1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2018 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* Code for receiving a message and setting up spool files. */
12 #ifdef EXPERIMENTAL_DCC
16 #ifdef EXPERIMENTAL_DMARC
18 #endif /* EXPERIMENTAL_DMARC */
20 /*************************************************
21 * Local static variables *
22 *************************************************/
24 static FILE *data_file = NULL;
25 static int data_fd = -1;
26 static uschar *spool_name = US"";
28 enum CH_STATE {LF_SEEN, MID_LINE, CR_SEEN};
31 /*************************************************
32 * Non-SMTP character reading functions *
33 *************************************************/
35 /* These are the default functions that are set up in the variables such as
36 receive_getc initially. They just call the standard functions, passing stdin as
37 the file. (When SMTP input is occurring, different functions are used by
38 changing the pointer variables.) */
41 stdin_getc(unsigned lim)
49 return ungetc(c, stdin);
67 /*************************************************
68 * Check that a set sender is allowed *
69 *************************************************/
71 /* This function is called when a local caller sets an explicit sender address.
72 It checks whether this is permitted, which it is for trusted callers.
73 Otherwise, it must match the pattern(s) in untrusted_set_sender.
75 Arguments: the proposed sender address
76 Returns: TRUE for a trusted caller
77 TRUE if the address has been set, untrusted_set_sender has been
78 set, and the address matches something in the list
83 receive_check_set_sender(uschar *newsender)
86 if (trusted_caller) return TRUE;
87 if (!newsender || !untrusted_set_sender) return FALSE;
88 qnewsender = Ustrchr(newsender, '@')
89 ? newsender : string_sprintf("%s@%s", newsender, qualify_domain_sender);
90 return match_address_list_basic(qnewsender, CUSS &untrusted_set_sender, 0) == OK;
96 /*************************************************
97 * Read space info for a partition *
98 *************************************************/
100 /* This function is called by receive_check_fs() below, and also by string
101 expansion for variables such as $spool_space. The field names for the statvfs
102 structure are macros, because not all OS have F_FAVAIL and it seems tidier to
103 have macros for F_BAVAIL and F_FILES as well. Some kinds of file system do not
104 have inodes, and they return -1 for the number available.
106 Later: It turns out that some file systems that do not have the concept of
107 inodes return 0 rather than -1. Such systems should also return 0 for the total
108 number of inodes, so we require that to be greater than zero before returning
112 isspool TRUE for spool partition, FALSE for log partition
113 inodeptr address of int to receive inode count; -1 if there isn't one
115 Returns: available on-root space, in kilobytes
116 -1 for log partition if there isn't one
118 All values are -1 if the STATFS functions are not available.
122 receive_statvfs(BOOL isspool, int *inodeptr)
125 struct STATVFS statbuf;
131 /* The spool directory must always exist. */
135 path = spool_directory;
139 /* Need to cut down the log file path to the directory, and to ignore any
140 appearance of "syslog" in it. */
144 int sep = ':'; /* Not variable - outside scripts use */
145 const uschar *p = log_file_path;
148 /* An empty log_file_path means "use the default". This is the same as an
149 empty item in a list. */
151 if (*p == 0) p = US":";
152 while ((path = string_nextinlist(&p, &sep, buffer, sizeof(buffer))))
153 if (Ustrcmp(path, "syslog") != 0)
156 if (path == NULL) /* No log files */
162 /* An empty string means use the default, which is in the spool directory.
163 But don't just use the spool directory, as it is possible that the log
164 subdirectory has been symbolically linked elsewhere. */
168 sprintf(CS buffer, CS"%s/log", CS spool_directory);
174 if ((cp = Ustrrchr(path, '/')) != NULL) *cp = 0;
178 /* We now have the path; do the business */
180 memset(&statbuf, 0, sizeof(statbuf));
182 if (STATVFS(CS path, &statbuf) != 0)
183 if (stat(CS path, &dummy) == -1 && errno == ENOENT)
184 { /* Can happen on first run after installation */
190 log_write(0, LOG_MAIN|LOG_PANIC, "cannot accept message: failed to stat "
191 "%s directory %s: %s", name, path, strerror(errno));
192 smtp_closedown(US"spool or log directory problem");
193 exim_exit(EXIT_FAILURE, NULL);
196 *inodeptr = (statbuf.F_FILES > 0)? statbuf.F_FAVAIL : -1;
198 /* Disks are getting huge. Take care with computing the size in kilobytes. */
200 return (int)(((double)statbuf.F_BAVAIL * (double)statbuf.F_FRSIZE)/1024.0);
203 /* Unable to find partition sizes in this environment. */
213 /*************************************************
214 * Check space on spool and log partitions *
215 *************************************************/
217 /* This function is called before accepting a message; if any thresholds are
218 set, it checks them. If a message_size is supplied, it checks that there is
219 enough space for that size plus the threshold - i.e. that the message won't
220 reduce the space to the threshold. Not all OS have statvfs(); for those that
221 don't, this function always returns TRUE. For some OS the old function and
222 struct name statfs is used; that is handled by a macro, defined in exim.h.
225 msg_size the (estimated) size of an incoming message
227 Returns: FALSE if there isn't enough space, or if the information cannot
229 TRUE if no check was done or there is enough space
233 receive_check_fs(int msg_size)
237 if (check_spool_space > 0 || msg_size > 0 || check_spool_inodes > 0)
239 space = receive_statvfs(TRUE, &inodes);
242 debug_printf("spool directory space = %dK inodes = %d "
243 "check_space = %dK inodes = %d msg_size = %d\n",
244 space, inodes, check_spool_space, check_spool_inodes, msg_size);
246 if ((space >= 0 && space < check_spool_space) ||
247 (inodes >= 0 && inodes < check_spool_inodes))
249 log_write(0, LOG_MAIN, "spool directory space check failed: space=%d "
250 "inodes=%d", space, inodes);
255 if (check_log_space > 0 || check_log_inodes > 0)
257 space = receive_statvfs(FALSE, &inodes);
260 debug_printf("log directory space = %dK inodes = %d "
261 "check_space = %dK inodes = %d\n",
262 space, inodes, check_log_space, check_log_inodes);
264 if ((space >= 0 && space < check_log_space) ||
265 (inodes >= 0 && inodes < check_log_inodes))
267 log_write(0, LOG_MAIN, "log directory space check failed: space=%d "
268 "inodes=%d", space, inodes);
278 /*************************************************
279 * Bomb out while reading a message *
280 *************************************************/
282 /* The common case of wanting to bomb out is if a SIGTERM or SIGINT is
283 received, or if there is a timeout. A rarer case might be if the log files are
284 screwed up and Exim can't open them to record a message's arrival. Handling
285 that case is done by setting a flag to cause the log functions to call this
286 function if there is an ultimate disaster. That is why it is globally
290 reason text reason to pass to the not-quit ACL
291 msg default SMTP response to give if in an SMTP session
296 receive_bomb_out(uschar *reason, uschar *msg)
298 static BOOL already_bombing_out;
299 /* The smtp_notquit_exit() below can call ACLs which can trigger recursive
300 timeouts, if someone has something slow in their quit ACL. Since the only
301 things we should be doing are to close down cleanly ASAP, on the second
302 pass we also close down stuff that might be opened again, before bypassing
303 the ACL call and exiting. */
305 /* If spool_name is set, it contains the name of the data file that is being
306 written. Unlink it before closing so that it cannot be picked up by a delivery
307 process. Ensure that any header file is also removed. */
309 if (spool_name[0] != '\0')
312 spool_name[Ustrlen(spool_name) - 1] = 'H';
314 spool_name[0] = '\0';
317 /* Now close the file if it is open, either as a fd or a stream. */
319 if (data_file != NULL)
321 (void)fclose(data_file);
323 } else if (data_fd >= 0) {
324 (void)close(data_fd);
328 /* Attempt to close down an SMTP connection tidily. For non-batched SMTP, call
329 smtp_notquit_exit(), which runs the NOTQUIT ACL, if present, and handles the
332 if (!already_bombing_out)
334 already_bombing_out = TRUE;
337 if (smtp_batched_input)
338 moan_smtp_batch(NULL, "421 %s - message abandoned", msg); /* No return */
339 smtp_notquit_exit(reason, US"421", US"%s %s - closing connection.",
340 smtp_active_hostname, msg);
344 /* Exit from the program (non-BSMTP cases) */
346 exim_exit(EXIT_FAILURE, NULL);
350 /*************************************************
351 * Data read timeout *
352 *************************************************/
354 /* Handler function for timeouts that occur while reading the data that
357 Argument: the signal number
362 data_timeout_handler(int sig)
366 sig = sig; /* Keep picky compilers happy */
370 msg = US"SMTP incoming data timeout";
371 log_write(L_lost_incoming_connection,
372 LOG_MAIN, "SMTP data timeout (message abandoned) on connection "
374 (sender_fullhost != NULL)? sender_fullhost : US"local process",
379 fprintf(stderr, "exim: timed out while reading - message abandoned\n");
380 log_write(L_lost_incoming_connection,
381 LOG_MAIN, "timed out while reading local message");
384 receive_bomb_out(US"data-timeout", msg); /* Does not return */
389 /*************************************************
390 * local_scan() timeout *
391 *************************************************/
393 /* Handler function for timeouts that occur while running a local_scan()
396 Argument: the signal number
401 local_scan_timeout_handler(int sig)
403 sig = sig; /* Keep picky compilers happy */
404 log_write(0, LOG_MAIN|LOG_REJECT, "local_scan() function timed out - "
405 "message temporarily rejected (size %d)", message_size);
406 /* Does not return */
407 receive_bomb_out(US"local-scan-timeout", US"local verification problem");
412 /*************************************************
413 * local_scan() crashed *
414 *************************************************/
416 /* Handler function for signals that occur while running a local_scan()
419 Argument: the signal number
424 local_scan_crash_handler(int sig)
426 log_write(0, LOG_MAIN|LOG_REJECT, "local_scan() function crashed with "
427 "signal %d - message temporarily rejected (size %d)", sig, message_size);
428 /* Does not return */
429 receive_bomb_out(US"local-scan-error", US"local verification problem");
433 /*************************************************
434 * SIGTERM or SIGINT received *
435 *************************************************/
437 /* Handler for SIGTERM or SIGINT signals that occur while reading the
438 data that comprises a message.
440 Argument: the signal number
445 data_sigterm_sigint_handler(int sig)
451 msg = US"Service not available - SIGTERM or SIGINT received";
452 log_write(0, LOG_MAIN, "%s closed after %s", smtp_get_connection_info(),
453 (sig == SIGTERM)? "SIGTERM" : "SIGINT");
457 if (filter_test == FTEST_NONE)
459 fprintf(stderr, "\nexim: %s received - message abandoned\n",
460 (sig == SIGTERM)? "SIGTERM" : "SIGINT");
461 log_write(0, LOG_MAIN, "%s received while reading local message",
462 (sig == SIGTERM)? "SIGTERM" : "SIGINT");
466 receive_bomb_out(US"signal-exit", msg); /* Does not return */
471 /*************************************************
472 * Add new recipient to list *
473 *************************************************/
475 /* This function builds a list of recipient addresses in argc/argv
479 recipient the next address to add to recipients_list
480 pno parent number for fixed aliases; -1 otherwise
486 receive_add_recipient(uschar *recipient, int pno)
488 if (recipients_count >= recipients_list_max)
490 recipient_item *oldlist = recipients_list;
491 int oldmax = recipients_list_max;
492 recipients_list_max = recipients_list_max? 2*recipients_list_max : 50;
493 recipients_list = store_get(recipients_list_max * sizeof(recipient_item));
495 memcpy(recipients_list, oldlist, oldmax * sizeof(recipient_item));
498 recipients_list[recipients_count].address = recipient;
499 recipients_list[recipients_count].pno = pno;
500 #ifdef EXPERIMENTAL_BRIGHTMAIL
501 recipients_list[recipients_count].bmi_optin = bmi_current_optin;
502 /* reset optin string pointer for next recipient */
503 bmi_current_optin = NULL;
505 recipients_list[recipients_count].orcpt = NULL;
506 recipients_list[recipients_count].dsn_flags = 0;
507 recipients_list[recipients_count++].errors_to = NULL;
513 /*************************************************
514 * Send user response message *
515 *************************************************/
517 /* This function is passed a default response code and a user message. It calls
518 smtp_message_code() to check and possibly modify the response code, and then
519 calls smtp_respond() to transmit the response. I put this into a function
520 just to avoid a lot of repetition.
523 code the response code
524 user_msg the user message
531 smtp_user_msg(uschar *code, uschar *user_msg)
534 smtp_message_code(&code, &len, &user_msg, NULL, TRUE);
535 smtp_respond(code, len, TRUE, user_msg);
543 /*************************************************
544 * Remove a recipient from the list *
545 *************************************************/
547 /* This function is provided for local_scan() to use.
550 recipient address to remove
552 Returns: TRUE if it did remove something; FALSE otherwise
556 receive_remove_recipient(uschar *recipient)
559 DEBUG(D_receive) debug_printf("receive_remove_recipient(\"%s\") called\n",
561 for (count = 0; count < recipients_count; count++)
563 if (Ustrcmp(recipients_list[count].address, recipient) == 0)
565 if ((--recipients_count - count) > 0)
566 memmove(recipients_list + count, recipients_list + count + 1,
567 (recipients_count - count)*sizeof(recipient_item));
578 /*************************************************
579 * Read data portion of a non-SMTP message *
580 *************************************************/
582 /* This function is called to read the remainder of a message (following the
583 header) when the input is not from SMTP - we are receiving a local message on
584 a standard input stream. The message is always terminated by EOF, and is also
585 terminated by a dot on a line by itself if the flag dot_ends is TRUE. Split the
586 two cases for maximum efficiency.
588 Ensure that the body ends with a newline. This will naturally be the case when
589 the termination is "\n.\n" but may not be otherwise. The RFC defines messages
590 as "sequences of lines" - this of course strictly applies only to SMTP, but
591 deliveries into BSD-type mailbox files also require it. Exim used to have a
592 flag for doing this at delivery time, but as it was always set for all
593 transports, I decided to simplify things by putting the check here instead.
595 There is at least one MUA (dtmail) that sends CRLF via this interface, and
596 other programs are known to do this as well. Exim used to have a option for
597 dealing with this: in July 2003, after much discussion, the code has been
598 changed to default to treat any of LF, CRLF, and bare CR as line terminators.
600 However, for the case when a dot on a line by itself terminates a message, the
601 only recognized terminating sequences before and after the dot are LF and CRLF.
602 Otherwise, having read EOL . CR, you don't know whether to read another
605 Internally, in messages stored in Exim's spool files, LF is used as the line
606 terminator. Under the new regime, bare CRs will no longer appear in these
610 fout a FILE to which to write the message
612 Returns: One of the END_xxx values indicating why it stopped reading
616 read_message_data(FILE *fout)
620 register int linelength = 0;
622 /* Handle the case when only EOF terminates the message */
626 register int last_ch = '\n';
628 for (; (ch = (receive_getc)(GETC_BUFFER_UNLIMITED)) != EOF; last_ch = ch)
630 if (ch == 0) body_zerocount++;
631 if (last_ch == '\r' && ch != '\n')
633 if (linelength > max_received_linelength)
634 max_received_linelength = linelength;
636 if (fputc('\n', fout) == EOF) return END_WERROR;
640 if (ch == '\r') continue;
642 if (fputc(ch, fout) == EOF) return END_WERROR;
645 if (linelength > max_received_linelength)
646 max_received_linelength = linelength;
651 if (++message_size > thismessage_size_limit) return END_SIZE;
656 if (linelength > max_received_linelength)
657 max_received_linelength = linelength;
658 if (fputc('\n', fout) == EOF) return END_WERROR;
666 /* Handle the case when a dot on a line on its own, or EOF, terminates. */
670 while ((ch = (receive_getc)(GETC_BUFFER_UNLIMITED)) != EOF)
672 if (ch == 0) body_zerocount++;
675 case 0: /* Normal state (previous char written) */
679 if (linelength > max_received_linelength)
680 max_received_linelength = linelength;
685 { ch_state = 2; continue; }
688 case 1: /* After written "\n" */
689 if (ch == '.') { ch_state = 3; continue; }
690 if (ch == '\r') { ch_state = 2; continue; }
691 if (ch == '\n') { body_linecount++; linelength = -1; }
696 body_linecount++; /* After unwritten "\r" */
697 if (linelength > max_received_linelength)
698 max_received_linelength = linelength;
706 if (message_size++, fputc('\n', fout) == EOF) return END_WERROR;
707 if (ch == '\r') continue;
713 case 3: /* After "\n." (\n written, dot not) */
714 if (ch == '\n') return END_DOT;
715 if (ch == '\r') { ch_state = 4; continue; }
718 if (fputc('.', fout) == EOF) return END_WERROR;
722 case 4: /* After "\n.\r" (\n written, rest not) */
723 if (ch == '\n') return END_DOT;
726 if (fputs(".\n", fout) == EOF) return END_WERROR;
727 if (ch == '\r') { ch_state = 2; continue; }
733 if (fputc(ch, fout) == EOF) return END_WERROR;
734 if (++message_size > thismessage_size_limit) return END_SIZE;
737 /* Get here if EOF read. Unless we have just written "\n", we need to ensure
738 the message ends with a newline, and we must also write any characters that
739 were saved up while testing for an ending dot. */
743 static uschar *ends[] = { US"\n", NULL, US"\n", US".\n", US".\n" };
744 if (fputs(CS ends[ch_state], fout) == EOF) return END_WERROR;
745 message_size += Ustrlen(ends[ch_state]);
755 /*************************************************
756 * Read data portion of an SMTP message *
757 *************************************************/
759 /* This function is called to read the remainder of an SMTP message (after the
760 headers), or to skip over it when an error has occurred. In this case, the
761 output file is passed as NULL.
763 If any line begins with a dot, that character is skipped. The input should only
764 be successfully terminated by CR LF . CR LF unless it is local (non-network)
765 SMTP, in which case the CRs are optional, but...
767 FUDGE: It seems that sites on the net send out messages with just LF
768 terminators, despite the warnings in the RFCs, and other MTAs handle this. So
769 we make the CRs optional in all cases.
771 July 2003: Bare CRs cause trouble. We now treat them as line terminators as
772 well, so that there are no CRs in spooled messages. However, the message
773 terminating dot is not recognized between two bare CRs.
776 fout a FILE to which to write the message; NULL if skipping
778 Returns: One of the END_xxx values indicating why it stopped reading
782 read_message_data_smtp(FILE *fout)
788 while ((ch = (receive_getc)(GETC_BUFFER_UNLIMITED)) != EOF)
790 if (ch == 0) body_zerocount++;
793 case 0: /* After LF or CRLF */
797 continue; /* Don't ever write . after LF */
801 /* Else fall through to handle as normal uschar. */
803 case 1: /* Normal state */
808 if (linelength > max_received_linelength)
809 max_received_linelength = linelength;
819 case 2: /* After (unwritten) CR */
821 if (linelength > max_received_linelength)
822 max_received_linelength = linelength;
831 if (fout != NULL && fputc('\n', fout) == EOF) return END_WERROR;
832 cutthrough_data_put_nl();
833 if (ch != '\r') ch_state = 1; else continue;
837 case 3: /* After [CR] LF . */
845 /* The dot was removed at state 3. For a doubled dot, here, reinstate
846 it to cutthrough. The current ch, dot or not, is passed both to cutthrough
847 and to file below. */
851 cutthrough_data_puts(&c, 1);
856 case 4: /* After [CR] LF . CR */
857 if (ch == '\n') return END_DOT;
860 if (fout != NULL && fputc('\n', fout) == EOF) return END_WERROR;
861 cutthrough_data_put_nl();
871 /* Add the character to the spool file, unless skipping; then loop for the
878 if (fputc(ch, fout) == EOF) return END_WERROR;
879 if (message_size > thismessage_size_limit) return END_SIZE;
882 cutthrough_data_put_nl();
886 cutthrough_data_puts(&c, 1);
890 /* Fall through here if EOF encountered. This indicates some kind of error,
891 since a correct message is terminated by [CR] LF . [CR] LF. */
899 /* Variant of the above read_message_data_smtp() specialised for RFC 3030
900 CHUNKING. Accept input lines separated by either CRLF or CR or LF and write
901 LF-delimited spoolfile. Until we have wireformat spoolfiles, we need the
902 body_linecount accounting for proper re-expansion for the wire, so use
903 a cut-down version of the state-machine above; we don't need to do leading-dot
904 detection and unstuffing.
907 fout a FILE to which to write the message; NULL if skipping;
908 must be open for both writing and reading.
910 Returns: One of the END_xxx values indicating why it stopped reading
914 read_message_bdat_smtp(FILE *fout)
916 int linelength = 0, ch;
917 enum CH_STATE ch_state = LF_SEEN;
922 switch ((ch = bdat_getc(GETC_BUFFER_UNLIMITED)))
924 case EOF: return END_EOF;
925 case ERR: return END_PROTOCOL;
927 /* Nothing to get from the sender anymore. We check the last
928 character written to the spool.
930 RFC 3030 states, that BDAT chunks are normal text, terminated by CRLF.
931 If we would be strict, we would refuse such broken messages.
932 But we are liberal, so we fix it. It would be easy just to append
933 the "\n" to the spool.
935 But there are some more things (line counting, message size calculation and such),
936 that would need to be duplicated here. So we simply do some ungetc
941 if (fseek(fout, -1, SEEK_CUR) < 0) return END_PROTOCOL;
942 if (fgetc(fout) == '\n') return END_DOT;
945 if (linelength == -1) /* \r already seen (see below) */
947 DEBUG(D_receive) debug_printf("Add missing LF\n");
951 DEBUG(D_receive) debug_printf("Add missing CRLF\n");
952 bdat_ungetc('\r'); /* not even \r was seen */
956 case '\0': body_zerocount++; break;
960 case LF_SEEN: /* After LF or CRLF */
962 /* fall through to handle as normal uschar. */
964 case MID_LINE: /* Mid-line state */
969 if (linelength > max_received_linelength)
970 max_received_linelength = linelength;
976 if (fix_nl) bdat_ungetc('\n');
977 continue; /* don't write CR */
981 case CR_SEEN: /* After (unwritten) CR */
983 if (linelength > max_received_linelength)
984 max_received_linelength = linelength;
991 if (fout && fputc('\n', fout) == EOF) return END_WERROR;
992 cutthrough_data_put_nl();
993 if (ch == '\r') continue; /* don't write CR */
999 /* Add the character to the spool file, unless skipping */
1005 if (fputc(ch, fout) == EOF) return END_WERROR;
1006 if (message_size > thismessage_size_limit) return END_SIZE;
1009 cutthrough_data_put_nl();
1013 cutthrough_data_puts(&c, 1);
1020 read_message_bdat_smtp_wire(FILE *fout)
1024 /* Remember that this message uses wireformat. */
1026 DEBUG(D_receive) debug_printf("CHUNKING: %s\n",
1027 fout ? "writing spoolfile in wire format" : "flushing input");
1028 spool_file_wireformat = TRUE;
1032 if (chunking_data_left > 0)
1034 unsigned len = MAX(chunking_data_left, thismessage_size_limit - message_size + 1);
1035 uschar * buf = bdat_getbuf(&len);
1037 if (!buf) return END_EOF;
1038 message_size += len;
1039 if (fout && fwrite(buf, len, 1, fout) != 1) return END_WERROR;
1041 else switch (ch = bdat_getc(GETC_BUFFER_UNLIMITED))
1043 case EOF: return END_EOF;
1044 case EOD: return END_DOT;
1045 case ERR: return END_PROTOCOL;
1051 max_received_linelength
1055 if (fout && fputc(ch, fout) == EOF) return END_WERROR;
1058 if (message_size > thismessage_size_limit) return END_SIZE;
1066 /*************************************************
1067 * Swallow SMTP message *
1068 *************************************************/
1070 /* This function is called when there has been some kind of error while reading
1071 an SMTP message, and the remaining data may need to be swallowed. It is global
1072 because it is called from smtp_closedown() to shut down an incoming call
1075 Argument: a FILE from which to read the message
1080 receive_swallow_smtp(void)
1082 if (message_ended >= END_NOTENDED)
1083 message_ended = chunking_state <= CHUNKING_OFFERED
1084 ? read_message_data_smtp(NULL)
1085 : read_message_bdat_smtp_wire(NULL);
1090 /*************************************************
1091 * Handle lost SMTP connection *
1092 *************************************************/
1094 /* This function logs connection loss incidents and generates an appropriate
1097 Argument: additional data for the message
1098 Returns: the SMTP response
1102 handle_lost_connection(uschar *s)
1104 log_write(L_lost_incoming_connection | L_smtp_connection, LOG_MAIN,
1105 "%s lost while reading message data%s", smtp_get_connection_info(), s);
1106 smtp_notquit_exit(US"connection-lost", NULL, NULL);
1107 return US"421 Lost incoming connection";
1113 /*************************************************
1114 * Handle a non-smtp reception error *
1115 *************************************************/
1117 /* This function is called for various errors during the reception of non-SMTP
1118 messages. It either sends a message to the sender of the problem message, or it
1119 writes to the standard error stream.
1122 errcode code for moan_to_sender(), identifying the error
1123 text1 first message text, passed to moan_to_sender()
1124 text2 second message text, used only for stderrr
1125 error_rc code to pass to exim_exit if no problem
1126 f FILE containing body of message (may be stdin)
1127 hptr pointer to instore headers or NULL
1129 Returns: calls exim_exit(), which does not return
1133 give_local_error(int errcode, uschar *text1, uschar *text2, int error_rc,
1134 FILE *f, header_line *hptr)
1136 if (error_handling == ERRORS_SENDER)
1140 eblock.text1 = text1;
1141 eblock.text2 = US"";
1142 if (!moan_to_sender(errcode, &eblock, hptr, f, FALSE))
1143 error_rc = EXIT_FAILURE;
1146 fprintf(stderr, "exim: %s%s\n", text2, text1); /* Sic */
1148 exim_exit(error_rc, US"");
1153 /*************************************************
1154 * Add header lines set up by ACL *
1155 *************************************************/
1157 /* This function is called to add the header lines that were set up by
1158 statements in an ACL to the list of headers in memory. It is done in two stages
1159 like this, because when the ACL for RCPT is running, the other headers have not
1160 yet been received. This function is called twice; once just before running the
1161 DATA ACL, and once after. This is so that header lines added by MAIL or RCPT
1162 are visible to the DATA ACL.
1164 Originally these header lines were added at the end. Now there is support for
1165 three different places: top, bottom, and after the Received: header(s). There
1166 will always be at least one Received: header, even if it is marked deleted, and
1167 even if something else has been put in front of it.
1170 acl_name text to identify which ACL
1176 add_acl_headers(int where, uschar *acl_name)
1178 header_line *h, *next;
1179 header_line *last_received = NULL;
1183 case ACL_WHERE_DKIM:
1184 case ACL_WHERE_MIME:
1185 case ACL_WHERE_DATA:
1186 if ( cutthrough.fd >= 0 && cutthrough.delivery
1187 && (acl_removed_headers || acl_added_headers))
1189 log_write(0, LOG_MAIN|LOG_PANIC, "Header modification in data ACLs"
1190 " will not take effect on cutthrough deliveries");
1195 if (acl_removed_headers)
1197 DEBUG(D_receive|D_acl) debug_printf_indent(">>Headers removed by %s ACL:\n", acl_name);
1199 for (h = header_list; h; h = h->next) if (h->type != htype_old)
1201 const uschar * list = acl_removed_headers;
1202 int sep = ':'; /* This is specified as a colon-separated list */
1206 while ((s = string_nextinlist(&list, &sep, buffer, sizeof(buffer))))
1207 if (header_testname(h, s, Ustrlen(s), FALSE))
1209 h->type = htype_old;
1210 DEBUG(D_receive|D_acl) debug_printf_indent(" %s", h->text);
1213 acl_removed_headers = NULL;
1214 DEBUG(D_receive|D_acl) debug_printf_indent(">>\n");
1217 if (!acl_added_headers) return;
1218 DEBUG(D_receive|D_acl) debug_printf_indent(">>Headers added by %s ACL:\n", acl_name);
1220 for (h = acl_added_headers; h; h = next)
1227 h->next = header_list;
1229 DEBUG(D_receive|D_acl) debug_printf_indent(" (at top)");
1235 last_received = header_list;
1236 while (!header_testname(last_received, US"Received", 8, FALSE))
1237 last_received = last_received->next;
1238 while (last_received->next &&
1239 header_testname(last_received->next, US"Received", 8, FALSE))
1240 last_received = last_received->next;
1242 h->next = last_received->next;
1243 last_received->next = h;
1244 DEBUG(D_receive|D_acl) debug_printf_indent(" (after Received:)");
1248 /* add header before any header which is NOT Received: or Resent- */
1249 last_received = header_list;
1250 while ( last_received->next &&
1251 ( (header_testname(last_received->next, US"Received", 8, FALSE)) ||
1252 (header_testname_incomplete(last_received->next, US"Resent-", 7, FALSE)) ) )
1253 last_received = last_received->next;
1254 /* last_received now points to the last Received: or Resent-* header
1255 in an uninterrupted chain of those header types (seen from the beginning
1256 of all headers. Our current header must follow it. */
1257 h->next = last_received->next;
1258 last_received->next = h;
1259 DEBUG(D_receive|D_acl) debug_printf_indent(" (before any non-Received: or Resent-*: header)");
1264 header_last->next = h;
1265 DEBUG(D_receive|D_acl) debug_printf_indent(" ");
1269 if (!h->next) header_last = h;
1271 /* Check for one of the known header types (From:, To:, etc.) though in
1272 practice most added headers are going to be "other". Lower case
1273 identification letters are never stored with the header; they are used
1274 for existence tests when messages are received. So discard any lower case
1277 h->type = header_checkname(h, FALSE);
1278 if (h->type >= 'a') h->type = htype_other;
1280 DEBUG(D_receive|D_acl) debug_printf("%s", h->text);
1283 acl_added_headers = NULL;
1284 DEBUG(D_receive|D_acl) debug_printf_indent(">>\n");
1289 /*************************************************
1290 * Add host information for log line *
1291 *************************************************/
1293 /* Called for acceptance and rejecting log lines. This adds information about
1294 the calling host to a string that is being built dynamically.
1297 s the dynamic string
1299 Returns: the extended string
1303 add_host_info_for_log(gstring * g)
1305 if (sender_fullhost)
1307 if (LOGGING(dnssec) && sender_host_dnssec) /*XXX sender_helo_dnssec? */
1308 g = string_catn(g, US" DS", 3);
1309 g = string_append(g, 2, US" H=", sender_fullhost);
1310 if (LOGGING(incoming_interface) && interface_address != NULL)
1313 string_sprintf(" I=[%s]:%d", interface_address, interface_port));
1316 if (tcp_in_fastopen && !tcp_in_fastopen_logged)
1318 g = string_catn(g, US" TFO", 4);
1319 tcp_in_fastopen_logged = TRUE;
1322 g = string_append(g, 2, US" U=", sender_ident);
1323 if (received_protocol)
1324 g = string_append(g, 2, US" P=", received_protocol);
1330 #ifdef WITH_CONTENT_SCAN
1332 /*************************************************
1333 * Run the MIME ACL on a message *
1334 *************************************************/
1336 /* This code is in a subroutine so that it can be used for both SMTP
1337 and non-SMTP messages. It is called with a non-NULL ACL pointer.
1340 acl The ACL to run (acl_smtp_mime or acl_not_smtp_mime)
1341 smtp_yield_ptr Set FALSE to kill messages after dropped connection
1342 smtp_reply_ptr Where SMTP reply is being built
1343 blackholed_by_ptr Where "blackholed by" message is being built
1345 Returns: TRUE to carry on; FALSE to abandon the message
1349 run_mime_acl(uschar *acl, BOOL *smtp_yield_ptr, uschar **smtp_reply_ptr,
1350 uschar **blackholed_by_ptr)
1353 uschar * rfc822_file_path = NULL;
1354 unsigned long mbox_size;
1355 header_line *my_headerlist;
1356 uschar *user_msg, *log_msg;
1357 int mime_part_count_buffer = -1;
1358 uschar * mbox_filename;
1361 /* check if it is a MIME message */
1363 for (my_headerlist = header_list; my_headerlist; my_headerlist = my_headerlist->next)
1364 if ( my_headerlist->type != '*' /* skip deleted headers */
1365 && strncmpic(my_headerlist->text, US"Content-Type:", 13) == 0
1368 DEBUG(D_receive) debug_printf("Found Content-Type: header - executing acl_smtp_mime.\n");
1372 DEBUG(D_receive) debug_printf("No Content-Type: header - presumably not a MIME message.\n");
1377 /* make sure the eml mbox file is spooled up */
1378 if (!(mbox_file = spool_mbox(&mbox_size, NULL, &mbox_filename)))
1379 { /* error while spooling */
1380 log_write(0, LOG_MAIN|LOG_PANIC,
1381 "acl_smtp_mime: error while creating mbox spool file, message temporarily rejected.");
1382 Uunlink(spool_name);
1384 #ifdef EXPERIMENTAL_DCC
1387 smtp_respond(US"451", 3, TRUE, US"temporary local problem");
1388 message_id[0] = 0; /* Indicate no message accepted */
1389 *smtp_reply_ptr = US""; /* Indicate reply already sent */
1390 return FALSE; /* Indicate skip to end of receive function */
1396 mime_part_count = -1;
1397 rc = mime_acl_check(acl, mbox_file, NULL, &user_msg, &log_msg);
1398 (void)fclose(mbox_file);
1400 if (rfc822_file_path)
1402 mime_part_count = mime_part_count_buffer;
1404 if (unlink(CS rfc822_file_path) == -1)
1406 log_write(0, LOG_PANIC,
1407 "acl_smtp_mime: can't unlink RFC822 spool file, skipping.");
1410 rfc822_file_path = NULL;
1413 /* check if we must check any message/rfc822 attachments */
1416 uschar * scandir = string_copyn(mbox_filename,
1417 Ustrrchr(mbox_filename, '/') - mbox_filename);
1418 struct dirent * entry;
1421 for (tempdir = opendir(CS scandir); entry = readdir(tempdir); )
1422 if (strncmpic(US entry->d_name, US"__rfc822_", 9) == 0)
1424 rfc822_file_path = string_sprintf("%s/%s", scandir, entry->d_name);
1426 debug_printf("RFC822 attachment detected: running MIME ACL for '%s'\n",
1432 if (rfc822_file_path)
1434 if ((mbox_file = Ufopen(rfc822_file_path, "rb")))
1436 /* set RFC822 expansion variable */
1438 mime_part_count_buffer = mime_part_count;
1439 goto MIME_ACL_CHECK;
1441 log_write(0, LOG_PANIC,
1442 "acl_smtp_mime: can't open RFC822 spool file, skipping.");
1443 unlink(CS rfc822_file_path);
1448 add_acl_headers(ACL_WHERE_MIME, US"MIME");
1451 recipients_count = 0;
1452 *blackholed_by_ptr = US"MIME ACL";
1456 Uunlink(spool_name);
1458 #ifdef EXPERIMENTAL_DCC
1463 if (smtp_handle_acl_fail(ACL_WHERE_MIME, rc, user_msg, log_msg) != 0)
1464 *smtp_yield_ptr = FALSE; /* No more messages after dropped connection */
1465 *smtp_reply_ptr = US""; /* Indicate reply already sent */
1467 message_id[0] = 0; /* Indicate no message accepted */
1468 return FALSE; /* Cause skip to end of receive function */
1474 #endif /* WITH_CONTENT_SCAN */
1479 received_header_gen(void)
1483 header_line *received_header= header_list;
1485 timestamp = expand_string(US"${tod_full}");
1486 if (recipients_count == 1) received_for = recipients_list[0].address;
1487 received = expand_string(received_header_text);
1488 received_for = NULL;
1492 if(spool_name[0] != 0)
1493 Uunlink(spool_name); /* Lose the data file */
1494 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Expansion of \"%s\" "
1495 "(received_header_text) failed: %s", string_printing(received_header_text),
1496 expand_string_message);
1499 /* The first element on the header chain is reserved for the Received header,
1500 so all we have to do is fill in the text pointer, and set the type. However, if
1501 the result of the expansion is an empty string, we leave the header marked as
1502 "old" so as to refrain from adding a Received header. */
1504 if (received[0] == 0)
1506 received_header->text = string_sprintf("Received: ; %s\n", timestamp);
1507 received_header->type = htype_old;
1511 received_header->text = string_sprintf("%s; %s\n", received, timestamp);
1512 received_header->type = htype_received;
1515 received_header->slen = Ustrlen(received_header->text);
1517 DEBUG(D_receive) debug_printf(">>Generated Received: header line\n%c %s",
1518 received_header->type, received_header->text);
1523 /*************************************************
1525 *************************************************/
1527 /* Receive a message on the given input, and put it into a pair of spool files.
1528 Either a non-null list of recipients, or the extract flag will be true, or
1529 both. The flag sender_local is true for locally generated messages. The flag
1530 submission_mode is true if an ACL has obeyed "control = submission". The flag
1531 suppress_local_fixups is true if an ACL has obeyed "control =
1532 suppress_local_fixups" or -G was passed on the command-line.
1533 The flag smtp_input is true if the message is to be
1534 handled using SMTP conventions about termination and lines starting with dots.
1535 For non-SMTP messages, dot_ends is true for dot-terminated messages.
1537 If a message was successfully read, message_id[0] will be non-zero.
1539 The general actions of this function are:
1541 . Read the headers of the message (if any) into a chain of store
1544 . If there is a "sender:" header and the message is locally originated,
1545 throw it away, unless the caller is trusted, or unless
1546 active_local_sender_retain is set - which can only happen if
1547 active_local_from_check is false.
1549 . If recipients are to be extracted from the message, build the
1550 recipients list from the headers, removing any that were on the
1551 original recipients list (unless extract_addresses_remove_arguments is
1552 false), and at the same time, remove any bcc header that may be present.
1554 . Get the spool file for the data, sort out its unique name, open
1555 and lock it (but don't give it the name yet).
1557 . Generate a "Message-Id" header if the message doesn't have one, for
1558 locally-originated messages.
1560 . Generate a "Received" header.
1562 . Ensure the recipients list is fully qualified and rewritten if necessary.
1564 . If there are any rewriting rules, apply them to the sender address
1565 and also to the headers.
1567 . If there is no from: header, generate one, for locally-generated messages
1568 and messages in "submission mode" only.
1570 . If the sender is local, check that from: is correct, and if not, generate
1571 a Sender: header, unless message comes from a trusted caller, or this
1572 feature is disabled by active_local_from_check being false.
1574 . If there is no "date" header, generate one, for locally-originated
1575 or submission mode messages only.
1577 . Copy the rest of the input, or up to a terminating "." if in SMTP or
1578 dot_ends mode, to the data file. Leave it open, to hold the lock.
1580 . Write the envelope and the headers to a new file.
1582 . Set the name for the header file; close it.
1584 . Set the name for the data file; close it.
1586 Because this function can potentially be called many times in a single
1587 SMTP connection, all store should be got by store_get(), so that it will be
1588 automatically retrieved after the message is accepted.
1590 FUDGE: It seems that sites on the net send out messages with just LF
1591 terminators, despite the warnings in the RFCs, and other MTAs handle this. So
1592 we make the CRs optional in all cases.
1594 July 2003: Bare CRs in messages, especially in header lines, cause trouble. A
1595 new regime is now in place in which bare CRs in header lines are turned into LF
1596 followed by a space, so as not to terminate the header line.
1598 February 2004: A bare LF in a header line in a message whose first line was
1599 terminated by CRLF is treated in the same way as a bare CR.
1602 extract_recip TRUE if recipients are to be extracted from the message's
1605 Returns: TRUE there are more messages to be read (SMTP input)
1606 FALSE there are no more messages to be read (non-SMTP input
1607 or SMTP connection collapsed, or other failure)
1609 When reading a message for filter testing, the returned value indicates
1610 whether the headers (which is all that is read) were terminated by '.' or
1614 receive_msg(BOOL extract_recip)
1619 int process_info_len = Ustrlen(process_info);
1620 int error_rc = (error_handling == ERRORS_SENDER)?
1621 errors_sender_rc : EXIT_FAILURE;
1622 int header_size = 256;
1623 int start, end, domain;
1626 int prevlines_length = 0;
1628 register int ptr = 0;
1630 BOOL contains_resent_headers = FALSE;
1631 BOOL extracted_ignored = FALSE;
1632 BOOL first_line_ended_crlf = TRUE_UNSET;
1633 BOOL smtp_yield = TRUE;
1636 BOOL resents_exist = FALSE;
1637 uschar *resent_prefix = US"";
1638 uschar *blackholed_by = NULL;
1639 uschar *blackhole_log_msg = US"";
1640 enum {NOT_TRIED, TMP_REJ, PERM_REJ, ACCEPTED} cutthrough_done = NOT_TRIED;
1643 error_block *bad_addresses = NULL;
1645 uschar *frozen_by = NULL;
1646 uschar *queued_by = NULL;
1650 struct stat statbuf;
1652 /* Final message to give to SMTP caller, and messages from ACLs */
1654 uschar *smtp_reply = NULL;
1655 uschar *user_msg, *log_msg;
1657 /* Working header pointers */
1659 header_line *h, *next;
1661 /* Flags for noting the existence of certain headers (only one left) */
1663 BOOL date_header_exists = FALSE;
1665 /* Pointers to receive the addresses of headers whose contents we need. */
1667 header_line *from_header = NULL;
1668 header_line *subject_header = NULL;
1669 header_line *msgid_header = NULL;
1670 header_line *received_header;
1672 #ifdef EXPERIMENTAL_DMARC
1674 #endif /* EXPERIMENTAL_DMARC */
1676 /* Variables for use when building the Received: header. */
1681 /* Release any open files that might have been cached while preparing to
1682 accept the message - e.g. by verifying addresses - because reading a message
1683 might take a fair bit of real time. */
1687 /* Extracting the recipient list from an input file is incompatible with
1688 cutthrough delivery with the no-spool option. It shouldn't be possible
1689 to set up the combination, but just in case kill any ongoing connection. */
1690 if (extract_recip || !smtp_input)
1691 cancel_cutthrough_connection(TRUE, US"not smtp input");
1693 /* Initialize the chain of headers by setting up a place-holder for Received:
1694 header. Temporarily mark it as "old", i.e. not to be used. We keep header_last
1695 pointing to the end of the chain to make adding headers simple. */
1697 received_header = header_list = header_last = store_get(sizeof(header_line));
1698 header_list->next = NULL;
1699 header_list->type = htype_old;
1700 header_list->text = NULL;
1701 header_list->slen = 0;
1703 /* Control block for the next header to be read. */
1705 next = store_get(sizeof(header_line));
1706 next->text = store_get(header_size);
1708 /* Initialize message id to be null (indicating no message read), and the
1709 header names list to be the normal list. Indicate there is no data file open
1710 yet, initialize the size and warning count, and deal with no size limit. */
1718 received_count = 1; /* For the one we will add */
1720 if (thismessage_size_limit <= 0) thismessage_size_limit = INT_MAX;
1722 /* While reading the message, the following counts are computed. */
1724 message_linecount = body_linecount = body_zerocount =
1725 max_received_linelength = 0;
1727 #ifndef DISABLE_DKIM
1728 /* Call into DKIM to set up the context. In CHUNKING mode
1729 we clear the dot-stuffing flag */
1730 if (smtp_input && !smtp_batched_input && !dkim_disable_verify)
1731 dkim_exim_verify_init(chunking_state <= CHUNKING_OFFERED);
1734 #ifdef EXPERIMENTAL_DMARC
1735 /* initialize libopendmarc */
1736 dmarc_up = dmarc_init();
1739 /* Remember the time of reception. Exim uses time+pid for uniqueness of message
1740 ids, and fractions of a second are required. See the comments that precede the
1741 message id creation below. */
1743 (void)gettimeofday(&message_id_tv, NULL);
1745 /* For other uses of the received time we can operate with granularity of one
1746 second, and for that we use the global variable received_time. This is for
1747 things like ultimate message timeouts. */
1749 received_time = message_id_tv;
1751 /* If SMTP input, set the special handler for timeouts. The alarm() calls
1752 happen in the smtp_getc() function when it refills its buffer. */
1754 if (smtp_input) os_non_restarting_signal(SIGALRM, data_timeout_handler);
1756 /* If not SMTP input, timeout happens only if configured, and we just set a
1757 single timeout for the whole message. */
1759 else if (receive_timeout > 0)
1761 os_non_restarting_signal(SIGALRM, data_timeout_handler);
1762 alarm(receive_timeout);
1765 /* SIGTERM and SIGINT are caught always. */
1767 signal(SIGTERM, data_sigterm_sigint_handler);
1768 signal(SIGINT, data_sigterm_sigint_handler);
1770 /* Header lines in messages are not supposed to be very long, though when
1771 unfolded, to: and cc: headers can take up a lot of store. We must also cope
1772 with the possibility of junk being thrown at us. Start by getting 256 bytes for
1773 storing the header, and extend this as necessary using string_cat().
1775 To cope with total lunacies, impose an upper limit on the length of the header
1776 section of the message, as otherwise the store will fill up. We must also cope
1777 with the possibility of binary zeros in the data. Hence we cannot use fgets().
1778 Folded header lines are joined into one string, leaving the '\n' characters
1779 inside them, so that writing them out reproduces the input.
1781 Loop for each character of each header; the next structure for chaining the
1782 header is set up already, with ptr the offset of the next character in
1787 int ch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1789 /* If we hit EOF on a SMTP connection, it's an error, since incoming
1790 SMTP must have a correct "." terminator. */
1792 if (ch == EOF && smtp_input /* && !smtp_batched_input */)
1794 smtp_reply = handle_lost_connection(US" (header)");
1796 goto TIDYUP; /* Skip to end of function */
1799 /* See if we are at the current header's size limit - there must be at least
1800 four bytes left. This allows for the new character plus a zero, plus two for
1801 extra insertions when we are playing games with dots and carriage returns. If
1802 we are at the limit, extend the text buffer. This could have been done
1803 automatically using string_cat() but because this is a tightish loop storing
1804 only one character at a time, we choose to do it inline. Normally
1805 store_extend() will be able to extend the block; only at the end of a big
1806 store block will a copy be needed. To handle the case of very long headers
1807 (and sometimes lunatic messages can have ones that are 100s of K long) we
1808 call store_release() for strings that have been copied - if the string is at
1809 the start of a block (and therefore the only thing in it, because we aren't
1810 doing any other gets), the block gets freed. We can only do this release if
1811 there were no allocations since the once that we want to free. */
1813 if (ptr >= header_size - 4)
1815 int oldsize = header_size;
1816 /* header_size += 256; */
1818 if (!store_extend(next->text, oldsize, header_size))
1819 next->text = store_newblock(next->text, header_size, ptr);
1822 /* Cope with receiving a binary zero. There is dispute about whether
1823 these should be allowed in RFC 822 messages. The middle view is that they
1824 should not be allowed in headers, at least. Exim takes this attitude at
1825 the moment. We can't just stomp on them here, because we don't know that
1826 this line is a header yet. Set a flag to cause scanning later. */
1828 if (ch == 0) had_zero++;
1830 /* Test for termination. Lines in remote SMTP are terminated by CRLF, while
1831 those from data files use just LF. Treat LF in local SMTP input as a
1832 terminator too. Treat EOF as a line terminator always. */
1834 if (ch == EOF) goto EOL;
1836 /* FUDGE: There are sites out there that don't send CRs before their LFs, and
1837 other MTAs accept this. We are therefore forced into this "liberalisation"
1838 too, so we accept LF as a line terminator whatever the source of the message.
1839 However, if the first line of the message ended with a CRLF, we treat a bare
1840 LF specially by inserting a white space after it to ensure that the header
1841 line is not terminated. */
1845 if (first_line_ended_crlf == TRUE_UNSET) first_line_ended_crlf = FALSE;
1846 else if (first_line_ended_crlf) receive_ungetc(' ');
1850 /* This is not the end of the line. If this is SMTP input and this is
1851 the first character in the line and it is a "." character, ignore it.
1852 This implements the dot-doubling rule, though header lines starting with
1853 dots aren't exactly common. They are legal in RFC 822, though. If the
1854 following is CRLF or LF, this is the line that that terminates the
1855 entire message. We set message_ended to indicate this has happened (to
1856 prevent further reading), and break out of the loop, having freed the
1857 empty header, and set next = NULL to indicate no data line. */
1859 if (ptr == 0 && ch == '.' && dot_ends)
1861 ch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1864 ch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1868 ch = '\r'; /* Revert to CR */
1873 message_ended = END_DOT;
1876 break; /* End character-reading loop */
1879 /* For non-SMTP input, the dot at the start of the line was really a data
1880 character. What is now in ch is the following character. We guaranteed
1881 enough space for this above. */
1885 next->text[ptr++] = '.';
1890 /* If CR is immediately followed by LF, end the line, ignoring the CR, and
1891 remember this case if this is the first line ending. */
1895 ch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1898 if (first_line_ended_crlf == TRUE_UNSET) first_line_ended_crlf = TRUE;
1902 /* Otherwise, put back the character after CR, and turn the bare CR
1905 ch = (receive_ungetc)(ch);
1906 next->text[ptr++] = '\n';
1911 /* We have a data character for the header line. */
1913 next->text[ptr++] = ch; /* Add to buffer */
1914 message_size++; /* Total message size so far */
1916 /* Handle failure due to a humungously long header section. The >= allows
1917 for the terminating \n. Add what we have so far onto the headers list so
1918 that it gets reflected in any error message, and back up the just-read
1921 if (message_size >= header_maxsize)
1923 next->text[ptr] = 0;
1925 next->type = htype_other;
1927 header_last->next = next;
1930 log_write(0, LOG_MAIN, "ridiculously long message header received from "
1931 "%s (more than %d characters): message abandoned",
1932 sender_host_unknown? sender_ident : sender_fullhost, header_maxsize);
1936 smtp_reply = US"552 Message header is ridiculously long";
1937 receive_swallow_smtp();
1938 goto TIDYUP; /* Skip to end of function */
1943 give_local_error(ERRMESS_VLONGHEADER,
1944 string_sprintf("message header longer than %d characters received: "
1945 "message not accepted", header_maxsize), US"", error_rc, stdin,
1947 /* Does not return */
1951 continue; /* With next input character */
1953 /* End of header line reached */
1957 /* Keep track of lines for BSMTP errors and overall message_linecount. */
1959 receive_linecount++;
1960 message_linecount++;
1962 /* Keep track of maximum line length */
1964 if (ptr - prevlines_length > max_received_linelength)
1965 max_received_linelength = ptr - prevlines_length;
1966 prevlines_length = ptr + 1;
1968 /* Now put in the terminating newline. There is always space for
1969 at least two more characters. */
1971 next->text[ptr++] = '\n';
1974 /* A blank line signals the end of the headers; release the unwanted
1975 space and set next to NULL to indicate this. */
1984 /* There is data in the line; see if the next input character is a
1985 whitespace character. If it is, we have a continuation of this header line.
1986 There is always space for at least one character at this point. */
1990 int nextch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1991 if (nextch == ' ' || nextch == '\t')
1993 next->text[ptr++] = nextch;
1995 continue; /* Iterate the loop */
1997 else if (nextch != EOF) (receive_ungetc)(nextch); /* For next time */
1998 else ch = EOF; /* Cause main loop to exit at end */
2001 /* We have got to the real line end. Terminate the string and release store
2002 beyond it. If it turns out to be a real header, internal binary zeros will
2003 be squashed later. */
2005 next->text[ptr] = 0;
2007 store_reset(next->text + ptr + 1);
2009 /* Check the running total size against the overall message size limit. We
2010 don't expect to fail here, but if the overall limit is set less than MESSAGE_
2011 MAXSIZE and a big header is sent, we want to catch it. Just stop reading
2012 headers - the code to read the body will then also hit the buffer. */
2014 if (message_size > thismessage_size_limit) break;
2016 /* A line that is not syntactically correct for a header also marks
2017 the end of the headers. In this case, we leave next containing the
2018 first data line. This might actually be several lines because of the
2019 continuation logic applied above, but that doesn't matter.
2021 It turns out that smail, and presumably sendmail, accept leading lines
2024 From ph10 Fri Jan 5 12:35 GMT 1996
2026 in messages. The "mail" command on Solaris 2 sends such lines. I cannot
2027 find any documentation of this, but for compatibility it had better be
2028 accepted. Exim restricts it to the case of non-smtp messages, and
2029 treats it as an alternative to the -f command line option. Thus it is
2030 ignored except for trusted users or filter testing. Otherwise it is taken
2031 as the sender address, unless -f was used (sendmail compatibility).
2033 It further turns out that some UUCPs generate the From_line in a different
2036 From ph10 Fri, 7 Jan 97 14:00:00 GMT
2038 The regex for matching these things is now capable of recognizing both
2039 formats (including 2- and 4-digit years in the latter). In fact, the regex
2040 is now configurable, as is the expansion string to fish out the sender.
2042 Even further on it has been discovered that some broken clients send
2043 these lines in SMTP messages. There is now an option to ignore them from
2044 specified hosts or networks. Sigh. */
2046 if ( header_last == header_list
2048 || ( sender_host_address
2049 && verify_check_host(&ignore_fromline_hosts) == OK
2051 || (!sender_host_address && ignore_fromline_local)
2053 && regex_match_and_setup(regex_From, next->text, 0, -1)
2056 if (!sender_address_forced)
2058 uschar *uucp_sender = expand_string(uucp_from_sender);
2060 log_write(0, LOG_MAIN|LOG_PANIC,
2061 "expansion of \"%s\" failed after matching "
2062 "\"From \" line: %s", uucp_from_sender, expand_string_message);
2065 int start, end, domain;
2067 uschar *newsender = parse_extract_address(uucp_sender, &errmess,
2068 &start, &end, &domain, TRUE);
2071 if (domain == 0 && newsender[0] != 0)
2072 newsender = rewrite_address_qualify(newsender, FALSE);
2074 if (filter_test != FTEST_NONE || receive_check_set_sender(newsender))
2076 sender_address = newsender;
2078 if (trusted_caller || filter_test != FTEST_NONE)
2080 authenticated_sender = NULL;
2081 originator_name = US"";
2082 sender_local = FALSE;
2085 if (filter_test != FTEST_NONE)
2086 printf("Sender taken from \"From \" line\n");
2093 /* Not a leading "From " line. Check to see if it is a valid header line.
2094 Header names may contain any non-control characters except space and colon,
2099 uschar *p = next->text;
2101 /* If not a valid header line, break from the header reading loop, leaving
2102 next != NULL, indicating that it holds the first line of the body. */
2104 if (isspace(*p)) break;
2105 while (mac_isgraph(*p) && *p != ':') p++;
2106 while (isspace(*p)) p++;
2109 body_zerocount = had_zero;
2113 /* We have a valid header line. If there were any binary zeroes in
2114 the line, stomp on them here. */
2117 for (p = next->text; p < next->text + ptr; p++) if (*p == 0) *p = '?';
2119 /* It is perfectly legal to have an empty continuation line
2120 at the end of a header, but it is confusing to humans
2121 looking at such messages, since it looks like a blank line.
2122 Reduce confusion by removing redundant white space at the
2123 end. We know that there is at least one printing character
2124 (the ':' tested for above) so there is no danger of running
2127 p = next->text + ptr - 2;
2130 while (*p == ' ' || *p == '\t') p--;
2131 if (*p != '\n') break;
2132 ptr = (p--) - next->text + 1;
2133 message_size -= next->slen - ptr;
2134 next->text[ptr] = 0;
2138 /* Add the header to the chain */
2140 next->type = htype_other;
2142 header_last->next = next;
2145 /* Check the limit for individual line lengths. This comes after adding to
2146 the chain so that the failing line is reflected if a bounce is generated
2147 (for a local message). */
2149 if (header_line_maxsize > 0 && next->slen > header_line_maxsize)
2151 log_write(0, LOG_MAIN, "overlong message header line received from "
2152 "%s (more than %d characters): message abandoned",
2153 sender_host_unknown? sender_ident : sender_fullhost,
2154 header_line_maxsize);
2158 smtp_reply = US"552 A message header line is too long";
2159 receive_swallow_smtp();
2160 goto TIDYUP; /* Skip to end of function */
2164 give_local_error(ERRMESS_VLONGHDRLINE,
2165 string_sprintf("message header line longer than %d characters "
2166 "received: message not accepted", header_line_maxsize), US"",
2167 error_rc, stdin, header_list->next);
2168 /* Does not return */
2171 /* Note if any resent- fields exist. */
2173 if (!resents_exist && strncmpic(next->text, US"resent-", 7) == 0)
2175 resents_exist = TRUE;
2176 resent_prefix = US"Resent-";
2180 /* Reject CHUNKING messages that do not CRLF their first header line */
2182 if (!first_line_ended_crlf && chunking_state > CHUNKING_OFFERED)
2184 log_write(L_size_reject, LOG_MAIN|LOG_REJECT, "rejected from <%s>%s%s%s%s: "
2185 "Non-CRLF-terminated header, under CHUNKING: message abandoned",
2187 sender_fullhost ? " H=" : "", sender_fullhost ? sender_fullhost : US"",
2188 sender_ident ? " U=" : "", sender_ident ? sender_ident : US"");
2189 smtp_printf("552 Message header not CRLF terminated\r\n", FALSE);
2192 goto TIDYUP; /* Skip to end of function */
2195 /* The line has been handled. If we have hit EOF, break out of the loop,
2196 indicating no pending data line. */
2198 if (ch == EOF) { next = NULL; break; }
2200 /* Set up for the next header */
2203 next = store_get(sizeof(header_line));
2204 next->text = store_get(header_size);
2207 prevlines_length = 0;
2208 } /* Continue, starting to read the next header */
2210 /* At this point, we have read all the headers into a data structure in main
2211 store. The first header is still the dummy placeholder for the Received: header
2212 we are going to generate a bit later on. If next != NULL, it contains the first
2213 data line - which terminated the headers before reaching a blank line (not the
2218 debug_printf(">>Headers received:\n");
2219 for (h = header_list->next; h; h = h->next)
2220 debug_printf("%s", h->text);
2224 /* End of file on any SMTP connection is an error. If an incoming SMTP call
2225 is dropped immediately after valid headers, the next thing we will see is EOF.
2226 We must test for this specially, as further down the reading of the data is
2227 skipped if already at EOF. */
2229 if (smtp_input && (receive_feof)())
2231 smtp_reply = handle_lost_connection(US" (after header)");
2233 goto TIDYUP; /* Skip to end of function */
2236 /* If this is a filter test run and no headers were read, output a warning
2237 in case there is a mistake in the test message. */
2239 if (filter_test != FTEST_NONE && header_list->next == NULL)
2240 printf("Warning: no message headers read\n");
2243 /* Scan the headers to identify them. Some are merely marked for later
2244 processing; some are dealt with here. */
2246 for (h = header_list->next; h; h = h->next)
2248 BOOL is_resent = strncmpic(h->text, US"resent-", 7) == 0;
2249 if (is_resent) contains_resent_headers = TRUE;
2251 switch (header_checkname(h, is_resent))
2254 h->type = htype_bcc; /* Both Bcc: and Resent-Bcc: */
2258 h->type = htype_cc; /* Both Cc: and Resent-Cc: */
2261 /* Record whether a Date: or Resent-Date: header exists, as appropriate. */
2264 if (!resents_exist || is_resent) date_header_exists = TRUE;
2267 /* Same comments as about Return-Path: below. */
2269 case htype_delivery_date:
2270 if (delivery_date_remove) h->type = htype_old;
2273 /* Same comments as about Return-Path: below. */
2275 case htype_envelope_to:
2276 if (envelope_to_remove) h->type = htype_old;
2279 /* Mark all "From:" headers so they get rewritten. Save the one that is to
2280 be used for Sender: checking. For Sendmail compatibility, if the "From:"
2281 header consists of just the login id of the user who called Exim, rewrite
2282 it with the gecos field first. Apply this rule to Resent-From: if there
2283 are resent- fields. */
2286 h->type = htype_from;
2287 if (!resents_exist || is_resent)
2293 uschar *s = Ustrchr(h->text, ':') + 1;
2294 while (isspace(*s)) s++;
2295 len = h->slen - (s - h->text) - 1;
2296 if (Ustrlen(originator_login) == len &&
2297 strncmpic(s, originator_login, len) == 0)
2299 uschar *name = is_resent? US"Resent-From" : US"From";
2300 header_add(htype_from, "%s: %s <%s@%s>\n", name, originator_name,
2301 originator_login, qualify_domain_sender);
2302 from_header = header_last;
2303 h->type = htype_old;
2304 DEBUG(D_receive|D_rewrite)
2305 debug_printf("rewrote \"%s:\" header using gecos\n", name);
2311 /* Identify the Message-id: header for generating "in-reply-to" in the
2312 autoreply transport. For incoming logging, save any resent- value. In both
2313 cases, take just the first of any multiples. */
2316 if (!msgid_header && (!resents_exist || is_resent))
2323 /* Flag all Received: headers */
2325 case htype_received:
2326 h->type = htype_received;
2330 /* "Reply-to:" is just noted (there is no resent-reply-to field) */
2332 case htype_reply_to:
2333 h->type = htype_reply_to;
2336 /* The Return-path: header is supposed to be added to messages when
2337 they leave the SMTP system. We shouldn't receive messages that already
2338 contain Return-path. However, since Exim generates Return-path: on
2339 local delivery, resent messages may well contain it. We therefore
2340 provide an option (which defaults on) to remove any Return-path: headers
2341 on input. Removal actually means flagging as "old", which prevents the
2342 header being transmitted with the message. */
2344 case htype_return_path:
2345 if (return_path_remove) h->type = htype_old;
2347 /* If we are testing a mail filter file, use the value of the
2348 Return-Path: header to set up the return_path variable, which is not
2349 otherwise set. However, remove any <> that surround the address
2350 because the variable doesn't have these. */
2352 if (filter_test != FTEST_NONE)
2354 uschar *start = h->text + 12;
2355 uschar *end = start + Ustrlen(start);
2356 while (isspace(*start)) start++;
2357 while (end > start && isspace(end[-1])) end--;
2358 if (*start == '<' && end[-1] == '>')
2363 return_path = string_copyn(start, end - start);
2364 printf("Return-path taken from \"Return-path:\" header line\n");
2368 /* If there is a "Sender:" header and the message is locally originated,
2369 and from an untrusted caller and suppress_local_fixups is not set, or if we
2370 are in submission mode for a remote message, mark it "old" so that it will
2371 not be transmitted with the message, unless active_local_sender_retain is
2372 set. (This can only be true if active_local_from_check is false.) If there
2373 are any resent- headers in the message, apply this rule to Resent-Sender:
2374 instead of Sender:. Messages with multiple resent- header sets cannot be
2375 tidily handled. (For this reason, at least one MUA - Pine - turns old
2376 resent- headers into X-resent- headers when resending, leaving just one
2380 h->type = !active_local_sender_retain
2381 && ( sender_local && !trusted_caller && !suppress_local_fixups
2384 && (!resents_exist || is_resent)
2385 ? htype_old : htype_sender;
2388 /* Remember the Subject: header for logging. There is no Resent-Subject */
2394 /* "To:" gets flagged, and the existence of a recipient header is noted,
2395 whether it's resent- or not. */
2400 to_or_cc_header_exists = TRUE;
2406 /* Extract recipients from the headers if that is required (the -t option).
2407 Note that this is documented as being done *before* any address rewriting takes
2408 place. There are two possibilities:
2410 (1) According to sendmail documentation for Solaris, IRIX, and HP-UX, any
2411 recipients already listed are to be REMOVED from the message. Smail 3 works
2412 like this. We need to build a non-recipients tree for that list, because in
2413 subsequent processing this data is held in a tree and that's what the
2414 spool_write_header() function expects. Make sure that non-recipient addresses
2415 are fully qualified and rewritten if necessary.
2417 (2) According to other sendmail documentation, -t ADDS extracted recipients to
2418 those in the command line arguments (and it is rumoured some other MTAs do
2419 this). Therefore, there is an option to make Exim behave this way.
2421 *** Notes on "Resent-" header lines ***
2423 The presence of resent-headers in the message makes -t horribly ambiguous.
2424 Experiments with sendmail showed that it uses recipients for all resent-
2425 headers, totally ignoring the concept of "sets of resent- headers" as described
2426 in RFC 2822 section 3.6.6. Sendmail also amalgamates them into a single set
2427 with all the addresses in one instance of each header.
2429 This seems to me not to be at all sensible. Before release 4.20, Exim 4 gave an
2430 error for -t if there were resent- headers in the message. However, after a
2431 discussion on the mailing list, I've learned that there are MUAs that use
2432 resent- headers with -t, and also that the stuff about sets of resent- headers
2433 and their ordering in RFC 2822 is generally ignored. An MUA that submits a
2434 message with -t and resent- header lines makes sure that only *its* resent-
2435 headers are present; previous ones are often renamed as X-resent- for example.
2437 Consequently, Exim has been changed so that, if any resent- header lines are
2438 present, the recipients are taken from all of the appropriate resent- lines,
2439 and not from the ordinary To:, Cc:, etc. */
2444 error_block **bnext = &bad_addresses;
2446 if (extract_addresses_remove_arguments)
2448 while (recipients_count-- > 0)
2450 uschar *s = rewrite_address(recipients_list[recipients_count].address,
2451 TRUE, TRUE, global_rewrite_rules, rewrite_existflags);
2452 tree_add_nonrecipient(s);
2454 recipients_list = NULL;
2455 recipients_count = recipients_list_max = 0;
2458 /* Now scan the headers */
2460 for (h = header_list->next; h; h = h->next)
2462 if ((h->type == htype_to || h->type == htype_cc || h->type == htype_bcc) &&
2463 (!contains_resent_headers || strncmpic(h->text, US"resent-", 7) == 0))
2465 uschar *s = Ustrchr(h->text, ':') + 1;
2466 while (isspace(*s)) s++;
2468 parse_allow_group = TRUE; /* Allow address group syntax */
2472 uschar *ss = parse_find_address_end(s, FALSE);
2473 uschar *recipient, *errmess, *p, *pp;
2474 int start, end, domain;
2476 /* Check on maximum */
2478 if (recipients_max > 0 && ++rcount > recipients_max)
2480 give_local_error(ERRMESS_TOOMANYRECIP, US"too many recipients",
2481 US"message rejected: ", error_rc, stdin, NULL);
2482 /* Does not return */
2485 /* Make a copy of the address, and remove any internal newlines. These
2486 may be present as a result of continuations of the header line. The
2487 white space that follows the newline must not be removed - it is part
2490 pp = recipient = store_get(ss - s + 1);
2491 for (p = s; p < ss; p++) if (*p != '\n') *pp++ = *p;
2496 BOOL b = allow_utf8_domains;
2497 allow_utf8_domains = TRUE;
2499 recipient = parse_extract_address(recipient, &errmess, &start, &end,
2503 if (string_is_utf8(recipient))
2504 message_smtputf8 = TRUE;
2506 allow_utf8_domains = b;
2510 /* Keep a list of all the bad addresses so we can send a single
2511 error message at the end. However, an empty address is not an error;
2512 just ignore it. This can come from an empty group list like
2514 To: Recipients of list:;
2516 If there are no recipients at all, an error will occur later. */
2518 if (recipient == NULL && Ustrcmp(errmess, "empty address") != 0)
2520 int len = Ustrlen(s);
2521 error_block *b = store_get(sizeof(error_block));
2522 while (len > 0 && isspace(s[len-1])) len--;
2524 b->text1 = string_printing(string_copyn(s, len));
2530 /* If the recipient is already in the nonrecipients tree, it must
2531 have appeared on the command line with the option extract_addresses_
2532 remove_arguments set. Do not add it to the recipients, and keep a note
2533 that this has happened, in order to give a better error if there are
2534 no recipients left. */
2536 else if (recipient != NULL)
2538 if (tree_search(tree_nonrecipients, recipient) == NULL)
2539 receive_add_recipient(recipient, -1);
2541 extracted_ignored = TRUE;
2544 /* Move on past this address */
2546 s = ss + (*ss? 1:0);
2547 while (isspace(*s)) s++;
2548 } /* Next address */
2550 parse_allow_group = FALSE; /* Reset group syntax flags */
2551 parse_found_group = FALSE;
2553 /* If this was the bcc: header, mark it "old", which means it
2554 will be kept on the spool, but not transmitted as part of the
2557 if (h->type == htype_bcc) h->type = htype_old;
2558 } /* For appropriate header line */
2559 } /* For each header line */
2563 /* Now build the unique message id. This has changed several times over the
2564 lifetime of Exim. This description was rewritten for Exim 4.14 (February 2003).
2565 Retaining all the history in the comment has become too unwieldy - read
2566 previous release sources if you want it.
2568 The message ID has 3 parts: tttttt-pppppp-ss. Each part is a number in base 62.
2569 The first part is the current time, in seconds. The second part is the current
2570 pid. Both are large enough to hold 32-bit numbers in base 62. The third part
2571 can hold a number in the range 0-3843. It used to be a computed sequence
2572 number, but is now the fractional component of the current time in units of
2573 1/2000 of a second (i.e. a value in the range 0-1999). After a message has been
2574 received, Exim ensures that the timer has ticked at the appropriate level
2575 before proceeding, to avoid duplication if the pid happened to be re-used
2576 within the same time period. It seems likely that most messages will take at
2577 least half a millisecond to be received, so no delay will normally be
2578 necessary. At least for some time...
2580 There is a modification when localhost_number is set. Formerly this was allowed
2581 to be as large as 255. Now it is restricted to the range 0-16, and the final
2582 component of the message id becomes (localhost_number * 200) + fractional time
2583 in units of 1/200 of a second (i.e. a value in the range 0-3399).
2585 Some not-really-Unix operating systems use case-insensitive file names (Darwin,
2586 Cygwin). For these, we have to use base 36 instead of base 62. Luckily, this
2587 still allows the tttttt field to hold a large enough number to last for some
2588 more decades, and the final two-digit field can hold numbers up to 1295, which
2589 is enough for milliseconds (instead of 1/2000 of a second).
2591 However, the pppppp field cannot hold a 32-bit pid, but it can hold a 31-bit
2592 pid, so it is probably safe because pids have to be positive. The
2593 localhost_number is restricted to 0-10 for these hosts, and when it is set, the
2594 final field becomes (localhost_number * 100) + fractional time in centiseconds.
2596 Note that string_base62() returns its data in a static storage block, so it
2597 must be copied before calling string_base62() again. It always returns exactly
2600 There doesn't seem to be anything in the RFC which requires a message id to
2601 start with a letter, but Smail was changed to ensure this. The external form of
2602 the message id (as supplied by string expansion) therefore starts with an
2603 additional leading 'E'. The spool file names do not include this leading
2604 letter and it is not used internally.
2606 NOTE: If ever the format of message ids is changed, the regular expression for
2607 checking that a string is in this format must be updated in a corresponding
2608 way. It appears in the initializing code in exim.c. The macro MESSAGE_ID_LENGTH
2609 must also be changed to reflect the correct string length. The queue-sort code
2610 needs to know the layout. Then, of course, other programs that rely on the
2611 message id format will need updating too. */
2613 Ustrncpy(message_id, string_base62((long int)(message_id_tv.tv_sec)), 6);
2614 message_id[6] = '-';
2615 Ustrncpy(message_id + 7, string_base62((long int)getpid()), 6);
2617 /* Deal with the case where the host number is set. The value of the number was
2618 checked when it was read, to ensure it isn't too big. The timing granularity is
2619 left in id_resolution so that an appropriate wait can be done after receiving
2620 the message, if necessary (we hope it won't be). */
2622 if (host_number_string)
2624 id_resolution = (BASE_62 == 62)? 5000 : 10000;
2625 sprintf(CS(message_id + MESSAGE_ID_LENGTH - 3), "-%2s",
2626 string_base62((long int)(
2627 host_number * (1000000/id_resolution) +
2628 message_id_tv.tv_usec/id_resolution)) + 4);
2631 /* Host number not set: final field is just the fractional time at an
2632 appropriate resolution. */
2636 id_resolution = (BASE_62 == 62)? 500 : 1000;
2637 sprintf(CS(message_id + MESSAGE_ID_LENGTH - 3), "-%2s",
2638 string_base62((long int)(message_id_tv.tv_usec/id_resolution)) + 4);
2641 /* Add the current message id onto the current process info string if
2644 (void)string_format(process_info + process_info_len,
2645 PROCESS_INFO_SIZE - process_info_len, " id=%s", message_id);
2647 /* If we are using multiple input directories, set up the one for this message
2648 to be the least significant base-62 digit of the time of arrival. Otherwise
2649 ensure that it is an empty string. */
2651 message_subdir[0] = split_spool_directory ? message_id[5] : 0;
2653 /* Now that we have the message-id, if there is no message-id: header, generate
2654 one, but only for local (without suppress_local_fixups) or submission mode
2655 messages. This can be user-configured if required, but we had better flatten
2656 any illegal characters therein. */
2659 && ((!sender_host_address && !suppress_local_fixups) || submission_mode))
2662 uschar *id_text = US"";
2663 uschar *id_domain = primary_hostname;
2665 /* Permit only letters, digits, dots, and hyphens in the domain */
2667 if (message_id_domain)
2669 uschar *new_id_domain = expand_string(message_id_domain);
2672 if (!expand_string_forcedfail)
2673 log_write(0, LOG_MAIN|LOG_PANIC,
2674 "expansion of \"%s\" (message_id_header_domain) "
2675 "failed: %s", message_id_domain, expand_string_message);
2677 else if (*new_id_domain)
2679 id_domain = new_id_domain;
2680 for (p = id_domain; *p; p++)
2681 if (!isalnum(*p) && *p != '.') *p = '-'; /* No need to test '-' ! */
2685 /* Permit all characters except controls and RFC 2822 specials in the
2686 additional text part. */
2688 if (message_id_text)
2690 uschar *new_id_text = expand_string(message_id_text);
2693 if (!expand_string_forcedfail)
2694 log_write(0, LOG_MAIN|LOG_PANIC,
2695 "expansion of \"%s\" (message_id_header_text) "
2696 "failed: %s", message_id_text, expand_string_message);
2698 else if (*new_id_text)
2700 id_text = new_id_text;
2701 for (p = id_text; *p; p++) if (mac_iscntrl_or_special(*p)) *p = '-';
2705 /* Add the header line
2706 * Resent-* headers are prepended, per RFC 5322 3.6.6. Non-Resent-* are
2707 * appended, to preserve classical expectations of header ordering. */
2709 header_add_at_position(!resents_exist, NULL, FALSE, htype_id,
2710 "%sMessage-Id: <%s%s%s@%s>\n", resent_prefix, message_id_external,
2711 (*id_text == 0)? "" : ".", id_text, id_domain);
2714 /* If we are to log recipients, keep a copy of the raw ones before any possible
2715 rewriting. Must copy the count, because later ACLs and the local_scan()
2716 function may mess with the real recipients. */
2718 if (LOGGING(received_recipients))
2720 raw_recipients = store_get(recipients_count * sizeof(uschar *));
2721 for (i = 0; i < recipients_count; i++)
2722 raw_recipients[i] = string_copy(recipients_list[i].address);
2723 raw_recipients_count = recipients_count;
2726 /* Ensure the recipients list is fully qualified and rewritten. Unqualified
2727 recipients will get here only if the conditions were right (allow_unqualified_
2728 recipient is TRUE). */
2730 for (i = 0; i < recipients_count; i++)
2731 recipients_list[i].address =
2732 rewrite_address(recipients_list[i].address, TRUE, TRUE,
2733 global_rewrite_rules, rewrite_existflags);
2735 /* If there is no From: header, generate one for local (without
2736 suppress_local_fixups) or submission_mode messages. If there is no sender
2737 address, but the sender is local or this is a local delivery error, use the
2738 originator login. This shouldn't happen for genuine bounces, but might happen
2739 for autoreplies. The addition of From: must be done *before* checking for the
2740 possible addition of a Sender: header, because untrusted_set_sender allows an
2741 untrusted user to set anything in the envelope (which might then get info
2742 From:) but we still want to ensure a valid Sender: if it is required. */
2745 && ((!sender_host_address && !suppress_local_fixups) || submission_mode))
2747 uschar *oname = US"";
2749 /* Use the originator_name if this is a locally submitted message and the
2750 caller is not trusted. For trusted callers, use it only if -F was used to
2751 force its value or if we have a non-SMTP message for which -f was not used
2752 to set the sender. */
2754 if (!sender_host_address)
2756 if (!trusted_caller || sender_name_forced ||
2757 (!smtp_input && !sender_address_forced))
2758 oname = originator_name;
2761 /* For non-locally submitted messages, the only time we use the originator
2762 name is when it was forced by the /name= option on control=submission. */
2764 else if (submission_name) oname = submission_name;
2766 /* Envelope sender is empty */
2768 if (!*sender_address)
2770 uschar *fromstart, *fromend;
2772 fromstart = string_sprintf("%sFrom: %s%s",
2773 resent_prefix, oname, *oname ? " <" : "");
2774 fromend = *oname ? US">" : US"";
2776 if (sender_local || local_error_message)
2777 header_add(htype_from, "%s%s@%s%s\n", fromstart,
2778 local_part_quote(originator_login), qualify_domain_sender,
2781 else if (submission_mode && authenticated_id)
2783 if (!submission_domain)
2784 header_add(htype_from, "%s%s@%s%s\n", fromstart,
2785 local_part_quote(authenticated_id), qualify_domain_sender,
2788 else if (!*submission_domain) /* empty => whole address set */
2789 header_add(htype_from, "%s%s%s\n", fromstart, authenticated_id,
2793 header_add(htype_from, "%s%s@%s%s\n", fromstart,
2794 local_part_quote(authenticated_id), submission_domain, fromend);
2796 from_header = header_last; /* To get it checked for Sender: */
2800 /* There is a non-null envelope sender. Build the header using the original
2801 sender address, before any rewriting that might have been done while
2806 header_add(htype_from, "%sFrom: %s%s%s%s\n", resent_prefix,
2809 sender_address_unrewritten ? sender_address_unrewritten : sender_address,
2812 from_header = header_last; /* To get it checked for Sender: */
2817 /* If the sender is local (without suppress_local_fixups), or if we are in
2818 submission mode and there is an authenticated_id, check that an existing From:
2819 is correct, and if not, generate a Sender: header, unless disabled. Any
2820 previously-existing Sender: header was removed above. Note that sender_local,
2821 as well as being TRUE if the caller of exim is not trusted, is also true if a
2822 trusted caller did not supply a -f argument for non-smtp input. To allow
2823 trusted callers to forge From: without supplying -f, we have to test explicitly
2824 here. If the From: header contains more than one address, then the call to
2825 parse_extract_address fails, and a Sender: header is inserted, as required. */
2828 && ( active_local_from_check
2829 && ( sender_local && !trusted_caller && !suppress_local_fixups
2830 || submission_mode && authenticated_id
2833 BOOL make_sender = TRUE;
2834 int start, end, domain;
2836 uschar *from_address =
2837 parse_extract_address(Ustrchr(from_header->text, ':') + 1, &errmess,
2838 &start, &end, &domain, FALSE);
2839 uschar *generated_sender_address;
2841 generated_sender_address = submission_mode
2842 ? !submission_domain
2843 ? string_sprintf("%s@%s",
2844 local_part_quote(authenticated_id), qualify_domain_sender)
2845 : !*submission_domain /* empty => full address */
2846 ? string_sprintf("%s", authenticated_id)
2847 : string_sprintf("%s@%s",
2848 local_part_quote(authenticated_id), submission_domain)
2849 : string_sprintf("%s@%s",
2850 local_part_quote(originator_login), qualify_domain_sender);
2852 /* Remove permitted prefixes and suffixes from the local part of the From:
2853 address before doing the comparison with the generated sender. */
2858 uschar *at = domain ? from_address + domain - 1 : NULL;
2861 from_address += route_check_prefix(from_address, local_from_prefix);
2862 slen = route_check_suffix(from_address, local_from_suffix);
2865 memmove(from_address+slen, from_address, Ustrlen(from_address)-slen);
2866 from_address += slen;
2870 if ( strcmpic(generated_sender_address, from_address) == 0
2871 || (!domain && strcmpic(from_address, originator_login) == 0))
2872 make_sender = FALSE;
2875 /* We have to cause the Sender header to be rewritten if there are
2876 appropriate rewriting rules. */
2879 if (submission_mode && !submission_name)
2880 header_add(htype_sender, "%sSender: %s\n", resent_prefix,
2881 generated_sender_address);
2883 header_add(htype_sender, "%sSender: %s <%s>\n",
2885 submission_mode? submission_name : originator_name,
2886 generated_sender_address);
2888 /* Ensure that a non-null envelope sender address corresponds to the
2889 submission mode sender address. */
2891 if (submission_mode && *sender_address)
2893 if (!sender_address_unrewritten)
2894 sender_address_unrewritten = sender_address;
2895 sender_address = generated_sender_address;
2896 if (Ustrcmp(sender_address_unrewritten, generated_sender_address) != 0)
2897 log_write(L_address_rewrite, LOG_MAIN,
2898 "\"%s\" from env-from rewritten as \"%s\" by submission mode",
2899 sender_address_unrewritten, generated_sender_address);
2903 /* If there are any rewriting rules, apply them to the sender address, unless
2904 it has already been rewritten as part of verification for SMTP input. */
2906 if (global_rewrite_rules && !sender_address_unrewritten && *sender_address)
2908 sender_address = rewrite_address(sender_address, FALSE, TRUE,
2909 global_rewrite_rules, rewrite_existflags);
2910 DEBUG(D_receive|D_rewrite)
2911 debug_printf("rewritten sender = %s\n", sender_address);
2915 /* The headers must be run through rewrite_header(), because it ensures that
2916 addresses are fully qualified, as well as applying any rewriting rules that may
2919 Qualification of header addresses in a message from a remote host happens only
2920 if the host is in sender_unqualified_hosts or recipient_unqualified hosts, as
2921 appropriate. For local messages, qualification always happens, unless -bnq is
2922 used to explicitly suppress it. No rewriting is done for an unqualified address
2923 that is left untouched.
2925 We start at the second header, skipping our own Received:. This rewriting is
2926 documented as happening *after* recipient addresses are taken from the headers
2927 by the -t command line option. An added Sender: gets rewritten here. */
2929 for (h = header_list->next; h; h = h->next)
2931 header_line *newh = rewrite_header(h, NULL, NULL, global_rewrite_rules,
2932 rewrite_existflags, TRUE);
2937 /* An RFC 822 (sic) message is not legal unless it has at least one of "to",
2938 "cc", or "bcc". Note that although the minimal examples in RFC 822 show just
2939 "to" or "bcc", the full syntax spec allows "cc" as well. If any resent- header
2940 exists, this applies to the set of resent- headers rather than the normal set.
2942 The requirement for a recipient header has been removed in RFC 2822. At this
2943 point in the code, earlier versions of Exim added a To: header for locally
2944 submitted messages, and an empty Bcc: header for others. In the light of the
2945 changes in RFC 2822, this was dropped in November 2003. */
2948 /* If there is no date header, generate one if the message originates locally
2949 (i.e. not over TCP/IP) and suppress_local_fixups is not set, or if the
2950 submission mode flag is set. Messages without Date: are not valid, but it seems
2951 to be more confusing if Exim adds one to all remotely-originated messages.
2952 As per Message-Id, we prepend if resending, else append.
2955 if ( !date_header_exists
2956 && ((!sender_host_address && !suppress_local_fixups) || submission_mode))
2957 header_add_at_position(!resents_exist, NULL, FALSE, htype_other,
2958 "%sDate: %s\n", resent_prefix, tod_stamp(tod_full));
2960 search_tidyup(); /* Free any cached resources */
2962 /* Show the complete set of headers if debugging. Note that the first one (the
2963 new Received:) has not yet been set. */
2967 debug_printf(">>Headers after rewriting and local additions:\n");
2968 for (h = header_list->next; h; h = h->next)
2969 debug_printf("%c %s", h->type, h->text);
2973 /* The headers are now complete in store. If we are running in filter
2974 testing mode, that is all this function does. Return TRUE if the message
2975 ended with a dot. */
2977 if (filter_test != FTEST_NONE)
2979 process_info[process_info_len] = 0;
2980 return message_ended == END_DOT;
2983 /*XXX CHUNKING: need to cancel cutthrough under BDAT, for now. In future,
2984 think more if it could be handled. Cannot do onward CHUNKING unless
2985 inbound is, but inbound chunking ought to be ok with outbound plain.
2986 Could we do onward CHUNKING given inbound CHUNKING?
2988 if (chunking_state > CHUNKING_OFFERED)
2989 cancel_cutthrough_connection(FALSE, US"chunking active");
2991 /* Cutthrough delivery:
2992 We have to create the Received header now rather than at the end of reception,
2993 so the timestamp behaviour is a change to the normal case.
2994 Having created it, send the headers to the destination. */
2996 if (cutthrough.fd >= 0 && cutthrough.delivery)
2998 if (received_count > received_headers_max)
3000 cancel_cutthrough_connection(TRUE, US"too many headers");
3001 if (smtp_input) receive_swallow_smtp(); /* Swallow incoming SMTP */
3002 log_write(0, LOG_MAIN|LOG_REJECT, "rejected from <%s>%s%s%s%s: "
3003 "Too many \"Received\" headers",
3005 sender_fullhost ? "H=" : "", sender_fullhost ? sender_fullhost : US"",
3006 sender_ident ? "U=" : "", sender_ident ? sender_ident : US"");
3007 message_id[0] = 0; /* Indicate no message accepted */
3008 smtp_reply = US"550 Too many \"Received\" headers - suspected mail loop";
3009 goto TIDYUP; /* Skip to end of function */
3011 received_header_gen();
3012 add_acl_headers(ACL_WHERE_RCPT, US"MAIL or RCPT");
3013 (void) cutthrough_headers_send();
3017 /* Open a new spool file for the data portion of the message. We need
3018 to access it both via a file descriptor and a stream. Try to make the
3019 directory if it isn't there. */
3021 spool_name = spool_fname(US"input", message_subdir, message_id, US"-D");
3022 DEBUG(D_receive) debug_printf("Data file name: %s\n", spool_name);
3024 if ((data_fd = Uopen(spool_name, O_RDWR|O_CREAT|O_EXCL, SPOOL_MODE)) < 0)
3026 if (errno == ENOENT)
3028 (void) directory_make(spool_directory,
3029 spool_sname(US"input", message_subdir),
3030 INPUT_DIRECTORY_MODE, TRUE);
3031 data_fd = Uopen(spool_name, O_RDWR|O_CREAT|O_EXCL, SPOOL_MODE);
3034 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Failed to create spool file %s: %s",
3035 spool_name, strerror(errno));
3038 /* Make sure the file's group is the Exim gid, and double-check the mode
3039 because the group setting doesn't always get set automatically. */
3041 if (fchown(data_fd, exim_uid, exim_gid))
3042 log_write(0, LOG_MAIN|LOG_PANIC_DIE,
3043 "Failed setting ownership on spool file %s: %s",
3044 spool_name, strerror(errno));
3045 (void)fchmod(data_fd, SPOOL_MODE);
3047 /* We now have data file open. Build a stream for it and lock it. We lock only
3048 the first line of the file (containing the message ID) because otherwise there
3049 are problems when Exim is run under Cygwin (I'm told). See comments in
3050 spool_in.c, where the same locking is done. */
3052 data_file = fdopen(data_fd, "w+");
3053 lock_data.l_type = F_WRLCK;
3054 lock_data.l_whence = SEEK_SET;
3055 lock_data.l_start = 0;
3056 lock_data.l_len = SPOOL_DATA_START_OFFSET;
3058 if (fcntl(data_fd, F_SETLK, &lock_data) < 0)
3059 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Cannot lock %s (%d): %s", spool_name,
3060 errno, strerror(errno));
3062 /* We have an open, locked data file. Write the message id to it to make it
3063 self-identifying. Then read the remainder of the input of this message and
3064 write it to the data file. If the variable next != NULL, it contains the first
3065 data line (which was read as a header but then turned out not to have the right
3066 format); write it (remembering that it might contain binary zeros). The result
3067 of fwrite() isn't inspected; instead we call ferror() below. */
3069 fprintf(data_file, "%s-D\n", message_id);
3072 uschar *s = next->text;
3073 int len = next->slen;
3074 len = fwrite(s, 1, len, data_file); len = len; /* compiler quietening */
3075 body_linecount++; /* Assumes only 1 line */
3078 /* Note that we might already be at end of file, or the logical end of file
3079 (indicated by '.'), or might have encountered an error while writing the
3080 message id or "next" line. */
3082 if (!ferror(data_file) && !(receive_feof)() && message_ended != END_DOT)
3086 message_ended = chunking_state <= CHUNKING_OFFERED
3087 ? read_message_data_smtp(data_file)
3089 ? read_message_bdat_smtp_wire(data_file)
3090 : read_message_bdat_smtp(data_file);
3091 receive_linecount++; /* The terminating "." line */
3093 else message_ended = read_message_data(data_file);
3095 receive_linecount += body_linecount; /* For BSMTP errors mainly */
3096 message_linecount += body_linecount;
3098 switch (message_ended)
3100 /* Handle premature termination of SMTP */
3105 Uunlink(spool_name); /* Lose data file when closed */
3106 cancel_cutthrough_connection(TRUE, US"sender closed connection");
3107 message_id[0] = 0; /* Indicate no message accepted */
3108 smtp_reply = handle_lost_connection(US"");
3110 goto TIDYUP; /* Skip to end of function */
3114 /* Handle message that is too big. Don't use host_or_ident() in the log
3115 message; we want to see the ident value even for non-remote messages. */
3118 Uunlink(spool_name); /* Lose the data file when closed */
3119 cancel_cutthrough_connection(TRUE, US"mail too big");
3120 if (smtp_input) receive_swallow_smtp(); /* Swallow incoming SMTP */
3122 log_write(L_size_reject, LOG_MAIN|LOG_REJECT, "rejected from <%s>%s%s%s%s: "
3123 "message too big: read=%d max=%d",
3125 sender_fullhost ? " H=" : "",
3126 sender_fullhost ? sender_fullhost : US"",
3127 sender_ident ? " U=" : "",
3128 sender_ident ? sender_ident : US"",
3130 thismessage_size_limit);
3134 smtp_reply = US"552 Message size exceeds maximum permitted";
3135 message_id[0] = 0; /* Indicate no message accepted */
3136 goto TIDYUP; /* Skip to end of function */
3140 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3141 give_local_error(ERRMESS_TOOBIG,
3142 string_sprintf("message too big (max=%d)", thismessage_size_limit),
3143 US"message rejected: ", error_rc, data_file, header_list);
3144 /* Does not return */
3148 /* Handle bad BDAT protocol sequence */
3151 Uunlink(spool_name); /* Lose the data file when closed */
3152 cancel_cutthrough_connection(TRUE, US"sender protocol error");
3153 smtp_reply = US""; /* Response already sent */
3154 message_id[0] = 0; /* Indicate no message accepted */
3155 goto TIDYUP; /* Skip to end of function */
3159 /* Restore the standard SIGALRM handler for any subsequent processing. (For
3160 example, there may be some expansion in an ACL that uses a timer.) */
3162 os_non_restarting_signal(SIGALRM, sigalrm_handler);
3164 /* The message body has now been read into the data file. Call fflush() to
3165 empty the buffers in C, and then call fsync() to get the data written out onto
3166 the disk, as fflush() doesn't do this (or at least, it isn't documented as
3167 having to do this). If there was an I/O error on either input or output,
3168 attempt to send an error message, and unlink the spool file. For non-SMTP input
3169 we can then give up. Note that for SMTP input we must swallow the remainder of
3170 the input in cases of output errors, since the far end doesn't expect to see
3171 anything until the terminating dot line is sent. */
3173 if (fflush(data_file) == EOF || ferror(data_file) ||
3174 EXIMfsync(fileno(data_file)) < 0 || (receive_ferror)())
3176 uschar *msg_errno = US strerror(errno);
3177 BOOL input_error = (receive_ferror)() != 0;
3178 uschar *msg = string_sprintf("%s error (%s) while receiving message from %s",
3179 input_error? "Input read" : "Spool write",
3181 sender_fullhost ? sender_fullhost : sender_ident);
3183 log_write(0, LOG_MAIN, "Message abandoned: %s", msg);
3184 Uunlink(spool_name); /* Lose the data file */
3185 cancel_cutthrough_connection(TRUE, US"error writing spoolfile");
3190 smtp_reply = US"451 Error while reading input data";
3193 smtp_reply = US"451 Error while writing spool file";
3194 receive_swallow_smtp();
3196 message_id[0] = 0; /* Indicate no message accepted */
3197 goto TIDYUP; /* Skip to end of function */
3202 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3203 give_local_error(ERRMESS_IOERR, msg, US"", error_rc, data_file,
3205 /* Does not return */
3210 /* No I/O errors were encountered while writing the data file. */
3212 DEBUG(D_receive) debug_printf("Data file written for message %s\n", message_id);
3213 if (LOGGING(receive_time)) timesince(&received_time_taken, &received_time);
3216 /* If there were any bad addresses extracted by -t, or there were no recipients
3217 left after -t, send a message to the sender of this message, or write it to
3218 stderr if the error handling option is set that way. Note that there may
3219 legitimately be no recipients for an SMTP message if they have all been removed
3222 We need to rewind the data file in order to read it. In the case of no
3223 recipients or stderr error writing, throw the data file away afterwards, and
3224 exit. (This can't be SMTP, which always ensures there's at least one
3225 syntactically good recipient address.) */
3227 if (extract_recip && (bad_addresses || recipients_count == 0))
3231 if (recipients_count == 0) debug_printf("*** No recipients\n");
3234 error_block *eblock = bad_addresses;
3235 debug_printf("*** Bad address(es)\n");
3236 while (eblock != NULL)
3238 debug_printf(" %s: %s\n", eblock->text1, eblock->text2);
3239 eblock = eblock->next;
3244 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3246 /* If configured to send errors to the sender, but this fails, force
3247 a failure error code. We use a special one for no recipients so that it
3248 can be detected by the autoreply transport. Otherwise error_rc is set to
3249 errors_sender_rc, which is EXIT_FAILURE unless -oee was given, in which case
3250 it is EXIT_SUCCESS. */
3252 if (error_handling == ERRORS_SENDER)
3254 if (!moan_to_sender(
3255 (bad_addresses == NULL)?
3256 (extracted_ignored? ERRMESS_IGADDRESS : ERRMESS_NOADDRESS) :
3257 (recipients_list == NULL)? ERRMESS_BADNOADDRESS : ERRMESS_BADADDRESS,
3258 bad_addresses, header_list, data_file, FALSE))
3259 error_rc = (bad_addresses == NULL)? EXIT_NORECIPIENTS : EXIT_FAILURE;
3265 if (extracted_ignored)
3266 fprintf(stderr, "exim: all -t recipients overridden by command line\n");
3268 fprintf(stderr, "exim: no recipients in message\n");
3272 fprintf(stderr, "exim: invalid address%s",
3273 (bad_addresses->next == NULL)? ":" : "es:\n");
3274 while (bad_addresses != NULL)
3276 fprintf(stderr, " %s: %s\n", bad_addresses->text1,
3277 bad_addresses->text2);
3278 bad_addresses = bad_addresses->next;
3283 if (recipients_count == 0 || error_handling == ERRORS_STDERR)
3285 Uunlink(spool_name);
3286 (void)fclose(data_file);
3287 exim_exit(error_rc, US"receiving");
3291 /* Data file successfully written. Generate text for the Received: header by
3292 expanding the configured string, and adding a timestamp. By leaving this
3293 operation till now, we ensure that the timestamp is the time that message
3294 reception was completed. However, this is deliberately done before calling the
3295 data ACL and local_scan().
3297 This Received: header may therefore be inspected by the data ACL and by code in
3298 the local_scan() function. When they have run, we update the timestamp to be
3299 the final time of reception.
3301 If there is just one recipient, set up its value in the $received_for variable
3302 for use when we generate the Received: header.
3304 Note: the checking for too many Received: headers is handled by the delivery
3306 /*XXX eventually add excess Received: check for cutthrough case back when classifying them */
3308 if (!received_header->text) /* Non-cutthrough case */
3310 received_header_gen();
3312 /* Set the value of message_body_size for the DATA ACL and for local_scan() */
3314 message_body_size = (fstat(data_fd, &statbuf) == 0)?
3315 statbuf.st_size - SPOOL_DATA_START_OFFSET : -1;
3317 /* If an ACL from any RCPT commands set up any warning headers to add, do so
3318 now, before running the DATA ACL. */
3320 add_acl_headers(ACL_WHERE_RCPT, US"MAIL or RCPT");
3323 message_body_size = (fstat(data_fd, &statbuf) == 0)?
3324 statbuf.st_size - SPOOL_DATA_START_OFFSET : -1;
3326 /* If an ACL is specified for checking things at this stage of reception of a
3327 message, run it, unless all the recipients were removed by "discard" in earlier
3328 ACLs. That is the only case in which recipients_count can be zero at this
3329 stage. Set deliver_datafile to point to the data file so that $message_body and
3330 $message_body_end can be extracted if needed. Allow $recipients in expansions.
3333 deliver_datafile = data_fd;
3336 enable_dollar_recipients = TRUE;
3338 if (recipients_count == 0)
3339 blackholed_by = recipients_discarded ? US"MAIL ACL" : US"RCPT ACL";
3343 /* Handle interactive SMTP messages */
3345 if (smtp_input && !smtp_batched_input)
3348 #ifndef DISABLE_DKIM
3349 if (!dkim_disable_verify)
3351 /* Finish verification */
3352 dkim_exim_verify_finish();
3354 /* Check if we must run the DKIM ACL */
3355 if (acl_smtp_dkim && dkim_verify_signers && *dkim_verify_signers)
3357 uschar * dkim_verify_signers_expanded =
3358 expand_string(dkim_verify_signers);
3359 gstring * results = NULL;
3363 gstring * seen_items = NULL;
3364 int old_pool = store_pool;
3366 store_pool = POOL_PERM; /* Allow created variables to live to data ACL */
3368 if (!(ptr = dkim_verify_signers_expanded))
3369 log_write(0, LOG_MAIN|LOG_PANIC,
3370 "expansion of dkim_verify_signers option failed: %s",
3371 expand_string_message);
3373 /* Default to OK when no items are present */
3375 while ((item = string_nextinlist(&ptr, &signer_sep, NULL, 0)))
3377 /* Prevent running ACL for an empty item */
3378 if (!item || !*item) continue;
3380 /* Only run ACL once for each domain or identity,
3381 no matter how often it appears in the expanded list. */
3385 const uschar * seen_items_list = string_from_gstring(seen_items);
3387 BOOL seen_this_item = FALSE;
3389 while ((seen_item = string_nextinlist(&seen_items_list, &seen_sep,
3391 if (Ustrcmp(seen_item,item) == 0)
3393 seen_this_item = TRUE;
3400 debug_printf("acl_smtp_dkim: skipping signer %s, "
3401 "already seen\n", item);
3405 seen_items = string_catn(seen_items, US":", 1);
3407 seen_items = string_cat(seen_items, item);
3409 rc = dkim_exim_acl_run(item, &results, &user_msg, &log_msg);
3413 debug_printf("acl_smtp_dkim: acl_check returned %d on %s, "
3414 "skipping remaining items\n", rc, item);
3415 cancel_cutthrough_connection(TRUE, US"dkim acl not ok");
3419 dkim_verify_status = string_from_gstring(results);
3420 store_pool = old_pool;
3421 add_acl_headers(ACL_WHERE_DKIM, US"DKIM");
3424 recipients_count = 0;
3425 blackholed_by = US"DKIM ACL";
3427 blackhole_log_msg = string_sprintf(": %s", log_msg);
3431 Uunlink(spool_name);
3432 if (smtp_handle_acl_fail(ACL_WHERE_DKIM, rc, user_msg, log_msg) != 0)
3433 smtp_yield = FALSE; /* No more messages after dropped connection */
3434 smtp_reply = US""; /* Indicate reply already sent */
3435 message_id[0] = 0; /* Indicate no message accepted */
3436 goto TIDYUP; /* Skip to end of function */
3440 dkim_exim_verify_log_all();
3442 #endif /* DISABLE_DKIM */
3444 #ifdef WITH_CONTENT_SCAN
3445 if ( recipients_count > 0
3447 && !run_mime_acl(acl_smtp_mime, &smtp_yield, &smtp_reply, &blackholed_by)
3450 #endif /* WITH_CONTENT_SCAN */
3452 #ifdef EXPERIMENTAL_DMARC
3453 dmarc_up = dmarc_store_data(from_header);
3454 #endif /* EXPERIMENTAL_DMARC */
3456 #ifndef DISABLE_PRDR
3457 if (prdr_requested && recipients_count > 1 && acl_smtp_data_prdr)
3461 int all_fail = FAIL;
3463 smtp_printf("353 PRDR content analysis beginning\r\n", TRUE);
3464 /* Loop through recipients, responses must be in same order received */
3465 for (c = 0; recipients_count > c; c++)
3467 uschar * addr= recipients_list[c].address;
3468 uschar * msg= US"PRDR R=<%s> %s";
3471 debug_printf("PRDR processing recipient %s (%d of %d)\n",
3472 addr, c+1, recipients_count);
3473 rc = acl_check(ACL_WHERE_PRDR, addr,
3474 acl_smtp_data_prdr, &user_msg, &log_msg);
3476 /* If any recipient rejected content, indicate it in final message */
3478 /* If all recipients rejected, indicate in final message */
3483 case OK: case DISCARD: code = US"250"; break;
3484 case DEFER: code = US"450"; break;
3485 default: code = US"550"; break;
3487 if (user_msg != NULL)
3488 smtp_user_msg(code, user_msg);
3493 case OK: case DISCARD:
3494 msg = string_sprintf(CS msg, addr, "acceptance"); break;
3496 msg = string_sprintf(CS msg, addr, "temporary refusal"); break;
3498 msg = string_sprintf(CS msg, addr, "refusal"); break;
3500 smtp_user_msg(code, msg);
3502 if (log_msg) log_write(0, LOG_MAIN, "PRDR %s %s", addr, log_msg);
3503 else if (user_msg) log_write(0, LOG_MAIN, "PRDR %s %s", addr, user_msg);
3504 else log_write(0, LOG_MAIN, "%s", CS msg);
3506 if (rc != OK) { receive_remove_recipient(addr); c--; }
3508 /* Set up final message, used if data acl gives OK */
3509 smtp_reply = string_sprintf("%s id=%s message %s",
3510 all_fail == FAIL ? US"550" : US"250",
3513 ? US"rejected for all recipients"
3516 : US"accepted for some recipients");
3517 if (recipients_count == 0)
3519 message_id[0] = 0; /* Indicate no message accepted */
3524 prdr_requested = FALSE;
3525 #endif /* !DISABLE_PRDR */
3527 /* Check the recipients count again, as the MIME ACL might have changed
3530 if (acl_smtp_data != NULL && recipients_count > 0)
3532 rc = acl_check(ACL_WHERE_DATA, NULL, acl_smtp_data, &user_msg, &log_msg);
3533 add_acl_headers(ACL_WHERE_DATA, US"DATA");
3536 recipients_count = 0;
3537 blackholed_by = US"DATA ACL";
3539 blackhole_log_msg = string_sprintf(": %s", log_msg);
3540 cancel_cutthrough_connection(TRUE, US"data acl discard");
3544 Uunlink(spool_name);
3545 cancel_cutthrough_connection(TRUE, US"data acl not ok");
3546 #ifdef WITH_CONTENT_SCAN
3549 #ifdef EXPERIMENTAL_DCC
3552 if (smtp_handle_acl_fail(ACL_WHERE_DATA, rc, user_msg, log_msg) != 0)
3553 smtp_yield = FALSE; /* No more messages after dropped connection */
3554 smtp_reply = US""; /* Indicate reply already sent */
3555 message_id[0] = 0; /* Indicate no message accepted */
3556 goto TIDYUP; /* Skip to end of function */
3561 /* Handle non-SMTP and batch SMTP (i.e. non-interactive) messages. Note that
3562 we cannot take different actions for permanent and temporary rejections. */
3567 #ifdef WITH_CONTENT_SCAN
3568 if ( acl_not_smtp_mime
3569 && !run_mime_acl(acl_not_smtp_mime, &smtp_yield, &smtp_reply,
3573 #endif /* WITH_CONTENT_SCAN */
3575 if (acl_not_smtp != NULL)
3577 uschar *user_msg, *log_msg;
3578 rc = acl_check(ACL_WHERE_NOTSMTP, NULL, acl_not_smtp, &user_msg, &log_msg);
3581 recipients_count = 0;
3582 blackholed_by = US"non-SMTP ACL";
3583 if (log_msg != NULL)
3584 blackhole_log_msg = string_sprintf(": %s", log_msg);
3588 Uunlink(spool_name);
3589 #ifdef WITH_CONTENT_SCAN
3592 #ifdef EXPERIMENTAL_DCC
3595 /* The ACL can specify where rejections are to be logged, possibly
3596 nowhere. The default is main and reject logs. */
3598 if (log_reject_target != 0)
3599 log_write(0, log_reject_target, "F=<%s> rejected by non-SMTP ACL: %s",
3600 sender_address, log_msg);
3602 if (user_msg == NULL) user_msg = US"local configuration problem";
3603 if (smtp_batched_input)
3605 moan_smtp_batch(NULL, "%d %s", 550, user_msg);
3606 /* Does not return */
3610 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3611 give_local_error(ERRMESS_LOCAL_ACL, user_msg,
3612 US"message rejected by non-SMTP ACL: ", error_rc, data_file,
3614 /* Does not return */
3617 add_acl_headers(ACL_WHERE_NOTSMTP, US"non-SMTP");
3621 /* The applicable ACLs have been run */
3623 if (deliver_freeze) frozen_by = US"ACL"; /* for later logging */
3624 if (queue_only_policy) queued_by = US"ACL";
3627 #ifdef WITH_CONTENT_SCAN
3631 #ifdef EXPERIMENTAL_DCC
3636 /* The final check on the message is to run the scan_local() function. The
3637 version supplied with Exim always accepts, but this is a hook for sysadmins to
3638 supply their own checking code. The local_scan() function is run even when all
3639 the recipients have been discarded. */
3640 /*XXS could we avoid this for the standard case, given that few people will use it? */
3642 lseek(data_fd, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3644 /* Arrange to catch crashes in local_scan(), so that the -D file gets
3645 deleted, and the incident gets logged. */
3647 os_non_restarting_signal(SIGSEGV, local_scan_crash_handler);
3648 os_non_restarting_signal(SIGFPE, local_scan_crash_handler);
3649 os_non_restarting_signal(SIGILL, local_scan_crash_handler);
3650 os_non_restarting_signal(SIGBUS, local_scan_crash_handler);
3652 DEBUG(D_receive) debug_printf("calling local_scan(); timeout=%d\n",
3653 local_scan_timeout);
3654 local_scan_data = NULL;
3656 os_non_restarting_signal(SIGALRM, local_scan_timeout_handler);
3657 if (local_scan_timeout > 0) alarm(local_scan_timeout);
3658 rc = local_scan(data_fd, &local_scan_data);
3660 os_non_restarting_signal(SIGALRM, sigalrm_handler);
3662 enable_dollar_recipients = FALSE;
3664 store_pool = POOL_MAIN; /* In case changed */
3665 DEBUG(D_receive) debug_printf("local_scan() returned %d %s\n", rc,
3668 os_non_restarting_signal(SIGSEGV, SIG_DFL);
3669 os_non_restarting_signal(SIGFPE, SIG_DFL);
3670 os_non_restarting_signal(SIGILL, SIG_DFL);
3671 os_non_restarting_signal(SIGBUS, SIG_DFL);
3673 /* The length check is paranoia against some runaway code, and also because
3674 (for a success return) lines in the spool file are read into big_buffer. */
3676 if (local_scan_data != NULL)
3678 int len = Ustrlen(local_scan_data);
3679 if (len > LOCAL_SCAN_MAX_RETURN) len = LOCAL_SCAN_MAX_RETURN;
3680 local_scan_data = string_copyn(local_scan_data, len);
3683 if (rc == LOCAL_SCAN_ACCEPT_FREEZE)
3685 if (!deliver_freeze) /* ACL might have already frozen */
3687 deliver_freeze = TRUE;
3688 deliver_frozen_at = time(NULL);
3689 frozen_by = US"local_scan()";
3691 rc = LOCAL_SCAN_ACCEPT;
3693 else if (rc == LOCAL_SCAN_ACCEPT_QUEUE)
3695 if (!queue_only_policy) /* ACL might have already queued */
3697 queue_only_policy = TRUE;
3698 queued_by = US"local_scan()";
3700 rc = LOCAL_SCAN_ACCEPT;
3703 /* Message accepted: remove newlines in local_scan_data because otherwise
3704 the spool file gets corrupted. Ensure that all recipients are qualified. */
3706 if (rc == LOCAL_SCAN_ACCEPT)
3708 if (local_scan_data != NULL)
3711 for (s = local_scan_data; *s != 0; s++) if (*s == '\n') *s = ' ';
3713 for (i = 0; i < recipients_count; i++)
3715 recipient_item *r = recipients_list + i;
3716 r->address = rewrite_address_qualify(r->address, TRUE);
3717 if (r->errors_to != NULL)
3718 r->errors_to = rewrite_address_qualify(r->errors_to, TRUE);
3720 if (recipients_count == 0 && blackholed_by == NULL)
3721 blackholed_by = US"local_scan";
3724 /* Message rejected: newlines permitted in local_scan_data to generate
3725 multiline SMTP responses. */
3729 uschar *istemp = US"";
3733 errmsg = local_scan_data;
3735 Uunlink(spool_name); /* Cancel this message */
3739 log_write(0, LOG_MAIN, "invalid return %d from local_scan(). Temporary "
3740 "rejection given", rc);
3743 case LOCAL_SCAN_REJECT_NOLOGHDR:
3744 BIT_CLEAR(log_selector, log_selector_size, Li_rejected_header);
3747 case LOCAL_SCAN_REJECT:
3748 smtp_code = US"550";
3749 if (!errmsg) errmsg = US"Administrative prohibition";
3752 case LOCAL_SCAN_TEMPREJECT_NOLOGHDR:
3753 BIT_CLEAR(log_selector, log_selector_size, Li_rejected_header);
3756 case LOCAL_SCAN_TEMPREJECT:
3758 smtp_code = US"451";
3759 if (!errmsg) errmsg = US"Temporary local problem";
3760 istemp = US"temporarily ";
3764 g = string_append(NULL, 2, US"F=",
3765 sender_address[0] == 0 ? US"<>" : sender_address);
3766 g = add_host_info_for_log(g);
3768 log_write(0, LOG_MAIN|LOG_REJECT, "%s %srejected by local_scan(): %.256s",
3769 string_from_gstring(g), istemp, string_printing(errmsg));
3773 if (!smtp_batched_input)
3775 smtp_respond(smtp_code, 3, TRUE, errmsg);
3776 message_id[0] = 0; /* Indicate no message accepted */
3777 smtp_reply = US""; /* Indicate reply already sent */
3778 goto TIDYUP; /* Skip to end of function */
3782 moan_smtp_batch(NULL, "%s %s", smtp_code, errmsg);
3783 /* Does not return */
3788 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3789 give_local_error(ERRMESS_LOCAL_SCAN, errmsg,
3790 US"message rejected by local scan code: ", error_rc, data_file,
3792 /* Does not return */
3796 /* Reset signal handlers to ignore signals that previously would have caused
3797 the message to be abandoned. */
3799 signal(SIGTERM, SIG_IGN);
3800 signal(SIGINT, SIG_IGN);
3803 /* Ensure the first time flag is set in the newly-received message. */
3805 deliver_firsttime = TRUE;
3807 #ifdef EXPERIMENTAL_BRIGHTMAIL
3809 { /* rewind data file */
3810 lseek(data_fd, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3811 bmi_verdicts = bmi_process_message(header_list, data_fd);
3815 /* Update the timestamp in our Received: header to account for any time taken by
3816 an ACL or by local_scan(). The new time is the time that all reception
3817 processing is complete. */
3819 timestamp = expand_string(US"${tod_full}");
3820 tslen = Ustrlen(timestamp);
3822 memcpy(received_header->text + received_header->slen - tslen - 1,
3825 /* In MUA wrapper mode, ignore queueing actions set by ACL or local_scan() */
3829 deliver_freeze = FALSE;
3830 queue_only_policy = FALSE;
3833 /* Keep the data file open until we have written the header file, in order to
3834 hold onto the lock. In a -bh run, or if the message is to be blackholed, we
3835 don't write the header file, and we unlink the data file. If writing the header
3836 file fails, we have failed to accept this message. */
3838 if (host_checking || blackholed_by != NULL)
3841 Uunlink(spool_name);
3842 msg_size = 0; /* Compute size for log line */
3843 for (h = header_list; h != NULL; h = h->next)
3844 if (h->type != '*') msg_size += h->slen;
3847 /* Write the -H file */
3850 if ((msg_size = spool_write_header(message_id, SW_RECEIVING, &errmsg)) < 0)
3852 log_write(0, LOG_MAIN, "Message abandoned: %s", errmsg);
3853 Uunlink(spool_name); /* Lose the data file */
3857 smtp_reply = US"451 Error in writing spool file";
3858 message_id[0] = 0; /* Indicate no message accepted */
3863 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3864 give_local_error(ERRMESS_IOERR, errmsg, US"", error_rc, data_file,
3866 /* Does not return */
3871 /* The message has now been successfully received. */
3873 receive_messagecount++;
3875 /* In SMTP sessions we may receive several in one connection. After each one,
3876 we wait for the clock to tick at the level of message-id granularity. This is
3877 so that the combination of time+pid is unique, even on systems where the pid
3878 can be re-used within our time interval. We can't shorten the interval without
3879 re-designing the message-id. See comments above where the message id is
3880 created. This is Something For The Future. */
3882 message_id_tv.tv_usec = (message_id_tv.tv_usec/id_resolution) * id_resolution;
3883 exim_wait_tick(&message_id_tv, id_resolution);
3885 /* Add data size to written header size. We do not count the initial file name
3886 that is in the file, but we do add one extra for the notional blank line that
3887 precedes the data. This total differs from message_size in that it include the
3888 added Received: header and any other headers that got created locally. */
3891 fstat(data_fd, &statbuf);
3893 msg_size += statbuf.st_size - SPOOL_DATA_START_OFFSET + 1;
3895 /* Generate a "message received" log entry. We do this by building up a dynamic
3896 string as required. Since we commonly want to add two items at a time, use a
3897 macro to simplify the coding. We log the arrival of a new message while the
3898 file is still locked, just in case the machine is *really* fast, and delivers
3899 it first! Include any message id that is in the message - since the syntax of a
3900 message id is actually an addr-spec, we can use the parse routine to canonicalize
3903 g = string_get(256);
3905 g = string_append(g, 2,
3906 fake_response == FAIL ? US"(= " : US"<= ",
3907 sender_address[0] == 0 ? US"<>" : sender_address);
3908 if (message_reference)
3909 g = string_append(g, 2, US" R=", message_reference);
3911 g = add_host_info_for_log(g);
3914 if (LOGGING(tls_cipher) && tls_in.cipher)
3915 g = string_append(g, 2, US" X=", tls_in.cipher);
3916 if (LOGGING(tls_certificate_verified) && tls_in.cipher)
3917 g = string_append(g, 2, US" CV=", tls_in.certificate_verified ? "yes":"no");
3918 if (LOGGING(tls_peerdn) && tls_in.peerdn)
3919 g = string_append(g, 3, US" DN=\"", string_printing(tls_in.peerdn), US"\"");
3920 if (LOGGING(tls_sni) && tls_in.sni)
3921 g = string_append(g, 3, US" SNI=\"", string_printing(tls_in.sni), US"\"");
3924 if (sender_host_authenticated)
3926 g = string_append(g, 2, US" A=", sender_host_authenticated);
3927 if (authenticated_id)
3929 g = string_append(g, 2, US":", authenticated_id);
3930 if (LOGGING(smtp_mailauth) && authenticated_sender)
3931 g = string_append(g, 2, US":", authenticated_sender);
3935 #ifndef DISABLE_PRDR
3937 g = string_catn(g, US" PRDR", 5);
3940 #ifdef SUPPORT_PROXY
3941 if (proxy_session && LOGGING(proxy))
3942 g = string_append(g, 2, US" PRX=", proxy_local_address);
3945 if (chunking_state > CHUNKING_OFFERED)
3946 g = string_catn(g, US" K", 2);
3948 sprintf(CS big_buffer, "%d", msg_size);
3949 g = string_append(g, 2, US" S=", big_buffer);
3951 /* log 8BITMIME mode announced in MAIL_FROM
3955 if (LOGGING(8bitmime))
3957 sprintf(CS big_buffer, "%d", body_8bitmime);
3958 g = string_append(g, 2, US" M8S=", big_buffer);
3961 #ifndef DISABLE_DKIM
3962 if (LOGGING(dkim) && dkim_verify_overall)
3963 g = string_append(g, 2, US" DKIM=", dkim_verify_overall);
3964 # ifdef EXPERIMENTAL_ARC
3965 if (LOGGING(dkim) && arc_state && Ustrcmp(arc_state, "pass") == 0)
3966 g = string_catn(g, US" ARC", 4);
3970 if (LOGGING(receive_time))
3971 g = string_append(g, 2, US" RT=", string_timediff(&received_time_taken));
3974 g = string_append(g, 2, US" Q=", queue_name);
3976 /* If an addr-spec in a message-id contains a quoted string, it can contain
3977 any characters except " \ and CR and so in particular it can contain NL!
3978 Therefore, make sure we use a printing-characters only version for the log.
3979 Also, allow for domain literals in the message id. */
3984 BOOL save_allow_domain_literals = allow_domain_literals;
3985 allow_domain_literals = TRUE;
3986 old_id = parse_extract_address(Ustrchr(msgid_header->text, ':') + 1,
3987 &errmsg, &start, &end, &domain, FALSE);
3988 allow_domain_literals = save_allow_domain_literals;
3990 g = string_append(g, 2, US" id=", string_printing(old_id));
3993 /* If subject logging is turned on, create suitable printing-character
3994 text. By expanding $h_subject: we make use of the MIME decoding. */
3996 if (LOGGING(subject) && subject_header)
3999 uschar *p = big_buffer;
4000 uschar *ss = expand_string(US"$h_subject:");
4002 /* Backslash-quote any double quotes or backslashes so as to make a
4003 a C-like string, and turn any non-printers into escape sequences. */
4006 if (*ss != 0) for (i = 0; i < 100 && ss[i] != 0; i++)
4008 if (ss[i] == '\"' || ss[i] == '\\') *p++ = '\\';
4013 g = string_append(g, 2, US" T=", string_printing(big_buffer));
4016 /* Terminate the string: string_cat() and string_append() leave room, but do
4017 not put the zero in. */
4019 (void) string_from_gstring(g);
4021 /* Create a message log file if message logs are being used and this message is
4022 not blackholed. Write the reception stuff to it. We used to leave message log
4023 creation until the first delivery, but this has proved confusing for some
4026 if (message_logs && !blackholed_by)
4030 spool_name = spool_fname(US"msglog", message_subdir, message_id, US"");
4032 if ( (fd = Uopen(spool_name, O_WRONLY|O_APPEND|O_CREAT, SPOOL_MODE)) < 0
4036 (void)directory_make(spool_directory,
4037 spool_sname(US"msglog", message_subdir),
4038 MSGLOG_DIRECTORY_MODE, TRUE);
4039 fd = Uopen(spool_name, O_WRONLY|O_APPEND|O_CREAT, SPOOL_MODE);
4043 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't open message log %s: %s",
4044 spool_name, strerror(errno));
4047 FILE *message_log = fdopen(fd, "a");
4048 if (message_log == NULL)
4050 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't fdopen message log %s: %s",
4051 spool_name, strerror(errno));
4056 uschar *now = tod_stamp(tod_log);
4057 fprintf(message_log, "%s Received from %s\n", now, g->s+3);
4058 if (deliver_freeze) fprintf(message_log, "%s frozen by %s\n", now,
4060 if (queue_only_policy) fprintf(message_log,
4061 "%s no immediate delivery: queued%s%s by %s\n", now,
4062 *queue_name ? " in " : "", *queue_name ? CS queue_name : "",
4064 (void)fclose(message_log);
4069 /* Everything has now been done for a successful message except logging its
4070 arrival, and outputting an SMTP response. While writing to the log, set a flag
4071 to cause a call to receive_bomb_out() if the log cannot be opened. */
4073 receive_call_bombout = TRUE;
4075 /* Before sending an SMTP response in a TCP/IP session, we check to see if the
4076 connection has gone away. This can only be done if there is no unconsumed input
4077 waiting in the local input buffer. We can test for this by calling
4078 receive_smtp_buffered(). RFC 2920 (pipelining) explicitly allows for additional
4079 input to be sent following the final dot, so the presence of following input is
4082 If the connection is still present, but there is no unread input for the
4083 socket, the result of a select() call will be zero. If, however, the connection
4084 has gone away, or if there is pending input, the result of select() will be
4085 non-zero. The two cases can be distinguished by trying to read the next input
4086 character. If we succeed, we can unread it so that it remains in the local
4087 buffer for handling later. If not, the connection has been lost.
4089 Of course, since TCP/IP is asynchronous, there is always a chance that the
4090 connection will vanish between the time of this test and the sending of the
4091 response, but the chance of this happening should be small. */
4093 if (smtp_input && sender_host_address != NULL && !sender_host_notsocket &&
4094 !receive_smtp_buffered())
4097 fd_set select_check;
4098 FD_ZERO(&select_check);
4099 FD_SET(fileno(smtp_in), &select_check);
4103 if (select(fileno(smtp_in) + 1, &select_check, NULL, NULL, &tv) != 0)
4105 int c = (receive_getc)(GETC_BUFFER_UNLIMITED);
4106 if (c != EOF) (receive_ungetc)(c); else
4108 smtp_notquit_exit(US"connection-lost", NULL, NULL);
4109 smtp_reply = US""; /* No attempt to send a response */
4110 smtp_yield = FALSE; /* Nothing more on this connection */
4112 /* Re-use the log line workspace */
4115 g = string_cat(g, US"SMTP connection lost after final dot");
4116 g = add_host_info_for_log(g);
4117 log_write(0, LOG_MAIN, "%s", string_from_gstring(g));
4119 /* Delete the files for this aborted message. */
4121 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-D"));
4122 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-H"));
4123 Uunlink(spool_fname(US"msglog", message_subdir, message_id, US""));
4130 /* The connection has not gone away; we really are going to take responsibility
4131 for this message. */
4133 /* Cutthrough - had sender last-dot; assume we've sent (or bufferred) all
4136 Send dot onward. If accepted, wipe the spooled files, log as delivered and accept
4137 the sender's dot (below).
4138 If rejected: copy response to sender, wipe the spooled files, log appropriately.
4139 If temp-reject: normally accept to sender, keep the spooled file - unless defer=pass
4140 in which case pass temp-reject back to initiator and dump the files.
4142 Having the normal spool files lets us do data-filtering, and store/forward on temp-reject.
4144 XXX We do not handle queue-only, freezing, or blackholes.
4146 if(cutthrough.fd >= 0 && cutthrough.delivery)
4148 uschar * msg = cutthrough_finaldot(); /* Ask the target system to accept the message */
4149 /* Logging was done in finaldot() */
4152 case '2': /* Accept. Do the same to the source; dump any spoolfiles. */
4153 cutthrough_done = ACCEPTED;
4154 break; /* message_id needed for SMTP accept below */
4156 case '4': /* Temp-reject. Keep spoolfiles and accept, unless defer-pass mode.
4157 ... for which, pass back the exact error */
4158 if (cutthrough.defer_pass) smtp_reply = string_copy_malloc(msg);
4161 default: /* Unknown response, or error. Treat as temp-reject. */
4162 cutthrough_done = TMP_REJ; /* Avoid the usual immediate delivery attempt */
4163 break; /* message_id needed for SMTP accept below */
4165 case '5': /* Perm-reject. Do the same to the source. Dump any spoolfiles */
4166 smtp_reply = string_copy_malloc(msg); /* Pass on the exact error */
4167 cutthrough_done = PERM_REJ;
4172 #ifndef DISABLE_PRDR
4173 if(!smtp_reply || prdr_requested)
4178 log_write(0, LOG_MAIN |
4179 (LOGGING(received_recipients)? LOG_RECIPIENTS : 0) |
4180 (LOGGING(received_sender)? LOG_SENDER : 0),
4183 /* Log any control actions taken by an ACL or local_scan(). */
4185 if (deliver_freeze) log_write(0, LOG_MAIN, "frozen by %s", frozen_by);
4186 if (queue_only_policy) log_write(L_delay_delivery, LOG_MAIN,
4187 "no immediate delivery: queued%s%s by %s",
4188 *queue_name ? " in " : "", *queue_name ? CS queue_name : "",
4191 receive_call_bombout = FALSE;
4193 store_reset(g); /* The store for the main log message can be reused */
4195 /* If the message is frozen, and freeze_tell is set, do the telling. */
4197 if (deliver_freeze && freeze_tell != NULL && freeze_tell[0] != 0)
4199 moan_tell_someone(freeze_tell, NULL, US"Message frozen on arrival",
4200 "Message %s was frozen on arrival by %s.\nThe sender is <%s>.\n",
4201 message_id, frozen_by, sender_address);
4205 /* Either a message has been successfully received and written to the two spool
4206 files, or an error in writing the spool has occurred for an SMTP message, or
4207 an SMTP message has been rejected for policy reasons. (For a non-SMTP message
4208 we will have already given up because there's no point in carrying on!) In
4209 either event, we must now close (and thereby unlock) the data file. In the
4210 successful case, this leaves the message on the spool, ready for delivery. In
4211 the error case, the spool file will be deleted. Then tidy up store, interact
4212 with an SMTP call if necessary, and return.
4214 A fflush() was done earlier in the expectation that any write errors on the
4215 data file will be flushed(!) out thereby. Nevertheless, it is theoretically
4216 possible for fclose() to fail - but what to do? What has happened to the lock
4221 process_info[process_info_len] = 0; /* Remove message id */
4222 if (data_file != NULL) (void)fclose(data_file); /* Frees the lock */
4224 /* Now reset signal handlers to their defaults */
4226 signal(SIGTERM, SIG_DFL);
4227 signal(SIGINT, SIG_DFL);
4229 /* Tell an SMTP caller the state of play, and arrange to return the SMTP return
4230 value, which defaults TRUE - meaning there may be more incoming messages from
4231 this connection. For non-SMTP callers (where there is only ever one message),
4232 the default is FALSE. */
4238 /* Handle interactive SMTP callers. After several kinds of error, smtp_reply
4239 is set to the response that should be sent. When it is NULL, we generate
4240 default responses. After an ACL error or local_scan() error, the response has
4241 already been sent, and smtp_reply is an empty string to indicate this. */
4243 if (!smtp_batched_input)
4247 if (fake_response != OK)
4248 smtp_respond(fake_response == DEFER ? US"450" : US"550",
4249 3, TRUE, fake_response_text);
4251 /* An OK response is required; use "message" text if present. */
4255 uschar *code = US"250";
4257 smtp_message_code(&code, &len, &user_msg, NULL, TRUE);
4258 smtp_respond(code, len, TRUE, user_msg);
4261 /* Default OK response */
4263 else if (chunking_state > CHUNKING_OFFERED)
4265 smtp_printf("250- %u byte chunk, total %d\r\n250 OK id=%s\r\n", FALSE,
4266 chunking_datasize, message_size+message_linecount, message_id);
4267 chunking_state = CHUNKING_OFFERED;
4270 smtp_printf("250 OK id=%s\r\n", FALSE, message_id);
4274 "\n**** SMTP testing: that is not a real message id!\n\n");
4277 /* smtp_reply is set non-empty */
4279 else if (smtp_reply[0] != 0)
4280 if (fake_response != OK && (smtp_reply[0] == '2'))
4281 smtp_respond((fake_response == DEFER)? US"450" : US"550", 3, TRUE,
4282 fake_response_text);
4284 smtp_printf("%.1024s\r\n", FALSE, smtp_reply);
4286 switch (cutthrough_done)
4289 log_write(0, LOG_MAIN, "Completed");/* Delivery was done */
4291 /* Delete spool files */
4292 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-D"));
4293 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-H"));
4294 Uunlink(spool_fname(US"msglog", message_subdir, message_id, US""));
4298 if (cutthrough.defer_pass)
4300 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-D"));
4301 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-H"));
4302 Uunlink(spool_fname(US"msglog", message_subdir, message_id, US""));
4307 if (cutthrough_done != NOT_TRIED)
4309 message_id[0] = 0; /* Prevent a delivery from starting */
4310 cutthrough.delivery = cutthrough.callout_hold_only = FALSE;
4311 cutthrough.defer_pass = FALSE;
4315 /* For batched SMTP, generate an error message on failure, and do
4316 nothing on success. The function moan_smtp_batch() does not return -
4317 it exits from the program with a non-zero return code. */
4319 else if (smtp_reply)
4320 moan_smtp_batch(NULL, "%s", smtp_reply);
4324 /* If blackholing, we can immediately log this message's sad fate. The data
4325 file has already been unlinked, and the header file was never written to disk.
4326 We must now indicate that nothing was received, to prevent a delivery from
4331 const uschar *detail = local_scan_data
4332 ? string_printing(local_scan_data)
4333 : string_sprintf("(%s discarded recipients)", blackholed_by);
4334 log_write(0, LOG_MAIN, "=> blackhole %s%s", detail, blackhole_log_msg);
4335 log_write(0, LOG_MAIN, "Completed");
4339 /* Reset headers so that logging of rejects for a subsequent message doesn't
4340 include them. It is also important to set header_last = NULL before exiting
4341 from this function, as this prevents certain rewrites that might happen during
4342 subsequent verifying (of another incoming message) from trying to add headers
4343 when they shouldn't. */
4345 header_list = header_last = NULL;
4347 return yield; /* TRUE if more messages (SMTP only) */
4350 /* End of receive.c */