has been read from a subprocess
3032 after select(), an explicit wait() for it is done. We know that all it is doing
3033 is writing to the pipe and then exiting, so the wait should not be long.
3035 The non-blocking waitpid() is to some extent just insurance; if we could
3036 reliably detect end-of-file on the pipe, we could always know when to do a
3037 blocking wait() for a completed process. However, because some systems use
3038 NDELAY, which doesn't distinguish between EOF and pipe empty, it is easier to
3039 use code that functions without the need to recognize EOF.
3041 There's a double loop here just in case we end up with a process that is not in
3042 the list of remote delivery processes. Something has obviously gone wrong if
3043 this is the case. (For example, a process that is incorrectly left over from
3044 routing or local deliveries might be found.) The damage can be minimized by
3045 looping back and looking for another process. If there aren't any, the error
3046 return will happen. */
3048 for (;;) /* Normally we do not repeat this loop */
3050 while ((pid = waitpid(-1, &status, WNOHANG)) <= 0)
3053 fd_set select_pipes;
3054 int maxpipe, readycount;
3056 /* A return value of -1 can mean several things. If errno != ECHILD, it
3057 either means invalid options (which we discount), or that this process was
3058 interrupted by a signal. Just loop to try the waitpid() again.
3060 If errno == ECHILD, waitpid() is telling us that there are no subprocesses
3061 in existence. This should never happen, and is an unexpected error.
3062 However, there is a nasty complication when running under Linux. If "strace
3063 -f" is being used under Linux to trace this process and its children,
3064 subprocesses are "stolen" from their parents and become the children of the
3065 tracing process. A general wait such as the one we've just obeyed returns
3066 as if there are no children while subprocesses are running. Once a
3067 subprocess completes, it is restored to the parent, and waitpid(-1) finds
3068 it. Thanks to Joachim Wieland for finding all this out and suggesting a
3071 This does not happen using "truss" on Solaris, nor (I think) with other
3072 tracing facilities on other OS. It seems to be specific to Linux.
3074 What we do to get round this is to use kill() to see if any of our
3075 subprocesses are still in existence. If kill() gives an OK return, we know
3076 it must be for one of our processes - it can't be for a re-use of the pid,
3077 because if our process had finished, waitpid() would have found it. If any
3078 of our subprocesses are in existence, we proceed to use select() as if
3079 waitpid() had returned zero. I think this is safe. */
3083 if (errno != ECHILD) continue; /* Repeats the waitpid() */
3086 debug_printf("waitpid() returned -1/ECHILD: checking explicitly "
3087 "for process existence\n");
3089 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3091 if ((pid = parlist[poffset].pid) != 0 && kill(pid, 0) == 0)
3093 DEBUG(D_deliver) debug_printf("process %d still exists: assume "
3094 "stolen by strace\n", (int)pid);
3095 break; /* With poffset set */
3099 if (poffset >= remote_max_parallel)
3101 DEBUG(D_deliver) debug_printf("*** no delivery children found\n");
3102 return NULL; /* This is the error return */
3106 /* A pid value greater than 0 breaks the "while" loop. A negative value has
3107 been handled above. A return value of zero means that there is at least one
3108 subprocess, but there are no completed subprocesses. See if any pipes are
3109 ready with any data for reading. */
3111 DEBUG(D_deliver) debug_printf("selecting on subprocess pipes\n");
3114 FD_ZERO(&select_pipes);
3115 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3117 if (parlist[poffset].pid != 0)
3119 int fd = parlist[poffset].fd;
3120 FD_SET(fd, &select_pipes);
3121 if (fd > maxpipe) maxpipe = fd;
3125 /* Stick in a 60-second timeout, just in case. */
3130 readycount = select(maxpipe + 1, (SELECT_ARG2_TYPE *)&select_pipes,
3133 /* Scan through the pipes and read any that are ready; use the count
3134 returned by select() to stop when there are no more. Select() can return
3135 with no processes (e.g. if interrupted). This shouldn't matter.
3137 If par_read_pipe() returns TRUE, it means that either the terminating Z was
3138 read, or there was a disaster. In either case, we are finished with this
3139 process. Do an explicit wait() for the process and break the main loop if
3142 It turns out that we have to deal with the case of an interrupted system
3143 call, which can happen on some operating systems if the signal handling is
3144 set up to do that by default. */
3147 readycount > 0 && poffset < remote_max_parallel;
3150 if ((pid = parlist[poffset].pid) != 0 &&
3151 FD_ISSET(parlist[poffset].fd, &select_pipes))
3154 if (par_read_pipe(poffset, FALSE)) /* Finished with this pipe */
3156 for (;;) /* Loop for signals */
3158 pid_t endedpid = waitpid(pid, &status, 0);
3159 if (endedpid == pid) goto PROCESS_DONE;
3160 if (endedpid != (pid_t)(-1) || errno != EINTR)
3161 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Unexpected error return "
3162 "%d (errno = %d) from waitpid() for process %d",
3163 (int)endedpid, errno, (int)pid);
3169 /* Now go back and look for a completed subprocess again. */
3172 /* A completed process was detected by the non-blocking waitpid(). Find the
3173 data block that corresponds to this subprocess. */
3175 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3176 if (pid == parlist[poffset].pid) break;
3178 /* Found the data block; this is a known remote delivery process. We don't
3179 need to repeat the outer loop. This should be what normally happens. */
3181 if (poffset < remote_max_parallel) break;
3183 /* This situation is an error, but it's probably better to carry on looking
3184 for another process than to give up (as we used to do). */
3186 log_write(0, LOG_MAIN|LOG_PANIC, "Process %d finished: not found in remote "
3187 "transport process list", pid);
3188 } /* End of the "for" loop */
3190 /* Come here when all the data was completely read after a select(), and
3191 the process in pid has been wait()ed for. */
3198 debug_printf("remote delivery process %d ended\n", (int)pid);
3200 debug_printf("remote delivery process %d ended: status=%04x\n", (int)pid,
3204 set_process_info("delivering %s", message_id);
3206 /* Get the chain of processed addresses */
3208 addrlist = parlist[poffset].addrlist;
3210 /* If the process did not finish cleanly, record an error and freeze (except
3211 for SIGTERM, SIGKILL and SIGQUIT), and also ensure the journal is not removed,
3212 in case the delivery did actually happen. */
3214 if ((status & 0xffff) != 0)
3217 int msb = (status >> 8) & 255;
3218 int lsb = status & 255;
3219 int code = (msb == 0)? (lsb & 0x7f) : msb;
3221 msg = string_sprintf("%s transport process returned non-zero status 0x%04x: "
3223 addrlist->transport->driver_name,
3225 (msb == 0)? "terminated by signal" : "exit code",
3228 if (msb != 0 || (code != SIGTERM && code != SIGKILL && code != SIGQUIT))
3229 addrlist->special_action = SPECIAL_FREEZE;
3231 for (addr = addrlist; addr != NULL; addr = addr->next)
3233 addr->transport_return = DEFER;
3234 addr->message = msg;
3237 remove_journal = FALSE;
3240 /* Else complete reading the pipe to get the result of the delivery, if all
3241 the data has not yet been obtained. */
3243 else if (!parlist[poffset].done) (void)par_read_pipe(poffset, TRUE);
3245 /* Put the data count and return path into globals, mark the data slot unused,
3246 decrement the count of subprocesses, and return the address chain. */
3248 transport_count = parlist[poffset].transport_count;
3249 used_return_path = parlist[poffset].return_path;
3250 parlist[poffset].pid = 0;
3257 /*************************************************
3258 * Wait for subprocesses and post-process *
3259 *************************************************/
3261 /* This function waits for subprocesses until the number that are still running
3262 is below a given threshold. For each complete subprocess, the addresses are
3263 post-processed. If we can't find a running process, there is some shambles.
3264 Better not bomb out, as that might lead to multiple copies of the message. Just
3265 log and proceed as if all done.
3268 max maximum number of subprocesses to leave running
3269 fallback TRUE if processing fallback hosts
3275 par_reduce(int max, BOOL fallback)
3277 while (parcount > max)
3279 address_item *doneaddr = par_wait();
3280 if (doneaddr == NULL)
3282 log_write(0, LOG_MAIN|LOG_PANIC,
3283 "remote delivery process count got out of step");
3286 else remote_post_process(doneaddr, LOG_MAIN, NULL, fallback);
3293 /*************************************************
3294 * Do remote deliveries *
3295 *************************************************/
3297 /* This function is called to process the addresses in addr_remote. We must
3298 pick off the queue all addresses that have the same transport, remote
3299 destination, and errors address, and hand them to the transport in one go,
3300 subject to some configured limitations. If this is a run to continue delivering
3301 to an existing delivery channel, skip all but those addresses that can go to
3302 that channel. The skipped addresses just get deferred.
3304 If mua_wrapper is set, all addresses must be able to be sent in a single
3305 transaction. If not, this function yields FALSE.
3307 In Exim 4, remote deliveries are always done in separate processes, even
3308 if remote_max_parallel = 1 or if there's only one delivery to do. The reason
3309 is so that the base process can retain privilege. This makes the
3310 implementation of fallback transports feasible (though not initially done.)
3312 We create up to the configured number of subprocesses, each of which passes
3313 back the delivery state via a pipe. (However, when sending down an existing
3314 connection, remote_max_parallel is forced to 1.)
3317 fallback TRUE if processing fallback hosts
3319 Returns: TRUE normally
3320 FALSE if mua_wrapper is set and the addresses cannot all be sent
3325 do_remote_deliveries(BOOL fallback)
3331 parcount = 0; /* Number of executing subprocesses */
3333 /* When sending down an existing channel, only do one delivery at a time.
3334 We use a local variable (parmax) to hold the maximum number of processes;
3335 this gets reduced from remote_max_parallel if we can't create enough pipes. */
3337 if (continue_transport != NULL) remote_max_parallel = 1;
3338 parmax = remote_max_parallel;
3340 /* If the data for keeping a list of processes hasn't yet been
3343 if (parlist == NULL)
3345 parlist = store_get(remote_max_parallel * sizeof(pardata));
3346 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3347 parlist[poffset].pid = 0;
3350 /* Now loop for each remote delivery */
3352 for (delivery_count = 0; addr_remote != NULL; delivery_count++)
3358 int address_count = 1;
3359 int address_count_max;
3361 BOOL use_initgroups;
3362 BOOL pipe_done = FALSE;
3363 transport_instance *tp;
3364 address_item **anchor = &addr_remote;
3365 address_item *addr = addr_remote;
3366 address_item *last = addr;
3369 /* Pull the first address right off the list. */
3371 addr_remote = addr->next;
3374 DEBUG(D_deliver|D_transport)
3375 debug_printf("--------> %s <--------\n", addr->address);
3377 /* If no transport has been set, there has been a big screw-up somewhere. */
3379 if ((tp = addr->transport) == NULL)
3381 disable_logging = FALSE; /* Jic */
3382 remote_post_process(addr, LOG_MAIN|LOG_PANIC,
3383 US"No transport set by router", fallback);
3387 /* Check that this base address hasn't previously been delivered to this
3388 transport. The check is necessary at this point to handle homonymic addresses
3389 correctly in cases where the pattern of redirection changes between delivery
3390 attempts. Non-homonymic previous delivery is detected earlier, at routing
3393 if (previously_transported(addr)) continue;
3395 /* Force failure if the message is too big. */
3397 if (tp->message_size_limit != NULL)
3399 int rc = check_message_size(tp, addr);
3402 addr->transport_return = rc;
3403 remote_post_process(addr, LOG_MAIN, NULL, fallback);
3408 /* Get the flag which specifies whether the transport can handle different
3409 domains that nevertheless resolve to the same set of hosts. */
3411 multi_domain = tp->multi_domain;
3413 /* Get the maximum it can handle in one envelope, with zero meaning
3414 unlimited, which is forced for the MUA wrapper case. */
3416 address_count_max = tp->max_addresses;
3417 if (address_count_max == 0 || mua_wrapper) address_count_max = 999999;
3420 /************************************************************************/
3421 /***** This is slightly experimental code, but should be safe. *****/
3423 /* The address_count_max value is the maximum number of addresses that the
3424 transport can send in one envelope. However, the transport must be capable of
3425 dealing with any number of addresses. If the number it gets exceeds its
3426 envelope limitation, it must send multiple copies of the message. This can be
3427 done over a single connection for SMTP, so uses less resources than making
3428 multiple connections. On the other hand, if remote_max_parallel is greater
3429 than one, it is perhaps a good idea to use parallel processing to move the
3430 message faster, even if that results in multiple simultaneous connections to
3433 How can we come to some compromise between these two ideals? What we do is to
3434 limit the number of addresses passed to a single instance of a transport to
3435 the greater of (a) its address limit (rcpt_max for SMTP) and (b) the total
3436 number of addresses routed to remote transports divided by
3437 remote_max_parallel. For example, if the message has 100 remote recipients,
3438 remote max parallel is 2, and rcpt_max is 10, we'd never send more than 50 at
3439 once. But if rcpt_max is 100, we could send up to 100.
3441 Of course, not all the remotely addresses in a message are going to go to the
3442 same set of hosts (except in smarthost configurations), so this is just a
3443 heuristic way of dividing up the work.
3445 Furthermore (1), because this may not be wanted in some cases, and also to
3446 cope with really pathological cases, there is also a limit to the number of
3447 messages that are sent over one connection. This is the same limit that is
3448 used when sending several different messages over the same connection.
3449 Continue_sequence is set when in this situation, to the number sent so
3450 far, including this message.
3452 Furthermore (2), when somebody explicitly sets the maximum value to 1, it
3453 is probably because they are using VERP, in which case they want to pass only
3454 one address at a time to the transport, in order to be able to use
3455 $local_part and $domain in constructing a new return path. We could test for
3456 the use of these variables, but as it is so likely they will be used when the
3457 maximum is 1, we don't bother. Just leave the value alone. */
3459 if (address_count_max != 1 &&
3460 address_count_max < remote_delivery_count/remote_max_parallel)
3462 int new_max = remote_delivery_count/remote_max_parallel;
3463 int message_max = tp->connection_max_messages;
3464 if (connection_max_messages >= 0) message_max = connection_max_messages;
3465 message_max -= continue_sequence - 1;
3466 if (message_max > 0 && new_max > address_count_max * message_max)
3467 new_max = address_count_max * message_max;
3468 address_count_max = new_max;
3471 /************************************************************************/
3474 /* Pick off all addresses which have the same transport, errors address,
3475 destination, and extra headers. In some cases they point to the same host
3476 list, but we also need to check for identical host lists generated from
3477 entirely different domains. The host list pointers can be NULL in the case
3478 where the hosts are defined in the transport. There is also a configured
3479 maximum limit of addresses that can be handled at once (see comments above
3480 for how it is computed). */
3482 while ((next = *anchor) != NULL && address_count < address_count_max)
3484 if ((multi_domain || Ustrcmp(next->domain, addr->domain) == 0)
3486 tp == next->transport
3488 same_hosts(next->host_list, addr->host_list)
3490 same_strings(next->p.errors_address, addr->p.errors_address)
3492 same_headers(next->p.extra_headers, addr->p.extra_headers)
3494 same_ugid(tp, next, addr)
3496 (next->p.remove_headers == addr->p.remove_headers ||
3497 (next->p.remove_headers != NULL &&
3498 addr->p.remove_headers != NULL &&
3499 Ustrcmp(next->p.remove_headers, addr->p.remove_headers) == 0)))
3501 *anchor = next->next;
3503 next->first = addr; /* remember top one (for retry processing) */
3508 else anchor = &(next->next);
3511 /* If we are acting as an MUA wrapper, all addresses must go in a single
3512 transaction. If not, put them back on the chain and yield FALSE. */
3514 if (mua_wrapper && addr_remote != NULL)
3516 last->next = addr_remote;
3521 /* Set up the expansion variables for this set of addresses */
3523 deliver_set_expansions(addr);
3525 /* Compute the return path, expanding a new one if required. The old one
3526 must be set first, as it might be referred to in the expansion. */
3528 return_path = (addr->p.errors_address != NULL)?
3529 addr->p.errors_address : sender_address;
3531 if (tp->return_path != NULL)
3533 uschar *new_return_path = expand_string(tp->return_path);
3534 if (new_return_path == NULL)
3536 if (!expand_string_forcedfail)
3538 remote_post_process(addr, LOG_MAIN|LOG_PANIC,
3539 string_sprintf("Failed to expand return path \"%s\": %s",
3540 tp->return_path, expand_string_message), fallback);
3544 else return_path = new_return_path;
3547 /* If this transport has a setup function, call it now so that it gets
3548 run in this process and not in any subprocess. That way, the results of
3549 any setup that are retained by the transport can be reusable. */
3551 if (tp->setup != NULL)
3552 (void)((tp->setup)(addr->transport, addr, NULL, NULL));
3554 /* If this is a run to continue delivery down an already-established
3555 channel, check that this set of addresses matches the transport and
3556 the channel. If it does not, defer the addresses. If a host list exists,
3557 we must check that the continue host is on the list. Otherwise, the
3558 host is set in the transport. */
3560 continue_more = FALSE; /* In case got set for the last lot */
3561 if (continue_transport != NULL)
3563 BOOL ok = Ustrcmp(continue_transport, tp->name) == 0;
3564 if (ok && addr->host_list != NULL)
3568 for (h = addr->host_list; h != NULL; h = h->next)
3570 if (Ustrcmp(h->name, continue_hostname) == 0)
3571 { ok = TRUE; break; }
3575 /* Addresses not suitable; defer or queue for fallback hosts (which
3576 might be the continue host) and skip to next address. */
3580 DEBUG(D_deliver) debug_printf("not suitable for continue_transport\n");
3583 if (addr->fallback_hosts != NULL && !fallback)
3587 next->host_list = next->fallback_hosts;
3588 DEBUG(D_deliver) debug_printf("%s queued for fallback host(s)\n", next->address);
3589 if (next->next == NULL) break;
3592 next->next = addr_fallback;
3593 addr_fallback = addr;
3598 while (next->next != NULL) next = next->next;
3599 next->next = addr_defer;
3606 /* Set a flag indicating whether there are further addresses that list
3607 the continued host. This tells the transport to leave the channel open,
3608 but not to pass it to another delivery process. */
3610 for (next = addr_remote; next != NULL; next = next->next)
3613 for (h = next->host_list; h != NULL; h = h->next)
3615 if (Ustrcmp(h->name, continue_hostname) == 0)
3616 { continue_more = TRUE; break; }
3621 /* The transports set up the process info themselves as they may connect
3622 to more than one remote machine. They also have to set up the filter
3623 arguments, if required, so that the host name and address are available
3626 transport_filter_argv = NULL;
3628 /* Find the uid, gid, and use_initgroups setting for this transport. Failure
3629 logs and sets up error messages, so we just post-process and continue with
3630 the next address. */
3632 if (!findugid(addr, tp, &uid, &gid, &use_initgroups))
3634 remote_post_process(addr, LOG_MAIN|LOG_PANIC, NULL, fallback);
3638 /* Create the pipe for inter-process communication. If pipe creation
3639 fails, it is probably because the value of remote_max_parallel is so
3640 large that too many file descriptors for pipes have been created. Arrange
3641 to wait for a process to finish, and then try again. If we still can't
3642 create a pipe when all processes have finished, break the retry loop. */
3646 if (pipe(pfd) == 0) pipe_done = TRUE;
3647 else if (parcount > 0) parmax = parcount;
3650 /* We need to make the reading end of the pipe non-blocking. There are
3651 two different options for this. Exim is cunningly (I hope!) coded so
3652 that it can use either of them, though it prefers O_NONBLOCK, which
3653 distinguishes between EOF and no-more-data. */
3656 fcntl(pfd[pipe_read], F_SETFL, O_NONBLOCK);
3658 fcntl(pfd[pipe_read], F_SETFL, O_NDELAY);
3661 /* If the maximum number of subprocesses already exist, wait for a process
3662 to finish. If we ran out of file descriptors, parmax will have been reduced
3663 from its initial value of remote_max_parallel. */
3665 par_reduce(parmax - 1, fallback);
3668 /* If we failed to create a pipe and there were no processes to wait
3669 for, we have to give up on this one. Do this outside the above loop
3670 so that we can continue the main loop. */
3674 remote_post_process(addr, LOG_MAIN|LOG_PANIC,
3675 string_sprintf("unable to create pipe: %s", strerror(errno)), fallback);
3679 /* Find a free slot in the pardata list. Must do this after the possible
3680 waiting for processes to finish, because a terminating process will free
3683 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3684 if (parlist[poffset].pid == 0) break;
3686 /* If there isn't one, there has been a horrible disaster. */
3688 if (poffset >= remote_max_parallel)
3690 close(pfd[pipe_write]);
3691 close(pfd[pipe_read]);
3692 remote_post_process(addr, LOG_MAIN|LOG_PANIC,
3693 US"Unexpectedly no free subprocess slot", fallback);
3697 /* Now fork a subprocess to do the remote delivery, but before doing so,
3698 ensure that any cached resourses are released so as not to interfere with
3699 what happens in the subprocess. */
3703 if ((pid = fork()) == 0)
3705 int fd = pfd[pipe_write];
3708 /* There are weird circumstances in which logging is disabled */
3710 disable_logging = tp->disable_logging;
3712 /* Show pids on debug output if parallelism possible */
3714 if (parmax > 1 && (parcount > 0 || addr_remote != NULL))
3716 DEBUG(D_any|D_v) debug_selector |= D_pid;
3717 DEBUG(D_deliver) debug_printf("Remote delivery process started\n");
3720 /* Reset the random number generator, so different processes don't all
3721 have the same sequence. In the test harness we want different, but
3722 predictable settings for each delivery process, so do something explicit
3723 here rather they rely on the fixed reset in the random number function. */
3725 random_seed = running_in_test_harness? 42 + 2*delivery_count : 0;
3727 /* Set close-on-exec on the pipe so that it doesn't get passed on to
3728 a new process that may be forked to do another delivery down the same
3731 fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
3733 /* Close open file descriptors for the pipes of other processes
3734 that are running in parallel. */
3736 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3737 if (parlist[poffset].pid != 0) close(parlist[poffset].fd);
3739 /* This process has inherited a copy of the file descriptor
3740 for the data file, but its file pointer is shared with all the
3741 other processes running in parallel. Therefore, we have to re-open
3742 the file in order to get a new file descriptor with its own
3743 file pointer. We don't need to lock it, as the lock is held by
3744 the parent process. There doesn't seem to be any way of doing
3745 a dup-with-new-file-pointer. */
3747 close(deliver_datafile);
3748 sprintf(CS spoolname, "%s/input/%s/%s-D", spool_directory, message_subdir,
3750 deliver_datafile = Uopen(spoolname, O_RDWR | O_APPEND, 0);
3752 if (deliver_datafile < 0)
3753 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Failed to reopen %s for remote "
3754 "parallel delivery: %s", spoolname, strerror(errno));
3756 /* Set the close-on-exec flag */
3758 fcntl(deliver_datafile, F_SETFD, fcntl(deliver_datafile, F_GETFD) |
3761 /* Set the uid/gid of this process; bombs out on failure. */
3763 exim_setugid(uid, gid, use_initgroups,
3764 string_sprintf("remote delivery to %s with transport=%s",
3765 addr->address, tp->name));
3767 /* Close the unwanted half of this process' pipe, set the process state,
3768 and run the transport. Afterwards, transport_count will contain the number
3769 of bytes written. */
3771 close(pfd[pipe_read]);
3772 set_process_info("delivering %s using %s", message_id, tp->name);
3773 debug_print_string(tp->debug_string);
3774 if (!(tp->info->code)(addr->transport, addr)) replicate_status(addr);
3776 set_process_info("delivering %s (just run %s for %s%s in subprocess)",
3777 message_id, tp->name, addr->address, (addr->next == NULL)? "" : ", ...");
3779 /* Ensure any cached resources that we used are now released */
3783 /* Pass the result back down the pipe. This is a lot more information
3784 than is needed for a local delivery. We have to send back the error
3785 status for each address, the usability status for each host that is
3786 flagged as unusable, and all the retry items. When TLS is in use, we
3787 send also the cipher and peerdn information. Each type of information
3788 is flagged by an identifying byte, and is then in a fixed format (with
3789 strings terminated by zeros), and there is a final terminator at the
3790 end. The host information and retry information is all attached to
3791 the first address, so that gets sent at the start. */
3793 /* Host unusability information: for most success cases this will
3796 for (h = addr->host_list; h != NULL; h = h->next)
3798 if (h->address == NULL || h->status < hstatus_unusable) continue;
3799 sprintf(CS big_buffer, "H%c%c%s", h->status, h->why, h->address);
3800 write(fd, big_buffer, Ustrlen(big_buffer+3) + 4);
3803 /* The number of bytes written. This is the same for each address. Even
3804 if we sent several copies of the message down the same connection, the
3805 size of each one is the same, and it's that value we have got because
3806 transport_count gets reset before calling transport_write_message(). */
3808 big_buffer[0] = 'S';
3809 memcpy(big_buffer+1, &transport_count, sizeof(transport_count));
3810 write(fd, big_buffer, sizeof(transport_count) + 1);
3812 /* Information about what happened to each address. Three item types are
3813 used: an optional 'X' item first, for TLS information, followed by 'R'
3814 items for any retry settings, and finally an 'A' item for the remaining
3817 for(; addr != NULL; addr = addr->next)
3822 /* The certificate verification status goes into the flags */
3824 if (tls_certificate_verified) setflag(addr, af_cert_verified);
3826 /* Use an X item only if there's something to send */
3829 if (addr->cipher != NULL)
3833 sprintf(CS ptr, "%.128s", addr->cipher);
3835 if (addr->peerdn == NULL) *ptr++ = 0; else
3837 sprintf(CS ptr, "%.512s", addr->peerdn);
3840 write(fd, big_buffer, ptr - big_buffer);
3844 /* Retry information: for most success cases this will be null. */
3846 for (r = addr->retries; r != NULL; r = r->next)
3849 sprintf(CS big_buffer, "R%c%.500s", r->flags, r->key);
3850 ptr = big_buffer + Ustrlen(big_buffer+2) + 3;
3851 memcpy(ptr, &(r->basic_errno), sizeof(r->basic_errno));
3852 ptr += sizeof(r->basic_errno);
3853 memcpy(ptr, &(r->more_errno), sizeof(r->more_errno));
3854 ptr += sizeof(r->more_errno);
3855 if (r->message == NULL) *ptr++ = 0; else
3857 sprintf(CS ptr, "%.512s", r->message);
3860 write(fd, big_buffer, ptr - big_buffer);
3863 /* The rest of the information goes in an 'A' item. */
3865 ptr = big_buffer + 3;
3866 sprintf(CS big_buffer, "A%c%c", addr->transport_return,
3867 addr->special_action);
3868 memcpy(ptr, &(addr->basic_errno), sizeof(addr->basic_errno));
3869 ptr += sizeof(addr->basic_errno);
3870 memcpy(ptr, &(addr->more_errno), sizeof(addr->more_errno));
3871 ptr += sizeof(addr->more_errno);
3872 memcpy(ptr, &(addr->flags), sizeof(addr->flags));
3873 ptr += sizeof(addr->flags);
3875 if (addr->message == NULL) *ptr++ = 0; else
3877 sprintf(CS ptr, "%.1024s", addr->message);
3881 if (addr->user_message == NULL) *ptr++ = 0; else
3883 sprintf(CS ptr, "%.1024s", addr->user_message);
3887 if (addr->host_used == NULL) *ptr++ = 0; else
3889 sprintf(CS ptr, "%.256s", addr->host_used->name);
3891 sprintf(CS ptr, "%.64s", addr->host_used->address);
3893 memcpy(ptr, &(addr->host_used->port), sizeof(addr->host_used->port));
3894 ptr += sizeof(addr->host_used->port);
3896 write(fd, big_buffer, ptr - big_buffer);
3899 /* Add termination flag, close the pipe, and that's it. The character
3900 after 'Z' indicates whether continue_transport is now NULL or not.
3901 A change from non-NULL to NULL indicates a problem with a continuing
3904 big_buffer[0] = 'Z';
3905 big_buffer[1] = (continue_transport == NULL)? '0' : '1';
3906 write(fd, big_buffer, 2);
3911 /* Back in the mainline: close the unwanted half of the pipe. */
3913 close(pfd[pipe_write]);
3915 /* Fork failed; defer with error message */
3919 close(pfd[pipe_read]);
3920 remote_post_process(addr, LOG_MAIN|LOG_PANIC,
3921 string_sprintf("fork failed for remote delivery to %s: %s",
3922 addr->domain, strerror(errno)), fallback);
3926 /* Fork succeeded; increment the count, and remember relevant data for
3927 when the process finishes. */
3930 parlist[poffset].addrlist = parlist[poffset].addr = addr;
3931 parlist[poffset].pid = pid;
3932 parlist[poffset].fd = pfd[pipe_read];
3933 parlist[poffset].done = FALSE;
3934 parlist[poffset].msg = NULL;
3935 parlist[poffset].return_path = return_path;
3937 /* If the process we've just started is sending a message down an existing
3938 channel, wait for it now. This ensures that only one such process runs at
3939 once, whatever the value of remote_max parallel. Otherwise, we might try to
3940 send two or more messages simultaneously down the same channel. This could
3941 happen if there are different domains that include the same host in otherwise
3942 different host lists.
3944 Also, if the transport closes down the channel, this information gets back
3945 (continue_transport gets set to NULL) before we consider any other addresses
3948 if (continue_transport != NULL) par_reduce(0, fallback);
3950 /* Otherwise, if we are running in the test harness, wait a bit, to let the
3951 newly created process get going before we create another process. This should
3952 ensure repeatability in the tests. We only need to wait a tad. */
3954 else if (running_in_test_harness) millisleep(500);
3957 /* Reached the end of the list of addresses. Wait for all the subprocesses that
3958 are still running and post-process their addresses. */
3960 par_reduce(0, fallback);
3967 /*************************************************
3968 * Split an address into local part and domain *
3969 *************************************************/
3971 /* This function initializes an address for routing by splitting it up into a
3972 local part and a domain. The local part is set up twice - once in its original
3973 casing, and once in lower case, and it is dequoted. We also do the "percent
3974 hack" for configured domains. This may lead to a DEFER result if a lookup
3975 defers. When a percent-hacking takes place, we insert a copy of the original
3976 address as a new parent of this address, as if we have had a redirection.
3979 addr points to an addr_item block containing the address
3982 DEFER - could not determine if domain is %-hackable
3986 deliver_split_address(address_item *addr)
3988 uschar *address = addr->address;
3989 uschar *domain = Ustrrchr(address, '@');
3991 int len = domain - address;
3993 addr->domain = string_copylc(domain+1); /* Domains are always caseless */
3995 /* The implication in the RFCs (though I can't say I've seen it spelled out
3996 explicitly) is that quoting should be removed from local parts at the point
3997 where they are locally interpreted. [The new draft "821" is more explicit on
3998 this, Jan 1999.] We know the syntax is valid, so this can be done by simply
3999 removing quoting backslashes and any unquoted doublequotes. */
4001 t = addr->cc_local_part = store_get(len+1);
4004 register int c = *address++;
4005 if (c == '\"') continue;
4015 /* We do the percent hack only for those domains that are listed in
4016 percent_hack_domains. A loop is required, to copy with multiple %-hacks. */
4018 if (percent_hack_domains != NULL)
4021 uschar *new_address = NULL;
4022 uschar *local_part = addr->cc_local_part;
4024 deliver_domain = addr->domain; /* set $domain */
4026 while ((rc = match_isinlist(deliver_domain, &percent_hack_domains, 0,
4027 &domainlist_anchor, addr->domain_cache, MCL_DOMAIN, TRUE, NULL))
4029 (t = Ustrrchr(local_part, '%')) != NULL)
4031 new_address = string_copy(local_part);
4032 new_address[t - local_part] = '@';
4033 deliver_domain = string_copylc(t+1);
4034 local_part = string_copyn(local_part, t - local_part);
4037 if (rc == DEFER) return DEFER; /* lookup deferred */
4039 /* If hackery happened, set up new parent and alter the current address. */
4041 if (new_address != NULL)
4043 address_item *new_parent = store_get(sizeof(address_item));
4044 *new_parent = *addr;
4045 addr->parent = new_parent;
4046 addr->address = new_address;
4047 addr->unique = string_copy(new_address);
4048 addr->domain = deliver_domain;
4049 addr->cc_local_part = local_part;
4050 DEBUG(D_deliver) debug_printf("%%-hack changed address to: %s\n",
4055 /* Create the lowercased version of the final local part, and make that the
4056 default one to be used. */
4058 addr->local_part = addr->lc_local_part = string_copylc(addr->cc_local_part);
4065 /*************************************************
4066 * Get next error message text *
4067 *************************************************/
4069 /* If f is not NULL, read the next "paragraph", from a customized error message
4070 text file, terminated by a line containing ****, and expand it.
4073 f NULL or a file to read from
4074 which string indicating which string (for errors)
4076 Returns: NULL or an expanded string
4080 next_emf(FILE *f, uschar *which)
4084 uschar *para, *yield;
4087 if (f == NULL) return NULL;
4089 if (Ufgets(buffer, sizeof(buffer), f) == NULL ||
4090 Ustrcmp(buffer, "****\n") == 0) return NULL;
4092 para = store_get(size);
4095 para = string_cat(para, &size, &ptr, buffer, Ustrlen(buffer));
4096 if (Ufgets(buffer, sizeof(buffer), f) == NULL ||
4097 Ustrcmp(buffer, "****\n") == 0) break;
4101 yield = expand_string(para);
4102 if (yield != NULL) return yield;
4104 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand string from "
4105 "bounce_message_file or warn_message_file (%s): %s", which,
4106 expand_string_message);
4113 /*************************************************
4114 * Close down a passed transport channel *
4115 *************************************************/
4117 /* This function is called when a passed transport channel cannot be used.
4118 It attempts to close it down tidily. The yield is always DELIVER_NOT_ATTEMPTED
4119 so that the function call can be the argument of a "return" statement.
4122 Returns: DELIVER_NOT_ATTEMPTED
4126 continue_closedown(void)
4128 if (continue_transport != NULL)
4130 transport_instance *t;
4131 for (t = transports; t != NULL; t = t->next)
4133 if (Ustrcmp(t->name, continue_transport) == 0)
4135 if (t->info->closedown != NULL) (t->info->closedown)(t);
4140 return DELIVER_NOT_ATTEMPTED;
4146 /*************************************************
4147 * Print address information *
4148 *************************************************/
4150 /* This function is called to output an address, or information about an
4151 address, for bounce or defer messages. If the hide_child flag is set, all we
4152 output is the original ancestor address.
4155 addr points to the address
4156 f the FILE to print to
4157 si an initial string
4158 sc a continuation string for before "generated"
4161 Returns: TRUE if the address is not hidden
4165 print_address_information(address_item *addr, FILE *f, uschar *si, uschar *sc,
4169 uschar *printed = US"";
4170 address_item *ancestor = addr;
4171 while (ancestor->parent != NULL) ancestor = ancestor->parent;
4173 fprintf(f, "%s", CS si);
4175 if (addr->parent != NULL && testflag(addr, af_hide_child))
4177 printed = US"an undisclosed address";
4181 else if (!testflag(addr, af_pfr) || addr->parent == NULL)
4182 printed = addr->address;
4186 uschar *s = addr->address;
4189 if (addr->address[0] == '>') { ss = US"mail"; s++; }
4190 else if (addr->address[0] == '|') ss = US"pipe";
4193 fprintf(f, "%s to %s%sgenerated by ", ss, s, sc);
4194 printed = addr->parent->address;
4197 fprintf(f, "%s", CS string_printing(printed));
4199 if (ancestor != addr)
4201 uschar *original = (ancestor->onetime_parent == NULL)?
4202 ancestor->address : ancestor->onetime_parent;
4203 if (strcmpic(original, printed) != 0)
4204 fprintf(f, "%s(%sgenerated from %s)", sc,
4205 (ancestor != addr->parent)? "ultimately " : "",
4206 string_printing(original));
4209 fprintf(f, "%s", CS se);
4218 /*************************************************
4219 * Print error for an address *
4220 *************************************************/
4222 /* This function is called to print the error information out of an address for
4223 a bounce or a warning message. It tries to format the message reasonably by
4224 introducing newlines. All lines are indented by 4; the initial printing
4225 position must be set before calling.
4228 addr points to the address
4229 f the FILE to print on
4235 print_address_error(address_item *addr, FILE *f)
4237 uschar *s = (addr->user_message != NULL)? addr->user_message : addr->message;
4238 if (addr->basic_errno > 0)
4240 fprintf(f, "%s%s", strerror(addr->basic_errno),
4241 (s == NULL)? "" : ":\n ");
4245 if (addr->basic_errno <= 0) fprintf(f, "unknown error");
4252 if (*s == '\\' && s[1] == 'n')
4262 if (*s++ == ':' && isspace(*s) && count > 45)
4264 fprintf(f, "\n "); /* sic (because space follows) */
4275 /*************************************************
4276 * Deliver one message *
4277 *************************************************/
4279 /* This is the function which is called when a message is to be delivered. It
4280 is passed the id of the message. It is possible that the message no longer
4281 exists, if some other process has delivered it, and it is also possible that
4282 the message is being worked on by another process, in which case the data file
4285 If no delivery is attempted for any of the above reasons, the function returns
4286 DELIVER_NOT_ATTEMPTED.
4288 If the give_up flag is set true, do not attempt any deliveries, but instead
4289 fail all outstanding addresses and return the message to the sender (or
4292 A delivery operation has a process all to itself; we never deliver more than
4293 one message in the same process. Therefore we needn't worry too much about
4297 id the id of the message to be delivered
4298 forced TRUE if delivery was forced by an administrator; this overrides
4299 retry delays and causes a delivery to be tried regardless
4300 give_up TRUE if an administrator has requested that delivery attempts
4303 Returns: When the global variable mua_wrapper is FALSE:
4304 DELIVER_ATTEMPTED_NORMAL if a delivery attempt was made
4305 DELIVER_NOT_ATTEMPTED otherwise (see comment above)
4306 When the global variable mua_wrapper is TRUE:
4307 DELIVER_MUA_SUCCEEDED if delivery succeeded
4308 DELIVER_MUA_FAILED if delivery failed
4309 DELIVER_NOT_ATTEMPTED if not attempted (should not occur)
4313 deliver_message(uschar *id, BOOL forced, BOOL give_up)
4316 int final_yield = DELIVER_ATTEMPTED_NORMAL;
4317 time_t now = time(NULL);
4318 address_item *addr_last = NULL;
4319 uschar *filter_message = NULL;
4321 int process_recipients = RECIP_ACCEPT;
4325 uschar *info = (queue_run_pid == (pid_t)0)?
4326 string_sprintf("delivering %s", id) :
4327 string_sprintf("delivering %s (queue run pid %d)", id, queue_run_pid);
4329 /* If the D_process_info bit is on, set_process_info() will output debugging
4330 information. If not, we want to show this initial information if D_deliver or
4331 D_queue_run is set or in verbose mode. */
4333 set_process_info("%s", info);
4335 if ((debug_selector & D_process_info) == 0 &&
4336 (debug_selector & (D_deliver|D_queue_run|D_v)) != 0)
4337 debug_printf("%s\n", info);
4339 /* Ensure that we catch any subprocesses that are created. Although Exim
4340 sets SIG_DFL as its initial default, some routes through the code end up
4341 here with it set to SIG_IGN - cases where a non-synchronous delivery process
4342 has been forked, but no re-exec has been done. We use sigaction rather than
4343 plain signal() on those OS where SA_NOCLDWAIT exists, because we want to be
4344 sure it is turned off. (There was a problem on AIX with this.) */
4348 struct sigaction act;
4349 act.sa_handler = SIG_DFL;
4350 sigemptyset(&(act.sa_mask));
4352 sigaction(SIGCHLD, &act, NULL);
4355 signal(SIGCHLD, SIG_DFL);
4358 /* Make the forcing flag available for routers and transports, set up the
4359 global message id field, and initialize the count for returned files and the
4360 message size. This use of strcpy() is OK because the length id is checked when
4361 it is obtained from a command line (the -M or -q options), and otherwise it is
4362 known to be a valid message id. */
4364 Ustrcpy(message_id, id);
4365 deliver_force = forced;
4369 /* Initialize some flags */
4371 update_spool = FALSE;
4372 remove_journal = TRUE;
4374 /* Reset the random number generator, so that if several delivery processes are
4375 started from a queue runner that has already used random numbers (for sorting),
4376 they don't all get the same sequence. */
4380 /* Open and lock the message's data file. Exim locks on this one because the
4381 header file may get replaced as it is re-written during the delivery process.
4382 Any failures cause messages to be written to the log, except for missing files
4383 while queue running - another process probably completed delivery. As part of
4384 opening the data file, message_subdir gets set. */
4386 if (!spool_open_datafile(id))
4387 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
4389 /* The value of message_size at this point has been set to the data length,
4390 plus one for the blank line that notionally precedes the data. */
4392 /* Now read the contents of the header file, which will set up the headers in
4393 store, and also the list of recipients and the tree of non-recipients and
4394 assorted flags. It updates message_size. If there is a reading or format error,
4395 give up; if the message has been around for sufficiently long, remove it. */
4397 sprintf(CS spoolname, "%s-H", id);
4398 if ((rc = spool_read_header(spoolname, TRUE, TRUE)) != spool_read_OK)
4400 if (errno == ERRNO_SPOOLFORMAT)
4402 struct stat statbuf;
4403 sprintf(CS big_buffer, "%s/input/%s/%s", spool_directory, message_subdir,
4405 if (Ustat(big_buffer, &statbuf) == 0)
4407 int size = statbuf.st_size; /* Because might be a long */
4408 log_write(0, LOG_MAIN, "Format error in spool file %s: size=%d",
4411 else log_write(0, LOG_MAIN, "Format error in spool file %s", spoolname);
4414 log_write(0, LOG_MAIN, "Error reading spool file %s: %s", spoolname,
4417 /* If we managed to read the envelope data, received_time contains the
4418 time the message was received. Otherwise, we can calculate it from the
4421 if (rc != spool_read_hdrerror)
4424 for (i = 0; i < 6; i++)
4425 received_time = received_time * BASE_62 + tab62[id[i] - '0'];
4428 /* If we've had this malformed message too long, sling it. */
4430 if (now - received_time > keep_malformed)
4432 sprintf(CS spoolname, "%s/msglog/%s/%s", spool_directory, message_subdir, id);
4434 sprintf(CS spoolname, "%s/input/%s/%s-D", spool_directory, message_subdir, id);
4436 sprintf(CS spoolname, "%s/input/%s/%s-H", spool_directory, message_subdir, id);
4438 sprintf(CS spoolname, "%s/input/%s/%s-J", spool_directory, message_subdir, id);
4440 log_write(0, LOG_MAIN, "Message removed because older than %s",
4441 readconf_printtime(keep_malformed));
4444 close(deliver_datafile);
4445 deliver_datafile = -1;
4446 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
4449 /* The spool header file has been read. Look to see if there is an existing
4450 journal file for this message. If there is, it means that a previous delivery
4451 attempt crashed (program or host) before it could update the spool header file.
4452 Read the list of delivered addresses from the journal and add them to the
4453 nonrecipients tree. Then update the spool file. We can leave the journal in
4454 existence, as it will get further successful deliveries added to it in this
4455 run, and it will be deleted if this function gets to its end successfully.
4456 Otherwise it might be needed again. */
4458 sprintf(CS spoolname, "%s/input/%s/%s-J", spool_directory, message_subdir, id);
4459 jread = Ufopen(spoolname, "rb");
4462 while (Ufgets(big_buffer, big_buffer_size, jread) != NULL)
4464 int n = Ustrlen(big_buffer);
4465 big_buffer[n-1] = 0;
4466 tree_add_nonrecipient(big_buffer);
4467 DEBUG(D_deliver) debug_printf("Previously delivered address %s taken from "
4468 "journal file\n", big_buffer);
4471 /* Panic-dies on error */
4472 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
4474 else if (errno != ENOENT)
4476 log_write(0, LOG_MAIN|LOG_PANIC, "attempt to open journal for reading gave: "
4477 "%s", strerror(errno));
4478 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
4481 /* A null recipients list indicates some kind of disaster. */
4483 if (recipients_list == NULL)
4485 close(deliver_datafile);
4486 deliver_datafile = -1;
4487 log_write(0, LOG_MAIN, "Spool error: no recipients for %s", spoolname);
4488 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
4492 /* Handle a message that is frozen. There are a number of different things that
4493 can happen, but in the default situation, unless forced, no delivery is
4498 #ifdef SUPPORT_MOVE_FROZEN_MESSAGES
4499 /* Moving to another directory removes the message from Exim's view. Other
4500 tools must be used to deal with it. Logging of this action happens in
4501 spool_move_message() and its subfunctions. */
4503 if (move_frozen_messages &&
4504 spool_move_message(id, message_subdir, US"", US"F"))
4505 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
4508 /* For all frozen messages (bounces or not), timeout_frozen_after sets the
4509 maximum time to keep messages that are frozen. Thaw if we reach it, with a
4510 flag causing all recipients to be failed. The time is the age of the
4511 message, not the time since freezing. */
4513 if (timeout_frozen_after > 0 && message_age >= timeout_frozen_after)
4515 log_write(0, LOG_MAIN, "cancelled by timeout_frozen_after");
4516 process_recipients = RECIP_FAIL_TIMEOUT;
4519 /* For bounce messages (and others with no sender), thaw if the error message
4520 ignore timer is exceeded. The message will be discarded if this delivery
4523 else if (sender_address[0] == 0 && message_age >= ignore_bounce_errors_after)
4525 log_write(0, LOG_MAIN, "Unfrozen by errmsg timer");
4528 /* If there's no auto thaw, or we haven't reached the auto thaw time yet, and
4529 this delivery is not forced by an admin user, do not attempt delivery of this
4530 message. Note that forced is set for continuing messages down the same
4531 channel, in order to skip load checking and ignore hold domains, but we
4532 don't want unfreezing in that case. */
4536 if ((auto_thaw <= 0 || now <= deliver_frozen_at + auto_thaw) &&
4537 (!forced || !deliver_force_thaw || !admin_user ||
4538 continue_hostname != NULL))
4540 close(deliver_datafile);
4541 deliver_datafile = -1;
4542 log_write(L_skip_delivery, LOG_MAIN, "Message is frozen");
4543 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
4546 /* If delivery was forced (by an admin user), assume a manual thaw.
4547 Otherwise it's an auto thaw. */
4551 deliver_manual_thaw = TRUE;
4552 log_write(0, LOG_MAIN, "Unfrozen by forced delivery");
4554 else log_write(0, LOG_MAIN, "Unfrozen by auto-thaw");
4557 /* We get here if any of the rules for unfreezing have triggered. */
4559 deliver_freeze = FALSE;
4560 update_spool = TRUE;
4564 /* Open the message log file if we are using them. This records details of
4565 deliveries, deferments, and failures for the benefit of the mail administrator.
4566 The log is not used by exim itself to track the progress of a message; that is
4567 done by rewriting the header spool file. */
4574 sprintf(CS spoolname, "%s/msglog/%s/%s", spool_directory, message_subdir, id);
4575 fd = open_msglog_file(spoolname, SPOOL_MODE, &error);
4579 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't %s message log %s: %s", error,
4580 spoolname, strerror(errno));
4581 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
4584 /* Make a C stream out of it. */
4586 message_log = fdopen(fd, "a");
4587 if (message_log == NULL)
4589 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't fdopen message log %s: %s",
4590 spoolname, strerror(errno));
4591 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
4596 /* If asked to give up on a message, log who did it, and set the action for all
4601 struct passwd *pw = getpwuid(real_uid);
4602 log_write(0, LOG_MAIN, "cancelled by %s", (pw != NULL)?
4603 US pw->pw_name : string_sprintf("uid %ld", (long int)real_uid));
4604 process_recipients = RECIP_FAIL;
4607 /* Otherwise, if there are too many Received: headers, fail all recipients. */
4609 else if (received_count > received_headers_max)
4610 process_recipients = RECIP_FAIL_LOOP;
4612 /* Otherwise, if a system-wide, address-independent message filter is
4613 specified, run it now, except in the case when we are failing all recipients as
4614 a result of timeout_frozen_after. If the system filter yields "delivered", then
4615 ignore the true recipients of the message. Failure of the filter file is
4616 logged, and the delivery attempt fails. */
4618 else if (system_filter != NULL && process_recipients != RECIP_FAIL_TIMEOUT)
4623 redirect_block redirect;
4625 if (system_filter_uid_set)
4627 ugid.uid = system_filter_uid;
4628 ugid.gid = system_filter_gid;
4629 ugid.uid_set = ugid.gid_set = TRUE;
4633 ugid.uid_set = ugid.gid_set = FALSE;
4636 return_path = sender_address;
4637 enable_dollar_recipients = TRUE; /* Permit $recipients in system filter */
4638 system_filtering = TRUE;
4640 /* Any error in the filter file causes a delivery to be abandoned. */
4642 redirect.string = system_filter;
4643 redirect.isfile = TRUE;
4644 redirect.check_owner = redirect.check_group = FALSE;
4645 redirect.owners = NULL;
4646 redirect.owngroups = NULL;
4648 redirect.modemask = 0;
4650 DEBUG(D_deliver|D_filter) debug_printf("running system filter\n");
4653 &redirect, /* Where the data is */
4654 RDO_DEFER | /* Turn on all the enabling options */
4655 RDO_FAIL | /* Leave off all the disabling options */
4660 NULL, /* No :include: restriction (not used in filter) */
4661 NULL, /* No sieve vacation directory (not sieve!) */
4662 &ugid, /* uid/gid data */
4663 &addr_new, /* Where to hang generated addresses */
4664 &filter_message, /* Where to put error message */
4665 NULL, /* Don't skip syntax errors */
4666 &filtertype, /* Will always be set to FILTER_EXIM for this call */
4667 US"system filter"); /* For error messages */
4669 DEBUG(D_deliver|D_filter) debug_printf("system filter returned %d\n", rc);
4671 if (rc == FF_ERROR || rc == FF_NONEXIST)
4673 close(deliver_datafile);
4674 deliver_datafile = -1;
4675 log_write(0, LOG_MAIN|LOG_PANIC, "Error in system filter: %s",
4676 string_printing(filter_message));
4677 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
4680 /* Reset things. If the filter message is an empty string, which can happen
4681 for a filter "fail" or "freeze" command with no text, reset it to NULL. */
4683 system_filtering = FALSE;
4684 enable_dollar_recipients = FALSE;
4685 if (filter_message != NULL && filter_message[0] == 0) filter_message = NULL;
4687 /* Save the values of the system filter variables so that user filters
4690 memcpy(filter_sn, filter_n, sizeof(filter_sn));
4692 /* The filter can request that delivery of the original addresses be
4697 process_recipients = RECIP_DEFER;
4698 deliver_msglog("Delivery deferred by system filter\n");
4699 log_write(0, LOG_MAIN, "Delivery deferred by system filter");
4702 /* The filter can request that a message be frozen, but this does not
4703 take place if the message has been manually thawed. In that case, we must
4704 unset "delivered", which is forced by the "freeze" command to make -bF
4707 else if (rc == FF_FREEZE && !deliver_manual_thaw)
4709 deliver_freeze = TRUE;
4710 deliver_frozen_at = time(NULL);
4711 process_recipients = RECIP_DEFER;
4712 frozen_info = string_sprintf(" by the system filter%s%s",
4713 (filter_message == NULL)? US"" : US": ",
4714 (filter_message == NULL)? US"" : filter_message);
4717 /* The filter can request that a message be failed. The error message may be
4718 quite long - it is sent back to the sender in the bounce - but we don't want
4719 to fill up the log with repetitions of it. If it starts with << then the text
4720 between << and >> is written to the log, with the rest left for the bounce
4723 else if (rc == FF_FAIL)
4725 uschar *colon = US"";
4726 uschar *logmsg = US"";
4729 process_recipients = RECIP_FAIL_FILTER;
4731 if (filter_message != NULL)
4735 if (filter_message[0] == '<' && filter_message[1] == '<' &&
4736 (logend = Ustrstr(filter_message, ">>")) != NULL)
4738 logmsg = filter_message + 2;
4739 loglen = logend - logmsg;
4740 filter_message = logend + 2;
4741 if (filter_message[0] == 0) filter_message = NULL;
4745 logmsg = filter_message;
4746 loglen = Ustrlen(filter_message);
4750 log_write(0, LOG_MAIN, "cancelled by system filter%s%.*s", colon, loglen,
4754 /* Delivery can be restricted only to those recipients (if any) that the
4755 filter specified. */
4757 else if (rc == FF_DELIVERED)
4759 process_recipients = RECIP_IGNORE;
4760 if (addr_new == NULL)
4761 log_write(0, LOG_MAIN, "=> discarded (system filter)");
4763 log_write(0, LOG_MAIN, "original recipients ignored (system filter)");
4766 /* If any new addresses were created by the filter, fake up a "parent"
4767 for them. This is necessary for pipes, etc., which are expected to have
4768 parents, and it also gives some sensible logging for others. Allow
4769 pipes, files, and autoreplies, and run them as the filter uid if set,
4770 otherwise as the current uid. */
4772 if (addr_new != NULL)
4774 int uid = (system_filter_uid_set)? system_filter_uid : geteuid();
4775 int gid = (system_filter_gid_set)? system_filter_gid : getegid();
4777 /* The text "system-filter" is tested in transport_set_up_command() and in
4778 set_up_shell_command() in the pipe transport, to enable them to permit
4779 $recipients, so don't change it here without also changing it there. */
4781 address_item *p = addr_new;
4782 address_item *parent = deliver_make_addr(US"system-filter", FALSE);
4784 parent->domain = string_copylc(qualify_domain_recipient);
4785 parent->local_part = US"system-filter";
4787 /* As part of this loop, we arrange for addr_last to end up pointing
4788 at the final address. This is used if we go on to add addresses for the
4789 original recipients. */
4793 parent->child_count++;
4796 if (testflag(p, af_pfr))
4802 setflag(p, af_uid_set |
4808 /* Find the name of the system filter's appropriate pfr transport */
4810 if (p->address[0] == '|')
4813 tpname = system_filter_pipe_transport;
4814 address_pipe = p->address;
4816 else if (p->address[0] == '>')
4819 tpname = system_filter_reply_transport;
4823 if (p->address[Ustrlen(p->address)-1] == '/')
4825 type = US"directory";
4826 tpname = system_filter_directory_transport;
4831 tpname = system_filter_file_transport;
4833 address_file = p->address;
4836 /* Now find the actual transport, first expanding the name. We have
4837 set address_file or address_pipe above. */
4841 uschar *tmp = expand_string(tpname);
4842 address_file = address_pipe = NULL;
4844 p->message = string_sprintf("failed to expand \"%s\" as a "
4845 "system filter transport name", tpname);
4850 p->message = string_sprintf("system_filter_%s_transport is unset",
4856 transport_instance *tp;
4857 for (tp = transports; tp != NULL; tp = tp->next)
4859 if (Ustrcmp(tp->name, tpname) == 0)
4866 p->message = string_sprintf("failed to find \"%s\" transport "
4867 "for system filter delivery", tpname);
4870 /* If we couldn't set up a transport, defer the delivery, putting the
4871 error on the panic log as well as the main log. */
4873 if (p->transport == NULL)
4875 address_item *badp = p;
4877 if (addr_last == NULL) addr_new = p; else addr_last->next = p;
4878 badp->local_part = badp->address; /* Needed for log line */
4879 post_process_one(badp, DEFER, LOG_MAIN|LOG_PANIC, DTYPE_ROUTER, 0);
4882 } /* End of pfr handling */
4884 /* Either a non-pfr delivery, or we found a transport */
4886 DEBUG(D_deliver|D_filter)
4887 debug_printf("system filter added %s\n", p->address);
4891 } /* Loop through all addr_new addresses */
4896 /* Scan the recipients list, and for every one that is not in the non-
4897 recipients tree, add an addr item to the chain of new addresses. If the pno
4898 value is non-negative, we must set the onetime parent from it. This which
4899 points to the relevant entry in the recipients list.
4901 This processing can be altered by the setting of the process_recipients
4902 variable, which is changed if recipients are to be ignored, failed, or
4903 deferred. This can happen as a result of system filter activity, or if the -Mg
4904 option is used to fail all of them.
4906 Duplicate addresses are handled later by a different tree structure; we can't
4907 just extend the non-recipients tree, because that will be re-written to the
4908 spool if the message is deferred, and in any case there are casing
4909 complications for local addresses. */
4911 if (process_recipients != RECIP_IGNORE)
4913 for (i = 0; i < recipients_count; i++)
4915 if (tree_search(tree_nonrecipients, recipients_list[i].address) == NULL)
4917 recipient_item *r = recipients_list + i;
4918 address_item *new = deliver_make_addr(r->address, FALSE);
4919 new->p.errors_address = r->errors_to;
4922 new->onetime_parent = recipients_list[r->pno].address;
4924 switch (process_recipients)
4926 /* RECIP_DEFER is set when a system filter freezes a message. */
4929 new->next = addr_defer;
4934 /* RECIP_FAIL_FILTER is set when a system filter has obeyed a "fail"
4937 case RECIP_FAIL_FILTER:
4939 (filter_message == NULL)? US"delivery cancelled" : filter_message;
4940 goto RECIP_QUEUE_FAILED; /* below */
4943 /* RECIP_FAIL_TIMEOUT is set when a message is frozen, but is older
4944 than the value in timeout_frozen_after. Treat non-bounce messages
4945 similarly to -Mg; for bounce messages we just want to discard, so
4946 don't put the address on the failed list. The timeout has already
4949 case RECIP_FAIL_TIMEOUT:
4950 new->message = US"delivery cancelled; message timed out";
4951 goto RECIP_QUEUE_FAILED; /* below */
4954 /* RECIP_FAIL is set when -Mg has been used. */
4957 new->message = US"delivery cancelled by administrator";
4960 /* Common code for the failure cases above. If this is not a bounce
4961 message, put the address on the failed list so that it is used to
4962 create a bounce. Otherwise do nothing - this just discards the address.
4963 The incident has already been logged. */
4966 if (sender_address[0] != 0)
4968 new->next = addr_failed;
4974 /* RECIP_FAIL_LOOP is set when there are too many Received: headers
4975 in the message. Process each address as a routing failure; if this
4976 is a bounce message, it will get frozen. */
4978 case RECIP_FAIL_LOOP:
4979 new->message = US"Too many \"Received\" headers - suspected mail loop";
4980 post_process_one(new, FAIL, LOG_MAIN, DTYPE_ROUTER, 0);
4984 /* Value should be RECIP_ACCEPT; take this as the safe default. */
4987 if (addr_new == NULL) addr_new = new; else addr_last->next = new;
4997 address_item *p = addr_new;
4998 debug_printf("Delivery address list:\n");
5001 debug_printf(" %s %s\n", p->address, (p->onetime_parent == NULL)? US"" :
5007 /* Set up the buffers used for copying over the file when delivering. */
5009 deliver_in_buffer = store_malloc(DELIVER_IN_BUFFER_SIZE);
5010 deliver_out_buffer = store_malloc(DELIVER_OUT_BUFFER_SIZE);
5014 /* Until there are no more new addresses, handle each one as follows:
5016 . If this is a generated address (indicated by the presence of a parent
5017 pointer) then check to see whether it is a pipe, file, or autoreply, and
5018 if so, handle it directly here. The router that produced the address will
5019 have set the allow flags into the address, and also set the uid/gid required.
5020 Having the routers generate new addresses and then checking them here at
5021 the outer level is tidier than making each router do the checking, and
5022 means that routers don't need access to the failed address queue.
5024 . Break up the address into local part and domain, and make lowercased
5025 versions of these strings. We also make unquoted versions of the local part.
5027 . Handle the percent hack for those domains for which it is valid.
5029 . For child addresses, determine if any of the parents have the same address.
5030 If so, generate a different string for previous delivery checking. Without
5031 this code, if the address spqr generates spqr via a forward or alias file,
5032 delivery of the generated spqr stops further attempts at the top level spqr,
5033 which is not what is wanted - it may have generated other addresses.
5035 . Check on the retry database to see if routing was previously deferred, but
5036 only if in a queue run. Addresses that are to be routed are put on the
5037 addr_route chain. Addresses that are to be deferred are put on the
5038 addr_defer chain. We do all the checking first, so as not to keep the
5039 retry database open any longer than necessary.
5041 . Now we run the addresses through the routers. A router may put the address
5042 on either the addr_local or the addr_remote chain for local or remote
5043 delivery, respectively, or put it on the addr_failed chain if it is
5044 undeliveable, or it may generate child addresses and put them on the
5045 addr_new chain, or it may defer an address. All the chain anchors are
5046 passed as arguments so that the routers can be called for verification
5049 . If new addresses have been generated by the routers, da capo.
5052 header_rewritten = FALSE; /* No headers rewritten yet */
5053 while (addr_new != NULL) /* Loop until all addresses dealt with */
5055 address_item *addr, *parent;
5056 dbm_file = dbfn_open(US"retry", O_RDONLY, &dbblock, FALSE);
5058 /* Failure to open the retry database is treated the same as if it does
5059 not exist. In both cases, dbm_file is NULL. */
5061 if (dbm_file == NULL)
5063 DEBUG(D_deliver|D_retry|D_route|D_hints_lookup)
5064 debug_printf("no retry data available\n");
5067 /* Scan the current batch of new addresses, to handle pipes, files and
5068 autoreplies, and determine which others are ready for routing. */
5070 while (addr_new != NULL)
5075 dbdata_retry *domain_retry_record;
5076 dbdata_retry *address_retry_record;
5079 addr_new = addr->next;
5081 DEBUG(D_deliver|D_retry|D_route)
5083 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5084 debug_printf("Considering: %s\n", addr->address);
5087 /* Handle generated address that is a pipe or a file or an autoreply. */
5089 if (testflag(addr, af_pfr))
5091 int offset = testflag(addr->parent, af_homonym)? 3:0;
5093 /* If two different users specify delivery to the same pipe or file or
5094 autoreply, there should be two different deliveries, so build a unique
5095 string that incorporates the original address, and use this for
5096 duplicate testing and recording delivery, and also for retrying. */
5099 string_sprintf("%s:%s", addr->address, addr->parent->unique + offset);
5101 addr->address_retry_key = addr->domain_retry_key =
5102 string_sprintf("T:%s", addr->unique);
5104 /* If a filter file specifies two deliveries to the same pipe or file,
5105 we want to de-duplicate, but this is probably not wanted for two mail
5106 commands to the same address, where probably both should be delivered.
5107 So, we have to invent a different unique string in that case. Just
5108 keep piling '>' characters on the front. */
5110 if (addr->address[0] == '>')
5112 while (tree_search(tree_duplicates, addr->unique) != NULL)
5113 addr->unique = string_sprintf(">%s", addr->unique);
5116 else if ((tnode = tree_search(tree_duplicates, addr->unique)) != NULL)
5118 DEBUG(D_deliver|D_route)
5119 debug_printf("%s is a duplicate address: discarded\n", addr->address);
5120 addr->dupof = tnode->data.ptr;
5121 addr->next = addr_duplicate;
5122 addr_duplicate = addr;
5126 DEBUG(D_deliver|D_route) debug_printf("unique = %s\n", addr->unique);
5128 /* Check for previous delivery */
5130 if (tree_search(tree_nonrecipients, addr->unique) != NULL)
5132 DEBUG(D_deliver|D_route)
5133 debug_printf("%s was previously delivered: discarded\n", addr->address);
5134 child_done(addr, tod_stamp(tod_log));
5138 /* Save for checking future duplicates */
5140 tree_add_duplicate(addr->unique, addr);
5142 /* Set local part and domain */
5144 addr->local_part = addr->address;
5145 addr->domain = addr->parent->domain;
5147 /* Ensure that the delivery is permitted. */
5149 if (testflag(addr, af_file))
5151 if (!testflag(addr, af_allow_file))
5153 addr->basic_errno = ERRNO_FORBIDFILE;
5154 addr->message = US"delivery to file forbidden";
5155 (void)post_process_one(addr, FAIL, LOG_MAIN, DTYPE_ROUTER, 0);
5156 continue; /* with the next new address */
5159 else if (addr->address[0] == '|')
5161 if (!testflag(addr, af_allow_pipe))
5163 addr->basic_errno = ERRNO_FORBIDPIPE;
5164 addr->message = US"delivery to pipe forbidden";
5165 (void)post_process_one(addr, FAIL, LOG_MAIN, DTYPE_ROUTER, 0);
5166 continue; /* with the next new address */
5169 else if (!testflag(addr, af_allow_reply))
5171 addr->basic_errno = ERRNO_FORBIDREPLY;
5172 addr->message = US"autoreply forbidden";
5173 (void)post_process_one(addr, FAIL, LOG_MAIN, DTYPE_ROUTER, 0);
5174 continue; /* with the next new address */
5177 /* If the errno field is already set to BADTRANSPORT, it indicates
5178 failure to expand a transport string, or find the associated transport,
5179 or an unset transport when one is required. Leave this test till now so
5180 that the forbid errors are given in preference. */
5182 if (addr->basic_errno == ERRNO_BADTRANSPORT)
5184 (void)post_process_one(addr, DEFER, LOG_MAIN, DTYPE_ROUTER, 0);
5188 /* Treat /dev/null as a special case and abandon the delivery. This
5189 avoids having to specify a uid on the transport just for this case.
5190 Arrange for the transport name to be logged as "**bypassed**". */
5192 if (Ustrcmp(addr->address, "/dev/null") == 0)
5194 uschar *save = addr->transport->name;
5195 addr->transport->name = US"**bypassed**";
5196 (void)post_process_one(addr, OK, LOG_MAIN, DTYPE_TRANSPORT, '=');
5197 addr->transport->name = save;
5198 continue; /* with the next new address */
5201 /* Pipe, file, or autoreply delivery is to go ahead as a normal local
5204 DEBUG(D_deliver|D_route)
5205 debug_printf("queued for %s transport\n", addr->transport->name);
5206 addr->next = addr_local;
5208 continue; /* with the next new address */
5211 /* Handle normal addresses. First, split up into local part and domain,
5212 handling the %-hack if necessary. There is the possibility of a defer from
5213 a lookup in percent_hack_domains. */
5215 if ((rc = deliver_split_address(addr)) == DEFER)
5217 addr->message = US"cannot check percent_hack_domains";
5218 addr->basic_errno = ERRNO_LISTDEFER;
5219 (void)post_process_one(addr, DEFER, LOG_MAIN, DTYPE_NONE, 0);
5223 /* Check to see if the domain is held. If so, proceed only if the
5224 delivery was forced by hand. */
5226 deliver_domain = addr->domain; /* set $domain */
5227 if (!forced && hold_domains != NULL &&
5228 (rc = match_isinlist(addr->domain, &hold_domains, 0,
5229 &domainlist_anchor, addr->domain_cache, MCL_DOMAIN, TRUE,
5234 addr->message = US"hold_domains lookup deferred";
5235 addr->basic_errno = ERRNO_LISTDEFER;
5239 addr->message = US"domain is held";
5240 addr->basic_errno = ERRNO_HELD;
5242 (void)post_process_one(addr, DEFER, LOG_MAIN, DTYPE_NONE, 0);
5246 /* Now we can check for duplicates and previously delivered addresses. In
5247 order to do this, we have to generate a "unique" value for each address,
5248 because there may be identical actual addresses in a line of descendents.
5249 The "unique" field is initialized to the same value as the "address" field,
5250 but gets changed here to cope with identically-named descendents. */
5252 for (parent = addr->parent; parent != NULL; parent = parent->parent)
5253 if (strcmpic(addr->address, parent->address) == 0) break;
5255 /* If there's an ancestor with the same name, set the homonym flag. This
5256 influences how deliveries are recorded. Then add a prefix on the front of
5257 the unique address. We use \n\ where n starts at 0 and increases each time.
5258 It is unlikely to pass 9, but if it does, it may look odd but will still
5259 work. This means that siblings or cousins with the same names are treated
5260 as duplicates, which is what we want. */
5264 setflag(addr, af_homonym);
5265 if (parent->unique[0] != '\\')
5266 addr->unique = string_sprintf("\\0\\%s", addr->address);
5268 addr->unique = string_sprintf("\\%c\\%s", parent->unique[1] + 1,
5272 /* Ensure that the domain in the unique field is lower cased, because
5273 domains are always handled caselessly. */
5275 p = Ustrrchr(addr->unique, '@');
5276 while (*p != 0) { *p = tolower(*p); p++; }
5278 DEBUG(D_deliver|D_route) debug_printf("unique = %s\n", addr->unique);
5280 if (tree_search(tree_nonrecipients, addr->unique) != NULL)
5282 DEBUG(D_deliver|D_route)
5283 debug_printf("%s was previously delivered: discarded\n", addr->unique);
5284 child_done(addr, tod_stamp(tod_log));
5288 /* If it's a duplicate, remember what it's a duplicate of */
5290 if ((tnode = tree_search(tree_duplicates, addr->unique)) != NULL)
5292 DEBUG(D_deliver|D_route)
5293 debug_printf("%s is a duplicate address: discarded\n", addr->unique);
5294 addr->dupof = tnode->data.ptr;
5295 addr->next = addr_duplicate;
5296 addr_duplicate = addr;
5300 /* Record this address, so subsequent duplicates get picked up. */
5302 tree_add_duplicate(addr->unique, addr);
5304 /* Get the routing retry status, saving the two retry keys (with and
5305 without the local part) for subsequent use. Ignore retry records that
5308 addr->domain_retry_key = string_sprintf("R:%s", addr->domain);
5309 addr->address_retry_key = string_sprintf("R:%s@%s", addr->local_part,
5312 if (dbm_file == NULL)
5313 domain_retry_record = address_retry_record = NULL;
5316 domain_retry_record = dbfn_read(dbm_file, addr->domain_retry_key);
5317 if (domain_retry_record != NULL &&
5318 now - domain_retry_record->time_stamp > retry_data_expire)
5319 domain_retry_record = NULL;
5321 address_retry_record = dbfn_read(dbm_file, addr->address_retry_key);
5322 if (address_retry_record != NULL &&
5323 now - address_retry_record->time_stamp > retry_data_expire)
5324 address_retry_record = NULL;
5327 DEBUG(D_deliver|D_retry)
5329 if (domain_retry_record == NULL)
5330 debug_printf("no domain retry record\n");
5331 if (address_retry_record == NULL)
5332 debug_printf("no address retry record\n");
5335 /* If we are sending a message down an existing SMTP connection, we must
5336 assume that the message which created the connection managed to route
5337 an address to that connection. We do not want to run the risk of taking
5338 a long time over routing here, because if we do, the server at the other
5339 end of the connection may time it out. This is especially true for messages
5340 with lots of addresses. For this kind of delivery, queue_running is not
5341 set, so we would normally route all addresses. We take a pragmatic approach
5342 and defer routing any addresses that have any kind of domain retry record.
5343 That is, we don't even look at their retry times. It doesn't matter if this
5344 doesn't work occasionally. This is all just an optimization, after all.
5346 The reason for not doing the same for address retries is that they normally
5347 arise from 4xx responses, not DNS timeouts. */
5349 if (continue_hostname != NULL && domain_retry_record != NULL)
5351 addr->message = US"reusing SMTP connection skips previous routing defer";
5352 addr->basic_errno = ERRNO_RRETRY;
5353 (void)post_process_one(addr, DEFER, LOG_MAIN, DTYPE_ROUTER, 0);
5356 /* If queue_running, defer routing unless no retry data or we've
5357 passed the next retry time, or this message is forced. However,
5358 if the retry time has expired, allow the routing attempt.
5359 If it fails again, the address will be failed. This ensures that
5360 each address is routed at least once, even after long-term routing
5363 If there is an address retry, check that too; just wait for the next
5364 retry time. This helps with the case when the temporary error on the
5365 address was really message-specific rather than address specific, since
5366 it allows other messages through. */
5368 else if (!deliver_force && queue_running &&
5369 ((domain_retry_record != NULL &&
5370 now < domain_retry_record->next_try &&
5371 !domain_retry_record->expired)
5373 (address_retry_record != NULL &&
5374 now < address_retry_record->next_try))
5377 addr->message = US"retry time not reached";
5378 addr->basic_errno = ERRNO_RRETRY;
5379 (void)post_process_one(addr, DEFER, LOG_MAIN, DTYPE_ROUTER, 0);
5382 /* The domain is OK for routing. Remember if retry data exists so it
5383 can be cleaned up after a successful delivery. */
5387 if (domain_retry_record != NULL || address_retry_record != NULL)
5388 setflag(addr, af_dr_retry_exists);
5389 addr->next = addr_route;
5391 DEBUG(D_deliver|D_route)
5392 debug_printf("%s: queued for routing\n", addr->address);
5396 /* The database is closed while routing is actually happening. Requests to
5397 update it are put on a chain and all processed together at the end. */
5399 if (dbm_file != NULL) dbfn_close(dbm_file);
5401 /* If queue_domains is set, we don't even want to try routing addresses in
5402 those domains. During queue runs, queue_domains is forced to be unset.
5403 Optimize by skipping this pass through the addresses if nothing is set. */
5405 if (!deliver_force && queue_domains != NULL)
5407 address_item *okaddr = NULL;
5408 while (addr_route != NULL)
5410 address_item *addr = addr_route;
5411 addr_route = addr->next;
5413 deliver_domain = addr->domain; /* set $domain */
5414 if ((rc = match_isinlist(addr->domain, &queue_domains, 0,
5415 &domainlist_anchor, addr->domain_cache, MCL_DOMAIN, TRUE, NULL))
5420 addr->basic_errno = ERRNO_LISTDEFER;
5421 addr->message = US"queue_domains lookup deferred";
5422 (void)post_process_one(addr, DEFER, LOG_MAIN, DTYPE_ROUTER, 0);
5426 addr->next = okaddr;
5432 addr->basic_errno = ERRNO_QUEUE_DOMAIN;
5433 addr->message = US"domain is in queue_domains";
5434 (void)post_process_one(addr, DEFER, LOG_MAIN, DTYPE_ROUTER, 0);
5438 addr_route = okaddr;
5441 /* Now route those addresses that are not deferred. */
5443 while (addr_route != NULL)
5446 address_item *addr = addr_route;
5447 uschar *old_domain = addr->domain;
5448 uschar *old_unique = addr->unique;
5449 addr_route = addr->next;
5452 /* Just in case some router parameter refers to it. */
5454 return_path = (addr->p.errors_address != NULL)?
5455 addr->p.errors_address : sender_address;
5457 /* If a router defers an address, add a retry item. Whether or not to
5458 use the local part in the key is a property of the router. */
5460 if ((rc = route_address(addr, &addr_local, &addr_remote, &addr_new,
5461 &addr_succeed, v_none)) == DEFER)
5462 retry_add_item(addr, (addr->router->retry_use_local_part)?
5463 string_sprintf("R:%s@%s", addr->local_part, addr->domain) :
5464 string_sprintf("R:%s", addr->domain), 0);
5466 /* Otherwise, if there is an existing retry record in the database, add
5467 retry items to delete both forms. Since the domain might have been
5468 rewritten (expanded to fully qualified) as a result of routing, ensure
5469 that the rewritten form is also deleted. */
5471 else if (testflag(addr, af_dr_retry_exists))
5473 retry_add_item(addr, addr->address_retry_key, rf_delete);
5474 retry_add_item(addr, addr->domain_retry_key, rf_delete);
5475 if (Ustrcmp(addr->domain, old_domain) != 0)
5476 retry_add_item(addr, string_sprintf("R:%s", old_domain), rf_delete);
5479 /* DISCARD is given for :blackhole: and "seen finish". The event has been
5480 logged, but we need to ensure the address (and maybe parents) is marked
5485 address_done(addr, tod_stamp(tod_log));
5486 continue; /* route next address */
5489 /* The address is finished with (failed or deferred). */
5493 (void)post_process_one(addr, rc, LOG_MAIN, DTYPE_ROUTER, 0);
5494 continue; /* route next address */
5497 /* The address has been routed. If the router changed the domain, it will
5498 also have changed the unique address. We have to test whether this address
5499 has already been delivered, because it's the unique address that finally
5502 if (addr->unique != old_unique &&
5503 tree_search(tree_nonrecipients, addr->unique) != 0)
5505 DEBUG(D_deliver|D_route) debug_printf("%s was previously delivered: "
5506 "discarded\n", addr->address);
5507 if (addr_remote == addr) addr_remote = addr->next;
5508 else if (addr_local == addr) addr_local = addr->next;
5511 /* If the router has same_domain_copy_routing set, we are permitted to copy
5512 the routing for any other addresses with the same domain. This is an
5513 optimisation to save repeated DNS lookups for "standard" remote domain
5514 routing. The option is settable only on routers that generate host lists.
5515 We play it very safe, and do the optimization only if the address is routed
5516 to a remote transport, there are no header changes, and the domain was not
5517 modified by the router. */
5519 if (addr_remote == addr &&
5520 addr->router->same_domain_copy_routing &&
5521 addr->p.extra_headers == NULL &&
5522 addr->p.remove_headers == NULL &&
5523 old_domain == addr->domain)
5525 address_item **chain = &addr_route;
5526 while (*chain != NULL)
5528 address_item *addr2 = *chain;
5529 if (Ustrcmp(addr2->domain, addr->domain) != 0)
5531 chain = &(addr2->next);
5535 /* Found a suitable address; take it off the routing list and add it to
5536 the remote delivery list. */
5538 *chain = addr2->next;
5539 addr2->next = addr_remote;
5540 addr_remote = addr2;
5542 /* Copy the routing data */
5544 addr2->domain = addr->domain;
5545 addr2->router = addr->router;
5546 addr2->transport = addr->transport;
5547 addr2->host_list = addr->host_list;
5548 addr2->fallback_hosts = addr->fallback_hosts;
5549 addr2->p.errors_address = addr->p.errors_address;
5550 copyflag(addr2, addr, af_hide_child | af_local_host_removed);
5552 DEBUG(D_deliver|D_route)
5554 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"
5556 "Routing for %s copied from %s\n",
5557 addr2->address, addr2->address, addr->address);
5561 } /* Continue with routing the next address. */
5562 } /* Loop to process any child addresses that the routers created, and
5563 any rerouted addresses that got put back on the new chain. */
5566 /* Debugging: show the results of the routing */
5568 DEBUG(D_deliver|D_retry|D_route)
5570 address_item *p = addr_local;
5571 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5572 debug_printf("After routing:\n Local deliveries:\n");
5575 debug_printf(" %s\n", p->address);
5580 debug_printf(" Remote deliveries:\n");
5583 debug_printf(" %s\n", p->address);
5588 debug_printf(" Failed addresses:\n");
5591 debug_printf(" %s\n", p->address);
5596 debug_printf(" Deferred addresses:\n");
5599 debug_printf(" %s\n", p->address);
5604 /* Free any resources that were cached during routing. */
5609 /* These two variables are set only during routing, after check_local_user.
5610 Ensure they are not set in transports. */
5612 local_user_gid = (gid_t)(-1);
5613 local_user_uid = (uid_t)(-1);
5615 /* When acting as an MUA wrapper, we proceed only if all addresses route to a
5616 remote transport. The check that they all end up in one transaction happens in
5617 the do_remote_deliveries() function. */
5619 if (mua_wrapper && (addr_local != NULL || addr_failed != NULL ||
5620 addr_defer != NULL))
5623 uschar *which, *colon, *msg;
5625 if (addr_local != NULL)
5630 else if (addr_defer != NULL)
5633 which = US"deferred";
5641 while (addr->parent != NULL) addr = addr->parent;
5643 if (addr->message != NULL)
5646 msg = addr->message;
5648 else colon = msg = US"";
5650 /* We don't need to log here for a forced failure as it will already
5651 have been logged. Defer will also have been logged, but as a defer, so we do
5652 need to do the failure logging. */
5654 if (addr != addr_failed)
5655 log_write(0, LOG_MAIN, "** %s routing yielded a %s delivery",
5656 addr->address, which);
5658 /* Always write an error to the caller */
5660 fprintf(stderr, "routing %s yielded a %s delivery%s%s\n", addr->address,
5663 final_yield = DELIVER_MUA_FAILED;
5664 addr_failed = addr_defer = NULL; /* So that we remove the message */
5665 goto DELIVERY_TIDYUP;
5669 /* If this is a run to continue deliveries to an external channel that is
5670 already set up, defer any local deliveries. */
5672 if (continue_transport != NULL)
5674 if (addr_defer == NULL) addr_defer = addr_local; else
5676 address_item *addr = addr_defer;
5677 while (addr->next != NULL) addr = addr->next;
5678 addr->next = addr_local;
5684 /* Because address rewriting can happen in the routers, we should not really do
5685 ANY deliveries until all addresses have been routed, so that all recipients of
5686 the message get the same headers. However, this is in practice not always
5687 possible, since sometimes remote addresses give DNS timeouts for days on end.
5688 The pragmatic approach is to deliver what we can now, saving any rewritten
5689 headers so that at least the next lot of recipients benefit from the rewriting
5690 that has already been done.
5692 If any headers have been rewritten during routing, update the spool file to
5693 remember them for all subsequent deliveries. This can be delayed till later if
5694 there is only address to be delivered - if it succeeds the spool write need not
5697 if (header_rewritten &&
5698 ((addr_local != NULL &&
5699 (addr_local->next != NULL || addr_remote != NULL)) ||
5700 (addr_remote != NULL && addr_remote->next != NULL)))
5702 /* Panic-dies on error */
5703 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
5704 header_rewritten = FALSE;
5708 /* If there are any deliveries to be done, open the journal file. This is used
5709 to record successful deliveries as soon as possible after each delivery is
5710 known to be complete. A file opened with O_APPEND is used so that several
5711 processes can run simultaneously.
5713 The journal is just insurance against crashes. When the spool file is
5714 ultimately updated at the end of processing, the journal is deleted. If a
5715 journal is found to exist at the start of delivery, the addresses listed
5716 therein are added to the non-recipients. */
5718 if (addr_local != NULL || addr_remote != NULL)
5720 sprintf(CS spoolname, "%s/input/%s/%s-J", spool_directory, message_subdir, id);
5721 journal_fd = Uopen(spoolname, O_WRONLY|O_APPEND|O_CREAT, SPOOL_MODE);
5725 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't open journal file %s: %s",
5726 spoolname, strerror(errno));
5727 return DELIVER_NOT_ATTEMPTED;
5730 /* Set the close-on-exec flag, make the file owned by Exim, and ensure
5731 that the mode is correct - the group setting doesn't always seem to get
5732 set automatically. */
5734 fcntl(journal_fd, F_SETFD, fcntl(journal_fd, F_GETFD) | FD_CLOEXEC);
5735 fchown(journal_fd, exim_uid, exim_gid);
5736 fchmod(journal_fd, SPOOL_MODE);
5740 /* Now we can get down to the business of actually doing deliveries. Local
5741 deliveries are done first, then remote ones. If ever the problems of how to
5742 handle fallback transports are figured out, this section can be put into a loop
5743 for handling fallbacks, though the uid switching will have to be revised. */
5745 if (addr_local != NULL)
5747 DEBUG(D_deliver|D_transport)
5748 debug_printf(">>>>>>>>>>>>>>>> Local deliveries >>>>>>>>>>>>>>>>\n");
5749 do_local_deliveries();
5750 disable_logging = FALSE;
5753 /* If queue_run_local is set, we do not want to attempt any remote deliveries,
5754 so just queue them all. */
5756 if (queue_run_local)
5758 while (addr_remote != NULL)
5760 address_item *addr = addr_remote;
5761 addr_remote = addr->next;
5763 addr->basic_errno = ERRNO_LOCAL_ONLY;
5764 addr->message = US"remote deliveries suppressed";
5765 (void)post_process_one(addr, DEFER, LOG_MAIN, DTYPE_TRANSPORT, 0);
5769 /* Handle remote deliveries */
5771 if (addr_remote != NULL)
5773 DEBUG(D_deliver|D_transport)
5774 debug_printf(">>>>>>>>>>>>>>>> Remote deliveries >>>>>>>>>>>>>>>>\n");
5776 /* Precompile some regex that are used to recognize parameters in response
5777 to an EHLO command, if they aren't already compiled. */
5779 if (regex_PIPELINING == NULL) regex_PIPELINING =
5780 regex_must_compile(US"\\n250[\\s\\-]PIPELINING(\\s|\\n|$)", FALSE, TRUE);
5782 if (regex_SIZE == NULL) regex_SIZE =
5783 regex_must_compile(US"\\n250[\\s\\-]SIZE(\\s|\\n|$)", FALSE, TRUE);
5785 if (regex_AUTH == NULL) regex_AUTH =
5786 regex_must_compile(US"\\n250[\\s\\-]AUTH\\s+([\\-\\w\\s]+)(?:\\n|$)",
5790 if (regex_STARTTLS == NULL) regex_STARTTLS =
5791 regex_must_compile(US"\\n250[\\s\\-]STARTTLS(\\s|\\n|$)", FALSE, TRUE);
5794 /* Now sort the addresses if required, and do the deliveries. The yield of
5795 do_remote_deliveries is FALSE when mua_wrapper is set and all addresses
5796 cannot be delivered in one transaction. */
5798 if (remote_sort_domains != NULL) sort_remote_deliveries();
5799 if (!do_remote_deliveries(FALSE))
5801 log_write(0, LOG_MAIN, "** mua_wrapper is set but recipients cannot all "
5802 "be delivered in one transaction");
5803 fprintf(stderr, "delivery to smarthost failed (configuration problem)\n");
5805 final_yield = DELIVER_MUA_FAILED;
5806 addr_failed = addr_defer = NULL; /* So that we remove the message */
5807 goto DELIVERY_TIDYUP;
5810 /* See if any of the addresses that failed got put on the queue for delivery
5811 to their fallback hosts. We do it this way because often the same fallback
5812 host is used for many domains, so all can be sent in a single transaction
5813 (if appropriately configured). */
5815 if (addr_fallback != NULL && !mua_wrapper)
5817 DEBUG(D_deliver) debug_printf("Delivering to fallback hosts\n");
5818 addr_remote = addr_fallback;
5819 addr_fallback = NULL;
5820 if (remote_sort_domains != NULL) sort_remote_deliveries();
5821 do_remote_deliveries(TRUE);
5823 disable_logging = FALSE;
5827 /* All deliveries are now complete. Ignore SIGTERM during this tidying up
5828 phase, to minimize cases of half-done things. */
5831 debug_printf(">>>>>>>>>>>>>>>> deliveries are done >>>>>>>>>>>>>>>>\n");
5833 /* Root privilege is no longer needed */
5835 exim_setugid(exim_uid, exim_gid, FALSE, US"post-delivery tidying");
5837 set_process_info("tidying up after delivering %s", message_id);
5838 signal(SIGTERM, SIG_IGN);
5840 /* When we are acting as an MUA wrapper, the smtp transport will either have
5841 succeeded for all addresses, or failed them all. We do not ever want to retry,
5842 nor do we want to send a bounce message. */
5846 if (addr_failed == NULL) final_yield = DELIVER_MUA_SUCCEEDED; else
5848 uschar *s = (addr_failed->user_message != NULL)?
5849 addr_failed->user_message : addr_failed->message;
5851 fprintf(stderr, "Delivery failed: ");
5852 if (addr_failed->basic_errno > 0)
5854 fprintf(stderr, "%s", strerror(addr_failed->basic_errno));
5855 if (s != NULL) fprintf(stderr, ": ");
5859 if (addr_failed->basic_errno <= 0) fprintf(stderr, "unknown error");
5861 else fprintf(stderr, "%s", CS s);
5862 fprintf(stderr, "\n");
5864 final_yield = DELIVER_MUA_FAILED;
5869 /* In a normal configuration, we now update the retry database. This is done in
5870 one fell swoop at the end in order not to keep opening and closing (and
5871 locking) the database. The code for handling retries is hived off into a
5872 separate module for convenience. We pass it the addresses of the various
5873 chains, because deferred addresses can get moved onto the failed chain if the
5874 retry cutoff time has expired for all alternative destinations. Bypass the
5875 updating of the database if the -N flag is set, which is a debugging thing that
5876 prevents actual delivery. */
5878 else if (!dont_deliver) retry_update(&addr_defer, &addr_failed, &addr_succeed);
5880 /* If any addresses failed, we must send a message to somebody, unless
5881 af_ignore_error is set, in which case no action is taken. It is possible for
5882 several messages to get sent if there are addresses with different
5885 while (addr_failed != NULL)
5889 uschar *logtod = tod_stamp(tod_log);
5891 address_item *handled_addr = NULL;
5892 address_item **paddr;
5893 address_item *msgchain = NULL;
5894 address_item **pmsgchain = &msgchain;
5896 /* There are weird cases when logging is disabled in the transport. However,
5897 there may not be a transport (address failed by a router). */
5899 disable_logging = FALSE;
5900 if (addr_failed->transport != NULL)
5901 disable_logging = addr_failed->transport->disable_logging;
5904 debug_printf("processing failed address %s\n", addr_failed->address);
5906 /* There are only two ways an address in a bounce message can get here:
5908 (1) When delivery was initially deferred, but has now timed out (in the call
5909 to retry_update() above). We can detect this by testing for
5910 af_retry_timedout. If the address does not have its own errors address,
5911 we arrange to ignore the error.
5913 (2) If delivery failures for bounce messages are being ignored. We can detect
5914 this by testing for af_ignore_error. This will also be set if a bounce
5915 message has been autothawed and the ignore_bounce_errors_after time has
5916 passed. It might also be set if a router was explicitly configured to
5917 ignore errors (errors_to = "").
5919 If neither of these cases obtains, something has gone wrong. Log the
5920 incident, but then ignore the error. */
5922 if (sender_address[0] == 0 && addr_failed->p.errors_address == NULL)
5924 if (!testflag(addr_failed, af_retry_timedout) &&
5925 !testflag(addr_failed, af_ignore_error))
5927 log_write(0, LOG_MAIN|LOG_PANIC, "internal error: bounce message "
5928 "failure is neither frozen nor ignored (it's been ignored)");
5930 setflag(addr_failed, af_ignore_error);
5933 /* If the first address on the list has af_ignore_error set, just remove
5934 it from the list, throw away any saved message file, log it, and
5935 mark the recipient done. */
5937 if (testflag(addr_failed, af_ignore_error))
5940 addr_failed = addr->next;
5941 if (addr->return_filename != NULL) Uunlink(addr->return_filename);
5943 log_write(0, LOG_MAIN, "%s%s%s%s: error ignored",
5945 (addr->parent == NULL)? US"" : US" <",
5946 (addr->parent == NULL)? US"" : addr->parent->address,
5947 (addr->parent == NULL)? US"" : US">");
5949 address_done(addr, logtod);
5950 child_done(addr, logtod);
5951 /* Panic-dies on error */
5952 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
5955 /* Otherwise, handle the sending of a message. Find the error address for
5956 the first address, then send a message that includes all failed addresses
5957 that have the same error address. Note the bounce_recipient is a global so
5958 that it can be accesssed by $bounce_recipient while creating a customized
5963 bounce_recipient = (addr_failed->p.errors_address == NULL)?
5964 sender_address : addr_failed->p.errors_address;
5966 /* Make a subprocess to send a message */
5968 pid = child_open_exim(&fd);
5970 /* Creation of child failed */
5973 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Process %d (parent %d) failed to "
5974 "create child process to send failure message: %s", getpid(),
5975 getppid(), strerror(errno));
5977 /* Creation of child succeeded */
5984 uschar *bcc, *emf_text;
5985 FILE *f = fdopen(fd, "wb");
5987 BOOL to_sender = strcmpic(sender_address, bounce_recipient) == 0;
5988 int max = (bounce_return_size_limit/DELIVER_IN_BUFFER_SIZE + 1) *
5989 DELIVER_IN_BUFFER_SIZE;
5992 debug_printf("sending error message to: %s\n", bounce_recipient);
5994 /* Scan the addresses for all that have the same errors address, removing
5995 them from the addr_failed chain, and putting them on msgchain. */
5997 paddr = &addr_failed;
5998 for (addr = addr_failed; addr != NULL; addr = *paddr)
6000 if (Ustrcmp(bounce_recipient, (addr->p.errors_address == NULL)?
6001 sender_address : addr->p.errors_address) != 0)
6003 paddr = &(addr->next); /* Not the same; skip */
6005 else /* The same - dechain */
6007 *paddr = addr->next;
6010 pmsgchain = &(addr->next);
6014 /* Include X-Failed-Recipients: for automatic interpretation, but do
6015 not let any one header line get too long. We do this by starting a
6016 new header every 50 recipients. Omit any addresses for which the
6017 "hide_child" flag is set. */
6019 for (addr = msgchain; addr != NULL; addr = addr->next)
6021 if (testflag(addr, af_hide_child)) continue;
6028 (rcount++ == 0)? "X-Failed-Recipients: " : ",\n ",
6029 (testflag(addr, af_pfr) && addr->parent != NULL)?
6030 string_printing(addr->parent->address) :
6031 string_printing(addr->address));
6033 if (rcount > 0) fprintf(f, "\n");
6035 /* Output the standard headers */
6037 if (errors_reply_to != NULL)
6038 fprintf(f, "Reply-To: %s\n", errors_reply_to);
6039 fprintf(f, "Auto-Submitted: auto-generated\n");
6040 fprintf(f, "From: Mail Delivery System <Mailer-Daemon@%s>\n",
6041 qualify_domain_sender);
6042 fprintf(f, "To: %s\n", bounce_recipient);
6044 /* Open a template file if one is provided. Log failure to open, but
6045 carry on - default texts will be used. */
6047 if (bounce_message_file != NULL)
6049 emf = Ufopen(bounce_message_file, "rb");
6051 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to open %s for error "
6052 "message texts: %s", bounce_message_file, strerror(errno));
6055 /* Quietly copy to configured additional addresses if required. */
6057 bcc = moan_check_errorcopy(bounce_recipient);
6058 if (bcc != NULL) fprintf(f, "Bcc: %s\n", bcc);
6060 /* The texts for the message can be read from a template file; if there
6061 isn't one, or if it is too short, built-in texts are used. The first
6062 emf text is a Subject: and any other headers. */
6064 emf_text = next_emf(emf, US"header");
6065 if (emf_text != NULL) fprintf(f, "%s\n", emf_text); else
6067 fprintf(f, "Subject: Mail delivery failed%s\n\n",
6068 to_sender? ": returning message to sender" : "");
6071 emf_text = next_emf(emf, US"intro");
6072 if (emf_text != NULL) fprintf(f, "%s", CS emf_text); else
6075 /* This message has been reworded several times. It seems to be confusing to
6076 somebody, however it is worded. I have retreated to the original, simple
6078 "This message was created automatically by mail delivery software.\n");
6079 if (bounce_message_text != NULL) fprintf(f, "%s", CS bounce_message_text);
6083 "\nA message that you sent could not be delivered to one or more of its\n"
6084 "recipients. This is a permanent error. The following address(es) failed:\n");
6089 "\nA message sent by\n\n <%s>\n\n"
6090 "could not be delivered to one or more of its recipients. The following\n"
6091 "address(es) failed:\n", sender_address);
6096 /* Process the addresses, leaving them on the msgchain if they have a
6097 file name for a return message. (There has already been a check in
6098 post_process_one() for the existence of data in the message file.) */
6101 for (addr = msgchain; addr != NULL; addr = *paddr)
6103 if (print_address_information(addr, f, US" ", US"\n ", US""))
6105 /* A TRUE return from print_address_information() means that the
6106 address is not hidden. If there is a return file, it has already
6107 been checked to ensure it is not empty. Omit the bland "return
6108 message generated" error, but otherwise include error information. */
6110 if (addr->return_file < 0 ||
6111 addr->message == NULL ||
6112 Ustrcmp(addr->message, "return message generated") != 0)
6115 print_address_error(addr, f);
6119 /* End the final line for the address */
6123 /* Leave on msgchain if there's a return file. */
6125 if (addr->return_file >= 0)
6127 paddr = &(addr->next);
6131 /* Else save so that we can tick off the recipient when the
6136 *paddr = addr->next;
6137 addr->next = handled_addr;
6138 handled_addr = addr;
6144 /* Get the next text, whether we need it or not, so as to be
6145 positioned for the one after. */
6147 emf_text = next_emf(emf, US"generated text");
6149 /* If there were any file messages passed by the local transports,
6150 include them in the message. Then put the address on the handled chain.
6151 In the case of a batch of addresses that were all sent to the same
6152 transport, the return_file field in all of them will contain the same
6153 fd, and the return_filename field in the *last* one will be set (to the
6154 name of the file). */
6156 if (msgchain != NULL)
6158 address_item *nextaddr;
6160 if (emf_text != NULL) fprintf(f, "%s", CS emf_text); else
6162 "The following text was generated during the delivery "
6163 "attempt%s:\n", (filecount > 1)? "s" : "");
6165 for (addr = msgchain; addr != NULL; addr = nextaddr)
6168 address_item *topaddr = addr;
6170 /* List all the addresses that relate to this file */
6173 while(addr != NULL) /* Insurance */
6175 print_address_information(addr, f, US"------ ", US"\n ",
6177 if (addr->return_filename != NULL) break;
6182 /* Now copy the file */
6184 fm = Ufopen(addr->return_filename, "rb");
6187 fprintf(f, " +++ Exim error... failed to open text file: %s\n",
6191 while ((ch = fgetc(fm)) != EOF) fputc(ch, f);
6194 Uunlink(addr->return_filename);
6196 /* Can now add to handled chain, first fishing off the next
6197 address on the msgchain. */
6199 nextaddr = addr->next;
6200 addr->next = handled_addr;
6201 handled_addr = topaddr;
6206 /* Now copy the message, trying to give an intelligible comment if
6207 it is too long for it all to be copied. The limit isn't strictly
6208 applied because of the buffering. There is, however, an option
6209 to suppress copying altogether. */
6211 emf_text = next_emf(emf, US"copy");
6213 if (bounce_return_message)
6215 int topt = topt_add_return_path;
6216 if (!bounce_return_body) topt |= topt_no_body;
6218 if (emf_text != NULL) fprintf(f, "%s", CS emf_text); else
6220 if (bounce_return_body) fprintf(f,
6221 "------ This is a copy of the message, including all the headers. ------\n");
6223 "------ This is a copy of the message's headers. ------\n");
6226 /* While reading the "truncated" message, set return_size_limit to
6227 the actual max testing value, rounded. We need to read the message
6228 whether we are going to use it or not. */
6231 int temp = bounce_return_size_limit;
6232 bounce_return_size_limit = (max/1000)*1000;
6233 emf_text = next_emf(emf, US"truncated");
6234 bounce_return_size_limit = temp;
6237 if (bounce_return_body && bounce_return_size_limit > 0)
6239 struct stat statbuf;
6240 if (fstat(deliver_datafile, &statbuf) == 0 && statbuf.st_size > max)
6242 if (emf_text != NULL) fprintf(f, "%s", CS emf_text); else
6245 "------ The body of the message is %d characters long; only the first\n"
6246 "------ %d or so are included here.\n", (int)statbuf.st_size, max);
6253 transport_filter_argv = NULL; /* Just in case */
6254 return_path = sender_address; /* In case not previously set */
6255 transport_write_message(NULL, fileno(f), topt,
6256 bounce_return_size_limit, NULL, NULL, NULL, NULL, NULL, 0);
6259 /* Write final text and close the template file if one is open */
6263 emf_text = next_emf(emf, US"final");
6264 if (emf_text != NULL) fprintf(f, "%s", CS emf_text);
6268 /* Close the file, which should send an EOF to the child process
6269 that is receiving the message. Wait for it to finish. */
6272 rc = child_close(pid, 0); /* Waits for child to close, no timeout */
6274 /* In the test harness, let the child do it's thing first. */
6276 if (running_in_test_harness) millisleep(500);
6278 /* If the process failed, there was some disaster in setting up the
6279 error message. Unless the message is very old, ensure that addr_defer
6280 is non-null, which will have the effect of leaving the message on the
6281 spool. The failed addresses will get tried again next time. However, we
6282 don't really want this to happen too often, so freeze the message unless
6283 there are some genuine deferred addresses to try. To do this we have
6284 to call spool_write_header() here, because with no genuine deferred
6285 addresses the normal code below doesn't get run. */
6290 if (now - received_time < retry_maximum_timeout && addr_defer == NULL)
6292 addr_defer = (address_item *)(+1);
6293 deliver_freeze = TRUE;
6294 deliver_frozen_at = time(NULL);
6295 /* Panic-dies on error */
6296 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
6299 deliver_msglog("Process failed (%d) when writing error message "
6300 "to %s%s", rc, bounce_recipient, s);
6301 log_write(0, LOG_MAIN, "Process failed (%d) when writing error message "
6302 "to %s%s", rc, bounce_recipient, s);
6305 /* The message succeeded. Ensure that the recipients that failed are
6306 now marked finished with on the spool and their parents updated. */
6310 for (addr = handled_addr; addr != NULL; addr = addr->next)
6312 address_done(addr, logtod);
6313 child_done(addr, logtod);
6315 /* Panic-dies on error */
6316 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
6322 disable_logging = FALSE; /* In case left set */
6324 /* Come here from the mua_wrapper case if routing goes wrong */
6328 /* If there are now no deferred addresses, we are done. Preserve the
6329 message log if so configured, and we are using them. Otherwise, sling it.
6330 Then delete the message itself. */
6332 if (addr_defer == NULL)
6336 sprintf(CS spoolname, "%s/msglog/%s/%s", spool_directory, message_subdir,
6338 if (preserve_message_logs)
6341 sprintf(CS big_buffer, "%s/msglog.OLD/%s", spool_directory, id);
6342 if ((rc = Urename(spoolname, big_buffer)) < 0)
6344 (void)directory_make(spool_directory, US"msglog.OLD",
6345 MSGLOG_DIRECTORY_MODE, TRUE);
6346 rc = Urename(spoolname, big_buffer);
6349 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to move %s to the "
6350 "msglog.OLD directory", spoolname);
6354 if (Uunlink(spoolname) < 0)
6355 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s", spoolname);
6359 /* Remove the two message files. */
6361 sprintf(CS spoolname, "%s/input/%s/%s-D", spool_directory, message_subdir, id);
6362 if (Uunlink(spoolname) < 0)
6363 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s", spoolname);
6364 sprintf(CS spoolname, "%s/input/%s/%s-H", spool_directory, message_subdir, id);
6365 if (Uunlink(spoolname) < 0)
6366 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s", spoolname);
6368 /* Log the end of this message, with queue time if requested. */
6370 if ((log_extra_selector & LX_queue_time_overall) != 0)
6371 log_write(0, LOG_MAIN, "Completed QT=%s",
6372 readconf_printtime(time(NULL) - received_time));
6374 log_write(0, LOG_MAIN, "Completed");
6377 /* If there are deferred addresses, we are keeping this message because it is
6378 not yet completed. Lose any temporary files that were catching output from
6379 pipes for any of the deferred addresses, handle one-time aliases, and see if
6380 the message has been on the queue for so long that it is time to send a warning
6381 message to the sender, unless it is a mailer-daemon. If all deferred addresses
6382 have the same domain, we can set deliver_domain for the expansion of
6383 delay_warning_ condition - if any of them are pipes, files, or autoreplies, use
6384 the parent's domain.
6386 If all the deferred addresses have an error number that indicates "retry time
6387 not reached", skip sending the warning message, because it won't contain the
6388 reason for the delay. It will get sent at the next real delivery attempt.
6389 However, if at least one address has tried, we'd better include all of them in
6392 If we can't make a process to send the message, don't worry.
6394 For mailing list expansions we want to send the warning message to the
6395 mailing list manager. We can't do a perfect job here, as some addresses may
6396 have different errors addresses, but if we take the errors address from
6397 each deferred address it will probably be right in most cases.
6399 If addr_defer == +1, it means there was a problem sending an error message
6400 for failed addresses, and there were no "real" deferred addresses. The value
6401 was set just to keep the message on the spool, so there is nothing to do here.
6404 else if (addr_defer != (address_item *)(+1))
6407 uschar *recipients = US"";
6408 BOOL delivery_attempted = FALSE;
6410 deliver_domain = testflag(addr_defer, af_pfr)?
6411 addr_defer->parent->domain : addr_defer->domain;
6413 for (addr = addr_defer; addr != NULL; addr = addr->next)
6415 address_item *otaddr;
6417 if (addr->basic_errno > ERRNO_RETRY_BASE) delivery_attempted = TRUE;
6419 if (deliver_domain != NULL)
6421 uschar *d = (testflag(addr, af_pfr))? addr->parent->domain : addr->domain;
6423 /* The domain may be unset for an address that has never been routed
6424 because the system filter froze the message. */
6426 if (d == NULL || Ustrcmp(d, deliver_domain) != 0) deliver_domain = NULL;
6429 if (addr->return_filename != NULL) Uunlink(addr->return_filename);
6431 /* Handle the case of one-time aliases. If any address in the ancestry
6432 of this one is flagged, ensure it is in the recipients list, suitably
6433 flagged, and that its parent is marked delivered. */
6435 for (otaddr = addr; otaddr != NULL; otaddr = otaddr->parent)
6436 if (otaddr->onetime_parent != NULL) break;
6441 int t = recipients_count;
6443 for (i = 0; i < recipients_count; i++)
6445 uschar *r = recipients_list[i].address;
6446 if (Ustrcmp(otaddr->onetime_parent, r) == 0) t = i;
6447 if (Ustrcmp(otaddr->address, r) == 0) break;
6450 /* Didn't find the address already in the list, and did find the
6451 ultimate parent's address in the list. After adding the recipient,
6452 update the errors address in the recipients list. */
6454 if (i >= recipients_count && t < recipients_count)
6456 DEBUG(D_deliver) debug_printf("one_time: adding %s in place of %s\n",
6457 otaddr->address, otaddr->parent->address);
6458 receive_add_recipient(otaddr->address, t);
6459 recipients_list[recipients_count-1].errors_to = otaddr->p.errors_address;
6460 tree_add_nonrecipient(otaddr->parent->address);
6461 update_spool = TRUE;
6465 /* Except for error messages, ensure that either the errors address for
6466 this deferred address or, if there is none, the sender address, is on the
6467 list of recipients for a warning message. */
6469 if (sender_address[0] != 0)
6471 if (addr->p.errors_address == NULL)
6473 if (Ustrstr(recipients, sender_address) == NULL)
6474 recipients = string_sprintf("%s%s%s", recipients,
6475 (recipients[0] == 0)? "" : ",", sender_address);
6479 if (Ustrstr(recipients, addr->p.errors_address) == NULL)
6480 recipients = string_sprintf("%s%s%s", recipients,
6481 (recipients[0] == 0)? "" : ",", addr->p.errors_address);
6486 /* Send a warning message if the conditions are right. If the condition check
6487 fails because of a lookup defer, there is nothing we can do. The warning
6488 is not sent. Another attempt will be made at the next delivery attempt (if
6491 if (!queue_2stage && delivery_attempted &&
6492 delay_warning[1] > 0 && sender_address[0] != 0 &&
6493 (delay_warning_condition == NULL ||
6494 expand_check_condition(delay_warning_condition,
6495 US"delay_warning", US"option")))
6499 int queue_time = time(NULL) - received_time;
6501 /* When running in the test harness, there's an option that allows us to
6502 fudge this time so as to get repeatability of the tests. Take the first
6503 time off the list. In queue runs, the list pointer gets updated in the
6506 if (running_in_test_harness && fudged_queue_times[0] != 0)
6508 int qt = readconf_readtime(fudged_queue_times, '/', FALSE);
6511 DEBUG(D_deliver) debug_printf("fudged queue_times = %s\n",
6512 fudged_queue_times);
6517 /* See how many warnings we should have sent by now */
6519 for (count = 0; count < delay_warning[1]; count++)
6520 if (queue_time < delay_warning[count+2]) break;
6522 show_time = delay_warning[count+1];
6524 if (count >= delay_warning[1])
6527 int last_gap = show_time;
6528 if (count > 1) last_gap -= delay_warning[count];
6529 extra = (queue_time - delay_warning[count+1])/last_gap;
6530 show_time += last_gap * extra;
6536 debug_printf("time on queue = %s\n", readconf_printtime(queue_time));
6537 debug_printf("warning counts: required %d done %d\n", count,
6541 /* We have computed the number of warnings there should have been by now.
6542 If there haven't been enough, send one, and up the count to what it should
6545 if (warning_count < count)
6549 pid_t pid = child_open_exim(&fd);
6555 FILE *f = fdopen(fd, "wb");
6557 if (warn_message_file != NULL)
6559 wmf = Ufopen(warn_message_file, "rb");
6561 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to open %s for warning "
6562 "message texts: %s", warn_message_file, strerror(errno));
6565 warnmsg_recipients = recipients;
6566 warnmsg_delay = (queue_time < 120*60)?
6567 string_sprintf("%d minutes", show_time/60):
6568 string_sprintf("%d hours", show_time/3600);
6570 if (errors_reply_to != NULL)
6571 fprintf(f, "Reply-To: %s\n", errors_reply_to);
6572 fprintf(f, "Auto-Submitted: auto-generated\n");
6573 fprintf(f, "From: Mail Delivery System <Mailer-Daemon@%s>\n",
6574 qualify_domain_sender);
6575 fprintf(f, "To: %s\n", recipients);
6577 wmf_text = next_emf(wmf, US"header");
6578 if (wmf_text != NULL)
6579 fprintf(f, "%s\n", wmf_text);
6581 fprintf(f, "Subject: Warning: message %s delayed %s\n\n",
6582 message_id, warnmsg_delay);
6584 wmf_text = next_emf(wmf, US"intro");
6585 if (wmf_text != NULL) fprintf(f, "%s", CS wmf_text); else
6588 "This message was created automatically by mail delivery software.\n");
6590 if (Ustrcmp(recipients, sender_address) == 0)
6592 "A message that you sent has not yet been delivered to one or more of its\n"
6593 "recipients after more than ");
6596 "A message sent by\n\n <%s>\n\n"
6597 "has not yet been delivered to one or more of its recipients after more than \n",
6600 fprintf(f, "%s on the queue on %s.\n\n", warnmsg_delay,
6602 fprintf(f, "The message identifier is: %s\n", message_id);
6604 for (h = header_list; h != NULL; h = h->next)
6606 if (strncmpic(h->text, US"Subject:", 8) == 0)
6607 fprintf(f, "The subject of the message is: %s", h->text + 9);
6608 else if (strncmpic(h->text, US"Date:", 5) == 0)
6609 fprintf(f, "The date of the message is: %s", h->text + 6);
6613 fprintf(f, "The address%s to which the message has not yet been "
6615 (addr_defer->next == NULL)? "" : "es",
6616 (addr_defer->next == NULL)? "is": "are");
6619 /* List the addresses. For any that are hidden, don't give the delay
6620 reason, because it might expose that which is hidden. Also, do not give
6621 "retry time not reached" because that isn't helpful. */
6624 while (addr_defer != NULL)
6626 address_item *addr = addr_defer;
6627 addr_defer = addr->next;
6628 if (print_address_information(addr, f, US" ", US"\n ", US"") &&
6629 addr->basic_errno > ERRNO_RETRY_BASE)
6631 fprintf(f, "\n Delay reason: ");
6632 print_address_error(addr, f);
6642 wmf_text = next_emf(wmf, US"final");
6643 if (wmf_text != NULL) fprintf(f, "%s", CS wmf_text);
6649 "No action is required on your part. Delivery attempts will continue for\n"
6650 "some time, and this warning may be repeated at intervals if the message\n"
6651 "remains undelivered. Eventually the mail delivery software will give up,\n"
6652 "and when that happens, the message will be returned to you.\n");
6655 /* Close and wait for child process to complete, without a timeout.
6656 If there's an error, don't update the count. */
6659 if (child_close(pid, 0) == 0)
6661 warning_count = count;
6662 update_spool = TRUE; /* Ensure spool rewritten */
6668 /* Clear deliver_domain */
6670 deliver_domain = NULL;
6672 /* If this was a first delivery attempt, unset the first time flag, and
6673 ensure that the spool gets updated. */
6675 if (deliver_firsttime)
6677 deliver_firsttime = FALSE;
6678 update_spool = TRUE;
6681 /* If delivery was frozen and freeze_tell is set, generate an appropriate
6682 message, unless the message is a local error message (to avoid loops). Then
6683 log the freezing. If the text in "frozen_info" came from a system filter,
6684 it has been escaped into printing characters so as not to mess up log lines.
6685 For the "tell" message, we turn \n back into newline. Also, insert a newline
6686 near the start instead of the ": " string. */
6690 if (freeze_tell != NULL && freeze_tell[0] != 0 && !local_error_message)
6692 uschar *s = string_copy(frozen_info);
6693 uschar *ss = Ustrstr(s, " by the system filter: ");
6704 if (*ss == '\\' && ss[1] == 'n')
6711 moan_tell_someone(freeze_tell, addr_defer, US"Message frozen",
6712 "Message %s has been frozen%s.\nThe sender is <%s>.\n", message_id,
6716 /* Log freezing just before we update the -H file, to minimize the chance
6717 of a race problem. */
6719 deliver_msglog("*** Frozen%s\n", frozen_info);
6720 log_write(0, LOG_MAIN, "Frozen%s", frozen_info);
6723 /* If there have been any updates to the non-recipients list, or other things
6724 that get written to the spool, we must now update the spool header file so
6725 that it has the right information for the next delivery attempt. If there
6726 was more than one address being delivered, the header_change update is done
6727 earlier, in case one succeeds and then something crashes. */
6730 debug_printf("delivery deferred: update_spool=%d header_rewritten=%d\n",
6731 update_spool, header_rewritten);
6733 if (update_spool || header_rewritten)
6734 /* Panic-dies on error */
6735 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
6738 /* Finished with the message log. If the message is complete, it will have
6739 been unlinked or renamed above. */
6741 if (message_logs) fclose(message_log);
6743 /* Now we can close and remove the journal file. Its only purpose is to record
6744 successfully completed deliveries asap so that this information doesn't get
6745 lost if Exim (or the machine) crashes. Forgetting about a failed delivery is
6746 not serious, as trying it again is not harmful. The journal might not be open
6747 if all addresses were deferred at routing or directing. Nevertheless, we must
6748 remove it if it exists (may have been lying around from a crash during the
6749 previous delivery attempt). We don't remove the journal if a delivery
6750 subprocess failed to pass back delivery information; this is controlled by
6751 the remove_journal flag. When the journal is left, we also don't move the
6752 message off the main spool if frozen and the option is set. It should get moved
6753 at the next attempt, after the journal has been inspected. */
6755 if (journal_fd >= 0) close(journal_fd);
6759 sprintf(CS spoolname, "%s/input/%s/%s-J", spool_directory, message_subdir, id);
6760 if (Uunlink(spoolname) < 0 && errno != ENOENT)
6761 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s", spoolname,
6764 /* Move the message off the spool if reqested */
6766 #ifdef SUPPORT_MOVE_FROZEN_MESSAGES
6767 if (deliver_freeze && move_frozen_messages)
6768 (void)spool_move_message(id, message_subdir, US"", US"F");
6772 /* Closing the data file frees the lock; if the file has been unlinked it
6773 will go away. Otherwise the message becomes available for another process
6776 close(deliver_datafile);
6777 deliver_datafile = -1;
6778 DEBUG(D_deliver) debug_printf("end delivery of %s\n", id);
6780 /* It is unlikely that there will be any cached resources, since they are
6781 released after routing, and in the delivery subprocesses. However, it's
6782 possible for an expansion for something afterwards (for example,
6783 expand_check_condition) to do a lookup. We must therefore be sure everything is
6790 /* End of deliver.c */