1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2018 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* The main code for delivering a message. */
12 #include "transports/smtp.h"
17 /* Data block for keeping track of subprocesses for parallel remote
20 typedef struct pardata {
21 address_item *addrlist; /* chain of addresses */
22 address_item *addr; /* next address data expected for */
23 pid_t pid; /* subprocess pid */
24 int fd; /* pipe fd for getting result from subprocess */
25 int transport_count; /* returned transport count value */
26 BOOL done; /* no more data needed */
27 uschar *msg; /* error message */
28 uschar *return_path; /* return_path for these addresses */
31 /* Values for the process_recipients variable */
33 enum { RECIP_ACCEPT, RECIP_IGNORE, RECIP_DEFER,
34 RECIP_FAIL, RECIP_FAIL_FILTER, RECIP_FAIL_TIMEOUT,
37 /* Mutually recursive functions for marking addresses done. */
39 static void child_done(address_item *, uschar *);
40 static void address_done(address_item *, uschar *);
42 /* Table for turning base-62 numbers into binary */
44 static uschar tab62[] =
45 {0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, /* 0-9 */
46 0,10,11,12,13,14,15,16,17,18,19,20, /* A-K */
47 21,22,23,24,25,26,27,28,29,30,31,32, /* L-W */
48 33,34,35, 0, 0, 0, 0, 0, /* X-Z */
49 0,36,37,38,39,40,41,42,43,44,45,46, /* a-k */
50 47,48,49,50,51,52,53,54,55,56,57,58, /* l-w */
54 /*************************************************
55 * Local static variables *
56 *************************************************/
58 /* addr_duplicate is global because it needs to be seen from the Envelope-To
61 static address_item *addr_defer = NULL;
62 static address_item *addr_failed = NULL;
63 static address_item *addr_fallback = NULL;
64 static address_item *addr_local = NULL;
65 static address_item *addr_new = NULL;
66 static address_item *addr_remote = NULL;
67 static address_item *addr_route = NULL;
68 static address_item *addr_succeed = NULL;
69 static address_item *addr_dsntmp = NULL;
70 static address_item *addr_senddsn = NULL;
72 static FILE *message_log = NULL;
73 static BOOL update_spool;
74 static BOOL remove_journal;
75 static int parcount = 0;
76 static pardata *parlist = NULL;
77 static int return_count;
78 static uschar *frozen_info = US"";
79 static uschar *used_return_path = NULL;
83 /*************************************************
84 * read as much as requested *
85 *************************************************/
87 /* The syscall read(2) doesn't always returns as much as we want. For
88 several reasons it might get less. (Not talking about signals, as syscalls
89 are restartable). When reading from a network or pipe connection the sender
90 might send in smaller chunks, with delays between these chunks. The read(2)
91 may return such a chunk.
93 The more the writer writes and the smaller the pipe between write and read is,
94 the more we get the chance of reading leass than requested. (See bug 2130)
96 This function read(2)s until we got all the data we *requested*.
98 Note: This function may block. Use it only if you're sure about the
99 amount of data you will get.
102 fd the file descriptor to read from
103 buffer pointer to a buffer of size len
104 len the requested(!) amount of bytes
106 Returns: the amount of bytes read
109 readn(int fd, void * buffer, size_t len)
111 void * next = buffer;
112 void * end = buffer + len;
116 ssize_t got = read(fd, next, end - next);
118 /* I'm not sure if there are signals that can interrupt us,
119 for now I assume the worst */
120 if (got == -1 && errno == EINTR) continue;
121 if (got <= 0) return next - buffer;
129 /*************************************************
130 * Make a new address item *
131 *************************************************/
133 /* This function gets the store and initializes with default values. The
134 transport_return value defaults to DEFER, so that any unexpected failure to
135 deliver does not wipe out the message. The default unique string is set to a
136 copy of the address, so that its domain can be lowercased.
139 address the RFC822 address string
140 copy force a copy of the address
142 Returns: a pointer to an initialized address_item
146 deliver_make_addr(uschar *address, BOOL copy)
148 address_item *addr = store_get(sizeof(address_item));
149 *addr = address_defaults;
150 if (copy) address = string_copy(address);
151 addr->address = address;
152 addr->unique = string_copy(address);
159 /*************************************************
160 * Set expansion values for an address *
161 *************************************************/
163 /* Certain expansion variables are valid only when handling an address or
164 address list. This function sets them up or clears the values, according to its
168 addr the address in question, or NULL to clear values
173 deliver_set_expansions(address_item *addr)
177 const uschar ***p = address_expansions;
178 while (*p) **p++ = NULL;
182 /* Exactly what gets set depends on whether there is one or more addresses, and
183 what they contain. These first ones are always set, taking their values from
184 the first address. */
186 if (!addr->host_list)
188 deliver_host = deliver_host_address = US"";
189 deliver_host_port = 0;
193 deliver_host = addr->host_list->name;
194 deliver_host_address = addr->host_list->address;
195 deliver_host_port = addr->host_list->port;
198 deliver_recipients = addr;
199 deliver_address_data = addr->prop.address_data;
200 deliver_domain_data = addr->prop.domain_data;
201 deliver_localpart_data = addr->prop.localpart_data;
203 /* These may be unset for multiple addresses */
205 deliver_domain = addr->domain;
206 self_hostname = addr->self_hostname;
208 #ifdef EXPERIMENTAL_BRIGHTMAIL
209 bmi_deliver = 1; /* deliver by default */
210 bmi_alt_location = NULL;
211 bmi_base64_verdict = NULL;
212 bmi_base64_tracker_verdict = NULL;
215 /* If there's only one address we can set everything. */
219 address_item *addr_orig;
221 deliver_localpart = addr->local_part;
222 deliver_localpart_prefix = addr->prefix;
223 deliver_localpart_suffix = addr->suffix;
225 for (addr_orig = addr; addr_orig->parent; addr_orig = addr_orig->parent) ;
226 deliver_domain_orig = addr_orig->domain;
228 /* Re-instate any prefix and suffix in the original local part. In all
229 normal cases, the address will have a router associated with it, and we can
230 choose the caseful or caseless version accordingly. However, when a system
231 filter sets up a pipe, file, or autoreply delivery, no router is involved.
232 In this case, though, there won't be any prefix or suffix to worry about. */
234 deliver_localpart_orig = !addr_orig->router
235 ? addr_orig->local_part
236 : addr_orig->router->caseful_local_part
237 ? addr_orig->cc_local_part
238 : addr_orig->lc_local_part;
240 /* If there's a parent, make its domain and local part available, and if
241 delivering to a pipe or file, or sending an autoreply, get the local
242 part from the parent. For pipes and files, put the pipe or file string
243 into address_pipe and address_file. */
247 deliver_domain_parent = addr->parent->domain;
248 deliver_localpart_parent = !addr->parent->router
249 ? addr->parent->local_part
250 : addr->parent->router->caseful_local_part
251 ? addr->parent->cc_local_part
252 : addr->parent->lc_local_part;
254 /* File deliveries have their own flag because they need to be picked out
255 as special more often. */
257 if (testflag(addr, af_pfr))
259 if (testflag(addr, af_file)) address_file = addr->local_part;
260 else if (deliver_localpart[0] == '|') address_pipe = addr->local_part;
261 deliver_localpart = addr->parent->local_part;
262 deliver_localpart_prefix = addr->parent->prefix;
263 deliver_localpart_suffix = addr->parent->suffix;
267 #ifdef EXPERIMENTAL_BRIGHTMAIL
268 /* Set expansion variables related to Brightmail AntiSpam */
269 bmi_base64_verdict = bmi_get_base64_verdict(deliver_localpart_orig, deliver_domain_orig);
270 bmi_base64_tracker_verdict = bmi_get_base64_tracker_verdict(bmi_base64_verdict);
271 /* get message delivery status (0 - don't deliver | 1 - deliver) */
272 bmi_deliver = bmi_get_delivery_status(bmi_base64_verdict);
273 /* if message is to be delivered, get eventual alternate location */
274 if (bmi_deliver == 1)
275 bmi_alt_location = bmi_get_alt_location(bmi_base64_verdict);
280 /* For multiple addresses, don't set local part, and leave the domain and
281 self_hostname set only if it is the same for all of them. It is possible to
282 have multiple pipe and file addresses, but only when all addresses have routed
283 to the same pipe or file. */
288 if (testflag(addr, af_pfr))
290 if (testflag(addr, af_file)) address_file = addr->local_part;
291 else if (addr->local_part[0] == '|') address_pipe = addr->local_part;
293 for (addr2 = addr->next; addr2; addr2 = addr2->next)
295 if (deliver_domain && Ustrcmp(deliver_domain, addr2->domain) != 0)
296 deliver_domain = NULL;
298 && ( !addr2->self_hostname
299 || Ustrcmp(self_hostname, addr2->self_hostname) != 0
301 self_hostname = NULL;
302 if (!deliver_domain && !self_hostname) break;
310 /*************************************************
311 * Open a msglog file *
312 *************************************************/
314 /* This function is used both for normal message logs, and for files in the
315 msglog directory that are used to catch output from pipes. Try to create the
316 directory if it does not exist. From release 4.21, normal message logs should
317 be created when the message is received.
319 Called from deliver_message(), can be operating as root.
322 filename the file name
323 mode the mode required
324 error used for saying what failed
326 Returns: a file descriptor, or -1 (with errno set)
330 open_msglog_file(uschar *filename, int mode, uschar **error)
334 for (i = 2; i > 0; i--)
343 O_WRONLY|O_APPEND|O_CREAT, mode);
346 /* Set the close-on-exec flag and change the owner to the exim uid/gid (this
347 function is called as root). Double check the mode, because the group setting
348 doesn't always get set automatically. */
351 (void)fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
353 if (fchown(fd, exim_uid, exim_gid) < 0)
358 if (fchmod(fd, mode) < 0)
368 (void)directory_make(spool_directory,
369 spool_sname(US"msglog", message_subdir),
370 MSGLOG_DIRECTORY_MODE, TRUE);
380 /*************************************************
381 * Write to msglog if required *
382 *************************************************/
384 /* Write to the message log, if configured. This function may also be called
388 format a string format
394 deliver_msglog(const char *format, ...)
397 if (!message_logs) return;
398 va_start(ap, format);
399 vfprintf(message_log, format, ap);
407 /*************************************************
408 * Replicate status for batch *
409 *************************************************/
411 /* When a transport handles a batch of addresses, it may treat them
412 individually, or it may just put the status in the first one, and return FALSE,
413 requesting that the status be copied to all the others externally. This is the
414 replication function. As well as the status, it copies the transport pointer,
415 which may have changed if appendfile passed the addresses on to a different
418 Argument: pointer to the first address in a chain
423 replicate_status(address_item *addr)
426 for (addr2 = addr->next; addr2; addr2 = addr2->next)
428 addr2->transport = addr->transport;
429 addr2->transport_return = addr->transport_return;
430 addr2->basic_errno = addr->basic_errno;
431 addr2->more_errno = addr->more_errno;
432 addr2->delivery_usec = addr->delivery_usec;
433 addr2->special_action = addr->special_action;
434 addr2->message = addr->message;
435 addr2->user_message = addr->user_message;
441 /*************************************************
442 * Compare lists of hosts *
443 *************************************************/
445 /* This function is given two pointers to chains of host items, and it yields
446 TRUE if the lists refer to the same hosts in the same order, except that
448 (1) Multiple hosts with the same non-negative MX values are permitted to appear
449 in different orders. Round-robinning nameservers can cause this to happen.
451 (2) Multiple hosts with the same negative MX values less than MX_NONE are also
452 permitted to appear in different orders. This is caused by randomizing
455 This enables Exim to use a single SMTP transaction for sending to two entirely
456 different domains that happen to end up pointing at the same hosts.
459 one points to the first host list
460 two points to the second host list
462 Returns: TRUE if the lists refer to the same host set
466 same_hosts(host_item *one, host_item *two)
470 if (Ustrcmp(one->name, two->name) != 0)
473 host_item *end_one = one;
474 host_item *end_two = two;
476 /* Batch up only if there was no MX and the list was not randomized */
478 if (mx == MX_NONE) return FALSE;
480 /* Find the ends of the shortest sequence of identical MX values */
482 while ( end_one->next && end_one->next->mx == mx
483 && end_two->next && end_two->next->mx == mx)
485 end_one = end_one->next;
486 end_two = end_two->next;
489 /* If there aren't any duplicates, there's no match. */
491 if (end_one == one) return FALSE;
493 /* For each host in the 'one' sequence, check that it appears in the 'two'
494 sequence, returning FALSE if not. */
499 for (hi = two; hi != end_two->next; hi = hi->next)
500 if (Ustrcmp(one->name, hi->name) == 0) break;
501 if (hi == end_two->next) return FALSE;
502 if (one == end_one) break;
506 /* All the hosts in the 'one' sequence were found in the 'two' sequence.
507 Ensure both are pointing at the last host, and carry on as for equality. */
512 /* if the names matched but ports do not, mismatch */
513 else if (one->port != two->port)
522 /* True if both are NULL */
529 /*************************************************
530 * Compare header lines *
531 *************************************************/
533 /* This function is given two pointers to chains of header items, and it yields
534 TRUE if they are the same header texts in the same order.
537 one points to the first header list
538 two points to the second header list
540 Returns: TRUE if the lists refer to the same header set
544 same_headers(header_line *one, header_line *two)
546 for (;; one = one->next, two = two->next)
548 if (one == two) return TRUE; /* Includes the case where both NULL */
549 if (!one || !two) return FALSE;
550 if (Ustrcmp(one->text, two->text) != 0) return FALSE;
556 /*************************************************
557 * Compare string settings *
558 *************************************************/
560 /* This function is given two pointers to strings, and it returns
561 TRUE if they are the same pointer, or if the two strings are the same.
564 one points to the first string
565 two points to the second string
567 Returns: TRUE or FALSE
571 same_strings(uschar *one, uschar *two)
573 if (one == two) return TRUE; /* Includes the case where both NULL */
574 if (!one || !two) return FALSE;
575 return (Ustrcmp(one, two) == 0);
580 /*************************************************
581 * Compare uid/gid for addresses *
582 *************************************************/
584 /* This function is given a transport and two addresses. It yields TRUE if the
585 uid/gid/initgroups settings for the two addresses are going to be the same when
590 addr1 the first address
591 addr2 the second address
593 Returns: TRUE or FALSE
597 same_ugid(transport_instance *tp, address_item *addr1, address_item *addr2)
599 if ( !tp->uid_set && !tp->expand_uid
600 && !tp->deliver_as_creator
601 && ( testflag(addr1, af_uid_set) != testflag(addr2, af_gid_set)
602 || ( testflag(addr1, af_uid_set)
603 && ( addr1->uid != addr2->uid
604 || testflag(addr1, af_initgroups) != testflag(addr2, af_initgroups)
608 if ( !tp->gid_set && !tp->expand_gid
609 && ( testflag(addr1, af_gid_set) != testflag(addr2, af_gid_set)
610 || ( testflag(addr1, af_gid_set)
611 && addr1->gid != addr2->gid
621 /*************************************************
622 * Record that an address is complete *
623 *************************************************/
625 /* This function records that an address is complete. This is straightforward
626 for most addresses, where the unique address is just the full address with the
627 domain lower cased. For homonyms (addresses that are the same as one of their
628 ancestors) their are complications. Their unique addresses have \x\ prepended
629 (where x = 0, 1, 2...), so that de-duplication works correctly for siblings and
632 Exim used to record the unique addresses of homonyms as "complete". This,
633 however, fails when the pattern of redirection varies over time (e.g. if taking
634 unseen copies at only some times of day) because the prepended numbers may vary
635 from one delivery run to the next. This problem is solved by never recording
636 prepended unique addresses as complete. Instead, when a homonymic address has
637 actually been delivered via a transport, we record its basic unique address
638 followed by the name of the transport. This is checked in subsequent delivery
639 runs whenever an address is routed to a transport.
641 If the completed address is a top-level one (has no parent, which means it
642 cannot be homonymic) we also add the original address to the non-recipients
643 tree, so that it gets recorded in the spool file and therefore appears as
644 "done" in any spool listings. The original address may differ from the unique
645 address in the case of the domain.
647 Finally, this function scans the list of duplicates, marks as done any that
648 match this address, and calls child_done() for their ancestors.
651 addr address item that has been completed
652 now current time as a string
658 address_done(address_item *addr, uschar *now)
662 update_spool = TRUE; /* Ensure spool gets updated */
664 /* Top-level address */
668 tree_add_nonrecipient(addr->unique);
669 tree_add_nonrecipient(addr->address);
672 /* Homonymous child address */
674 else if (testflag(addr, af_homonym))
677 tree_add_nonrecipient(
678 string_sprintf("%s/%s", addr->unique + 3, addr->transport->name));
681 /* Non-homonymous child address */
683 else tree_add_nonrecipient(addr->unique);
685 /* Check the list of duplicate addresses and ensure they are now marked
688 for (dup = addr_duplicate; dup; dup = dup->next)
689 if (Ustrcmp(addr->unique, dup->unique) == 0)
691 tree_add_nonrecipient(dup->unique);
692 child_done(dup, now);
699 /*************************************************
700 * Decrease counts in parents and mark done *
701 *************************************************/
703 /* This function is called when an address is complete. If there is a parent
704 address, its count of children is decremented. If there are still other
705 children outstanding, the function exits. Otherwise, if the count has become
706 zero, address_done() is called to mark the parent and its duplicates complete.
707 Then loop for any earlier ancestors.
710 addr points to the completed address item
711 now the current time as a string, for writing to the message log
717 child_done(address_item *addr, uschar *now)
723 if (--addr->child_count > 0) return; /* Incomplete parent */
724 address_done(addr, now);
726 /* Log the completion of all descendents only when there is no ancestor with
727 the same original address. */
729 for (aa = addr->parent; aa; aa = aa->parent)
730 if (Ustrcmp(aa->address, addr->address) == 0) break;
733 deliver_msglog("%s %s: children all complete\n", now, addr->address);
734 DEBUG(D_deliver) debug_printf("%s: children all complete\n", addr->address);
740 /*************************************************
741 * Delivery logging support functions *
742 *************************************************/
744 /* The LOGGING() checks in d_log_interface() are complicated for backwards
745 compatibility. When outgoing interface logging was originally added, it was
746 conditional on just incoming_interface (which is off by default). The
747 outgoing_interface option is on by default to preserve this behaviour, but
748 you can enable incoming_interface and disable outgoing_interface to get I=
749 fields on incoming lines only.
753 addr The address to be logged
755 Returns: New value for s
759 d_log_interface(gstring * g)
761 if (LOGGING(incoming_interface) && LOGGING(outgoing_interface)
762 && sending_ip_address)
764 g = string_append(g, 2, US" I=[", sending_ip_address);
765 g = LOGGING(outgoing_port)
766 ? string_append(g, 2, US"]:", string_sprintf("%d", sending_port))
767 : string_catn(g, US"]", 1);
775 d_hostlog(gstring * g, address_item * addr)
777 host_item * h = addr->host_used;
779 g = string_append(g, 2, US" H=", h->name);
781 if (LOGGING(dnssec) && h->dnssec == DS_YES)
782 g = string_catn(g, US" DS", 3);
784 g = string_append(g, 3, US" [", h->address, US"]");
786 if (LOGGING(outgoing_port))
787 g = string_append(g, 2, US":", string_sprintf("%d", h->port));
790 if (LOGGING(proxy) && proxy_local_address)
792 g = string_append(g, 3, US" PRX=[", proxy_local_address, US"]");
793 if (LOGGING(outgoing_port))
794 g = string_append(g, 2, US":", string_sprintf("%d", proxy_local_port));
798 g = d_log_interface(g);
800 if (testflag(addr, af_tcp_fastopen))
801 g = string_catn(g, US" TFO", 4);
812 d_tlslog(gstring * s, address_item * addr)
814 if (LOGGING(tls_cipher) && addr->cipher)
815 s = string_append(s, 2, US" X=", addr->cipher);
816 if (LOGGING(tls_certificate_verified) && addr->cipher)
817 s = string_append(s, 2, US" CV=",
818 testflag(addr, af_cert_verified)
821 testflag(addr, af_dane_verified)
827 if (LOGGING(tls_peerdn) && addr->peerdn)
828 s = string_append(s, 3, US" DN=\"", string_printing(addr->peerdn), US"\"");
836 #ifndef DISABLE_EVENT
838 event_raise(uschar * action, const uschar * event, uschar * ev_data)
844 debug_printf("Event(%s): event_action=|%s| delivery_IP=%s\n",
846 action, deliver_host_address);
849 event_data = ev_data;
851 if (!(s = expand_string(action)) && *expand_string_message)
852 log_write(0, LOG_MAIN|LOG_PANIC,
853 "failed to expand event_action %s in %s: %s\n",
854 event, transport_name ? transport_name : US"main", expand_string_message);
856 event_name = event_data = NULL;
858 /* If the expansion returns anything but an empty string, flag for
859 the caller to modify his normal processing
864 debug_printf("Event(%s): event_action returned \"%s\"\n", event, s);
872 msg_event_raise(const uschar * event, const address_item * addr)
874 const uschar * save_domain = deliver_domain;
875 uschar * save_local = deliver_localpart;
876 const uschar * save_host = deliver_host;
877 const uschar * save_address = deliver_host_address;
878 const int save_port = deliver_host_port;
880 if (!addr->transport)
883 router_name = addr->router ? addr->router->name : NULL;
884 transport_name = addr->transport->name;
885 deliver_domain = addr->domain;
886 deliver_localpart = addr->local_part;
887 deliver_host = addr->host_used ? addr->host_used->name : NULL;
889 (void) event_raise(addr->transport->event_action, event,
891 || Ustrcmp(addr->transport->driver_name, "smtp") == 0
892 || Ustrcmp(addr->transport->driver_name, "lmtp") == 0
893 ? addr->message : NULL);
895 deliver_host_port = save_port;
896 deliver_host_address = save_address;
897 deliver_host = save_host;
898 deliver_localpart = save_local;
899 deliver_domain = save_domain;
900 router_name = transport_name = NULL;
902 #endif /*DISABLE_EVENT*/
906 /******************************************************************************/
909 /*************************************************
910 * Generate local prt for logging *
911 *************************************************/
913 /* This function is a subroutine for use in string_log_address() below.
916 addr the address being logged
917 yield the current dynamic buffer pointer
919 Returns: the new value of the buffer pointer
923 string_get_localpart(address_item * addr, gstring * yield)
928 if (testflag(addr, af_include_affixes) && s)
931 if (testflag(addr, af_utf8_downcvt))
932 s = string_localpart_utf8_to_alabel(s, NULL);
934 yield = string_cat(yield, s);
937 s = addr->local_part;
939 if (testflag(addr, af_utf8_downcvt))
940 s = string_localpart_utf8_to_alabel(s, NULL);
942 yield = string_cat(yield, s);
945 if (testflag(addr, af_include_affixes) && s)
948 if (testflag(addr, af_utf8_downcvt))
949 s = string_localpart_utf8_to_alabel(s, NULL);
951 yield = string_cat(yield, s);
958 /*************************************************
959 * Generate log address list *
960 *************************************************/
962 /* This function generates a list consisting of an address and its parents, for
963 use in logging lines. For saved onetime aliased addresses, the onetime parent
964 field is used. If the address was delivered by a transport with rcpt_include_
965 affixes set, the af_include_affixes bit will be set in the address. In that
966 case, we include the affixes here too.
969 g points to growing-string struct
970 addr bottom (ultimate) address
971 all_parents if TRUE, include all parents
972 success TRUE for successful delivery
974 Returns: a growable string in dynamic store
978 string_log_address(gstring * g,
979 address_item *addr, BOOL all_parents, BOOL success)
981 BOOL add_topaddr = TRUE;
982 address_item *topaddr;
984 /* Find the ultimate parent */
986 for (topaddr = addr; topaddr->parent; topaddr = topaddr->parent) ;
988 /* We start with just the local part for pipe, file, and reply deliveries, and
989 for successful local deliveries from routers that have the log_as_local flag
990 set. File deliveries from filters can be specified as non-absolute paths in
991 cases where the transport is going to complete the path. If there is an error
992 before this happens (expansion failure) the local part will not be updated, and
993 so won't necessarily look like a path. Add extra text for this case. */
995 if ( testflag(addr, af_pfr)
997 && addr->router && addr->router->log_as_local
998 && addr->transport && addr->transport->info->local
1001 if (testflag(addr, af_file) && addr->local_part[0] != '/')
1002 g = string_catn(g, CUS"save ", 5);
1003 g = string_get_localpart(addr, g);
1006 /* Other deliveries start with the full address. It we have split it into local
1007 part and domain, use those fields. Some early failures can happen before the
1008 splitting is done; in those cases use the original field. */
1012 uschar * cmp = g->s + g->ptr;
1014 if (addr->local_part)
1017 g = string_get_localpart(addr, g);
1018 g = string_catn(g, US"@", 1);
1021 if (testflag(addr, af_utf8_downcvt))
1022 s = string_localpart_utf8_to_alabel(s, NULL);
1024 g = string_cat(g, s);
1027 g = string_cat(g, addr->address);
1029 /* If the address we are going to print is the same as the top address,
1030 and all parents are not being included, don't add on the top address. First
1031 of all, do a caseless comparison; if this succeeds, do a caseful comparison
1032 on the local parts. */
1034 string_from_gstring(g); /* ensure nul-terminated */
1035 if ( strcmpic(cmp, topaddr->address) == 0
1036 && Ustrncmp(cmp, topaddr->address, Ustrchr(cmp, '@') - cmp) == 0
1037 && !addr->onetime_parent
1038 && (!all_parents || !addr->parent || addr->parent == topaddr)
1040 add_topaddr = FALSE;
1043 /* If all parents are requested, or this is a local pipe/file/reply, and
1044 there is at least one intermediate parent, show it in brackets, and continue
1045 with all of them if all are wanted. */
1047 if ( (all_parents || testflag(addr, af_pfr))
1049 && addr->parent != topaddr)
1052 address_item *addr2;
1053 for (addr2 = addr->parent; addr2 != topaddr; addr2 = addr2->parent)
1055 g = string_catn(g, s, 2);
1056 g = string_cat (g, addr2->address);
1057 if (!all_parents) break;
1060 g = string_catn(g, US")", 1);
1063 /* Add the top address if it is required */
1066 g = string_append(g, 3,
1068 addr->onetime_parent ? addr->onetime_parent : topaddr->address,
1077 timesince(struct timeval * diff, struct timeval * then)
1079 gettimeofday(diff, NULL);
1080 diff->tv_sec -= then->tv_sec;
1081 if ((diff->tv_usec -= then->tv_usec) < 0)
1084 diff->tv_usec += 1000*1000;
1091 string_timediff(struct timeval * diff)
1093 static uschar buf[sizeof("0.000s")];
1095 if (diff->tv_sec >= 5 || !LOGGING(millisec))
1096 return readconf_printtime((int)diff->tv_sec);
1098 sprintf(CS buf, "%u.%03us", (uint)diff->tv_sec, (uint)diff->tv_usec/1000);
1104 string_timesince(struct timeval * then)
1106 struct timeval diff;
1108 timesince(&diff, then);
1109 return string_timediff(&diff);
1112 /******************************************************************************/
1116 /* If msg is NULL this is a delivery log and logchar is used. Otherwise
1117 this is a nonstandard call; no two-character delivery flag is written
1118 but sender-host and sender are prefixed and "msg" is inserted in the log line.
1121 flags passed to log_write()
1124 delivery_log(int flags, address_item * addr, int logchar, uschar * msg)
1126 gstring * g; /* Used for a temporary, expanding buffer, for building log lines */
1127 void * reset_point; /* released afterwards. */
1129 /* Log the delivery on the main log. We use an extensible string to build up
1130 the log line, and reset the store afterwards. Remote deliveries should always
1131 have a pointer to the host item that succeeded; local deliveries can have a
1132 pointer to a single host item in their host list, for use by the transport. */
1134 #ifndef DISABLE_EVENT
1135 /* presume no successful remote delivery */
1136 lookup_dnssec_authenticated = NULL;
1139 g = reset_point = string_get(256);
1142 g = string_append(g, 2, host_and_ident(TRUE), US" ");
1145 g->s[0] = logchar; g->ptr = 1;
1146 g = string_catn(g, US"> ", 2);
1148 g = string_log_address(g, addr, LOGGING(all_parents), TRUE);
1150 if (LOGGING(sender_on_delivery) || msg)
1151 g = string_append(g, 3, US" F=<",
1153 testflag(addr, af_utf8_downcvt)
1154 ? string_address_utf8_to_alabel(sender_address, NULL)
1161 g = string_append(g, 2, US" Q=", queue_name);
1163 #ifdef EXPERIMENTAL_SRS
1164 if(addr->prop.srs_sender)
1165 g = string_append(g, 3, US" SRS=<", addr->prop.srs_sender, US">");
1168 /* You might think that the return path must always be set for a successful
1169 delivery; indeed, I did for some time, until this statement crashed. The case
1170 when it is not set is for a delivery to /dev/null which is optimised by not
1171 being run at all. */
1173 if (used_return_path && LOGGING(return_path_on_delivery))
1174 g = string_append(g, 3, US" P=<", used_return_path, US">");
1177 g = string_append(g, 2, US" ", msg);
1179 /* For a delivery from a system filter, there may not be a router */
1181 g = string_append(g, 2, US" R=", addr->router->name);
1183 g = string_append(g, 2, US" T=", addr->transport->name);
1185 if (LOGGING(delivery_size))
1186 g = string_append(g, 2, US" S=",
1187 string_sprintf("%d", transport_count));
1189 /* Local delivery */
1191 if (addr->transport->info->local)
1193 if (addr->host_list)
1194 g = string_append(g, 2, US" H=", addr->host_list->name);
1195 g = d_log_interface(g);
1196 if (addr->shadow_message)
1197 g = string_cat(g, addr->shadow_message);
1200 /* Remote delivery */
1204 if (addr->host_used)
1206 g = d_hostlog(g, addr);
1207 if (continue_sequence > 1)
1208 g = string_catn(g, US"*", 1);
1210 #ifndef DISABLE_EVENT
1211 deliver_host_address = addr->host_used->address;
1212 deliver_host_port = addr->host_used->port;
1213 deliver_host = addr->host_used->name;
1215 /* DNS lookup status */
1216 lookup_dnssec_authenticated = addr->host_used->dnssec==DS_YES ? US"yes"
1217 : addr->host_used->dnssec==DS_NO ? US"no"
1223 g = d_tlslog(g, addr);
1226 if (addr->authenticator)
1228 g = string_append(g, 2, US" A=", addr->authenticator);
1231 g = string_append(g, 2, US":", addr->auth_id);
1232 if (LOGGING(smtp_mailauth) && addr->auth_sndr)
1233 g = string_append(g, 2, US":", addr->auth_sndr);
1237 if (LOGGING(pipelining) && testflag(addr, af_pipelining))
1238 g = string_catn(g, US" L", 2);
1240 #ifndef DISABLE_PRDR
1241 if (testflag(addr, af_prdr_used))
1242 g = string_catn(g, US" PRDR", 5);
1245 if (testflag(addr, af_chunking_used))
1246 g = string_catn(g, US" K", 2);
1249 /* confirmation message (SMTP (host_used) and LMTP (driver_name)) */
1251 if ( LOGGING(smtp_confirmation)
1253 && (addr->host_used || Ustrcmp(addr->transport->driver_name, "lmtp") == 0)
1257 unsigned lim = big_buffer_size < 1024 ? big_buffer_size : 1024;
1258 uschar *p = big_buffer;
1259 uschar *ss = addr->message;
1261 for (i = 0; i < lim && ss[i] != 0; i++) /* limit logged amount */
1263 if (ss[i] == '\"' || ss[i] == '\\') *p++ = '\\'; /* quote \ and " */
1268 g = string_append(g, 2, US" C=", big_buffer);
1271 /* Time on queue and actual time taken to deliver */
1273 if (LOGGING(queue_time))
1274 g = string_append(g, 2, US" QT=",
1275 string_timesince(&received_time));
1277 if (LOGGING(deliver_time))
1279 struct timeval diff = {.tv_sec = addr->more_errno, .tv_usec = addr->delivery_usec};
1280 g = string_append(g, 2, US" DT=", string_timediff(&diff));
1283 /* string_cat() always leaves room for the terminator. Release the
1284 store we used to build the line after writing it. */
1286 log_write(0, flags, "%s", string_from_gstring(g));
1288 #ifndef DISABLE_EVENT
1289 if (!msg) msg_event_raise(US"msg:delivery", addr);
1292 store_reset(reset_point);
1299 deferral_log(address_item * addr, uschar * now,
1300 int logflags, uschar * driver_name, uschar * driver_kind)
1305 /* Build up the line that is used for both the message log and the main
1308 g = reset_point = string_get(256);
1310 /* Create the address string for logging. Must not do this earlier, because
1311 an OK result may be changed to FAIL when a pipe returns text. */
1313 g = string_log_address(g, addr, LOGGING(all_parents), FALSE);
1316 g = string_append(g, 2, US" Q=", queue_name);
1318 /* Either driver_name contains something and driver_kind contains
1319 " router" or " transport" (note the leading space), or driver_name is
1320 a null string and driver_kind contains "routing" without the leading
1321 space, if all routing has been deferred. When a domain has been held,
1322 so nothing has been done at all, both variables contain null strings. */
1326 if (driver_kind[1] == 't' && addr->router)
1327 g = string_append(g, 2, US" R=", addr->router->name);
1328 g = string_cat(g, string_sprintf(" %c=%s", toupper(driver_kind[1]), driver_name));
1330 else if (driver_kind)
1331 g = string_append(g, 2, US" ", driver_kind);
1333 /*XXX need an s+s+p sprintf */
1334 g = string_cat(g, string_sprintf(" defer (%d)", addr->basic_errno));
1336 if (addr->basic_errno > 0)
1337 g = string_append(g, 2, US": ",
1338 US strerror(addr->basic_errno));
1340 if (addr->host_used)
1342 g = string_append(g, 5,
1343 US" H=", addr->host_used->name,
1344 US" [", addr->host_used->address, US"]");
1345 if (LOGGING(outgoing_port))
1347 int port = addr->host_used->port;
1348 g = string_append(g, 2,
1349 US":", port == PORT_NONE ? US"25" : string_sprintf("%d", port));
1354 g = string_append(g, 2, US": ", addr->message);
1356 (void) string_from_gstring(g);
1358 /* Log the deferment in the message log, but don't clutter it
1359 up with retry-time defers after the first delivery attempt. */
1361 if (f.deliver_firsttime || addr->basic_errno > ERRNO_RETRY_BASE)
1362 deliver_msglog("%s %s\n", now, g->s);
1364 /* Write the main log and reset the store.
1365 For errors of the type "retry time not reached" (also remotes skipped
1366 on queue run), logging is controlled by L_retry_defer. Note that this kind
1367 of error number is negative, and all the retry ones are less than any
1371 log_write(addr->basic_errno <= ERRNO_RETRY_BASE ? L_retry_defer : 0, logflags,
1374 store_reset(reset_point);
1381 failure_log(address_item * addr, uschar * driver_kind, uschar * now)
1384 gstring * g = reset_point = string_get(256);
1386 /* Build up the log line for the message and main logs */
1388 /* Create the address string for logging. Must not do this earlier, because
1389 an OK result may be changed to FAIL when a pipe returns text. */
1391 g = string_log_address(g, addr, LOGGING(all_parents), FALSE);
1393 if (LOGGING(sender_on_delivery))
1394 g = string_append(g, 3, US" F=<", sender_address, US">");
1397 g = string_append(g, 2, US" Q=", queue_name);
1399 /* Return path may not be set if no delivery actually happened */
1401 if (used_return_path && LOGGING(return_path_on_delivery))
1402 g = string_append(g, 3, US" P=<", used_return_path, US">");
1405 g = string_append(g, 2, US" R=", addr->router->name);
1406 if (addr->transport)
1407 g = string_append(g, 2, US" T=", addr->transport->name);
1409 if (addr->host_used)
1410 g = d_hostlog(g, addr);
1413 g = d_tlslog(g, addr);
1416 if (addr->basic_errno > 0)
1417 g = string_append(g, 2, US": ", US strerror(addr->basic_errno));
1420 g = string_append(g, 2, US": ", addr->message);
1422 (void) string_from_gstring(g);
1424 /* Do the logging. For the message log, "routing failed" for those cases,
1425 just to make it clearer. */
1428 deliver_msglog("%s %s failed for %s\n", now, driver_kind, g->s);
1430 deliver_msglog("%s %s\n", now, g->s);
1432 log_write(0, LOG_MAIN, "** %s", g->s);
1434 #ifndef DISABLE_EVENT
1435 msg_event_raise(US"msg:fail:delivery", addr);
1438 store_reset(reset_point);
1444 /*************************************************
1445 * Actions at the end of handling an address *
1446 *************************************************/
1448 /* This is a function for processing a single address when all that can be done
1449 with it has been done.
1452 addr points to the address block
1453 result the result of the delivery attempt
1454 logflags flags for log_write() (LOG_MAIN and/or LOG_PANIC)
1455 driver_type indicates which type of driver (transport, or router) was last
1456 to process the address
1457 logchar '=' or '-' for use when logging deliveries with => or ->
1463 post_process_one(address_item *addr, int result, int logflags, int driver_type,
1466 uschar *now = tod_stamp(tod_log);
1467 uschar *driver_kind = NULL;
1468 uschar *driver_name = NULL;
1470 DEBUG(D_deliver) debug_printf("post-process %s (%d)\n", addr->address, result);
1472 /* Set up driver kind and name for logging. Disable logging if the router or
1473 transport has disabled it. */
1475 if (driver_type == EXIM_DTYPE_TRANSPORT)
1477 if (addr->transport)
1479 driver_name = addr->transport->name;
1480 driver_kind = US" transport";
1481 f.disable_logging = addr->transport->disable_logging;
1483 else driver_kind = US"transporting";
1485 else if (driver_type == EXIM_DTYPE_ROUTER)
1489 driver_name = addr->router->name;
1490 driver_kind = US" router";
1491 f.disable_logging = addr->router->disable_logging;
1493 else driver_kind = US"routing";
1496 /* If there's an error message set, ensure that it contains only printing
1497 characters - it should, but occasionally things slip in and this at least
1498 stops the log format from getting wrecked. We also scan the message for an LDAP
1499 expansion item that has a password setting, and flatten the password. This is a
1500 fudge, but I don't know a cleaner way of doing this. (If the item is badly
1501 malformed, it won't ever have gone near LDAP.) */
1505 const uschar * s = string_printing(addr->message);
1507 /* deconst cast ok as string_printing known to have alloc'n'copied */
1508 addr->message = expand_hide_passwords(US s);
1511 /* If we used a transport that has one of the "return_output" options set, and
1512 if it did in fact generate some output, then for return_output we treat the
1513 message as failed if it was not already set that way, so that the output gets
1514 returned to the sender, provided there is a sender to send it to. For
1515 return_fail_output, do this only if the delivery failed. Otherwise we just
1516 unlink the file, and remove the name so that if the delivery failed, we don't
1517 try to send back an empty or unwanted file. The log_output options operate only
1518 on a non-empty file.
1520 In any case, we close the message file, because we cannot afford to leave a
1521 file-descriptor for one address while processing (maybe very many) others. */
1523 if (addr->return_file >= 0 && addr->return_filename)
1525 BOOL return_output = FALSE;
1526 struct stat statbuf;
1527 (void)EXIMfsync(addr->return_file);
1529 /* If there is no output, do nothing. */
1531 if (fstat(addr->return_file, &statbuf) == 0 && statbuf.st_size > 0)
1533 transport_instance *tb = addr->transport;
1535 /* Handle logging options */
1538 || result == FAIL && tb->log_fail_output
1539 || result == DEFER && tb->log_defer_output
1543 FILE *f = Ufopen(addr->return_filename, "rb");
1545 log_write(0, LOG_MAIN|LOG_PANIC, "failed to open %s to log output "
1546 "from %s transport: %s", addr->return_filename, tb->name,
1549 if ((s = US Ufgets(big_buffer, big_buffer_size, f)))
1551 uschar *p = big_buffer + Ustrlen(big_buffer);
1553 while (p > big_buffer && isspace(p[-1])) p--;
1555 sp = string_printing(big_buffer);
1556 log_write(0, LOG_MAIN, "<%s>: %s transport output: %s",
1557 addr->address, tb->name, sp);
1562 /* Handle returning options, but only if there is an address to return
1565 if (sender_address[0] != 0 || addr->prop.errors_address)
1566 if (tb->return_output)
1568 addr->transport_return = result = FAIL;
1569 if (addr->basic_errno == 0 && !addr->message)
1570 addr->message = US"return message generated";
1571 return_output = TRUE;
1574 if (tb->return_fail_output && result == FAIL) return_output = TRUE;
1577 /* Get rid of the file unless it might be returned, but close it in
1582 Uunlink(addr->return_filename);
1583 addr->return_filename = NULL;
1584 addr->return_file = -1;
1587 (void)close(addr->return_file);
1590 /* The success case happens only after delivery by a transport. */
1594 addr->next = addr_succeed;
1595 addr_succeed = addr;
1597 /* Call address_done() to ensure that we don't deliver to this address again,
1598 and write appropriate things to the message log. If it is a child address, we
1599 call child_done() to scan the ancestors and mark them complete if this is the
1600 last child to complete. */
1602 address_done(addr, now);
1603 DEBUG(D_deliver) debug_printf("%s delivered\n", addr->address);
1606 deliver_msglog("%s %s: %s%s succeeded\n", now, addr->address,
1607 driver_name, driver_kind);
1610 deliver_msglog("%s %s <%s>: %s%s succeeded\n", now, addr->address,
1611 addr->parent->address, driver_name, driver_kind);
1612 child_done(addr, now);
1615 /* Certificates for logging (via events) */
1617 tls_out.ourcert = addr->ourcert;
1618 addr->ourcert = NULL;
1619 tls_out.peercert = addr->peercert;
1620 addr->peercert = NULL;
1622 tls_out.cipher = addr->cipher;
1623 tls_out.peerdn = addr->peerdn;
1624 tls_out.ocsp = addr->ocsp;
1625 # ifdef SUPPORT_DANE
1626 tls_out.dane_verified = testflag(addr, af_dane_verified);
1630 delivery_log(LOG_MAIN, addr, logchar, NULL);
1633 tls_free_cert(&tls_out.ourcert);
1634 tls_free_cert(&tls_out.peercert);
1635 tls_out.cipher = NULL;
1636 tls_out.peerdn = NULL;
1637 tls_out.ocsp = OCSP_NOT_REQ;
1638 # ifdef SUPPORT_DANE
1639 tls_out.dane_verified = FALSE;
1645 /* Soft failure, or local delivery process failed; freezing may be
1648 else if (result == DEFER || result == PANIC)
1650 if (result == PANIC) logflags |= LOG_PANIC;
1652 /* This puts them on the chain in reverse order. Do not change this, because
1653 the code for handling retries assumes that the one with the retry
1654 information is last. */
1656 addr->next = addr_defer;
1659 /* The only currently implemented special action is to freeze the
1660 message. Logging of this is done later, just before the -H file is
1663 if (addr->special_action == SPECIAL_FREEZE)
1665 f.deliver_freeze = TRUE;
1666 deliver_frozen_at = time(NULL);
1667 update_spool = TRUE;
1670 /* If doing a 2-stage queue run, we skip writing to either the message
1671 log or the main log for SMTP defers. */
1673 if (!f.queue_2stage || addr->basic_errno != 0)
1674 deferral_log(addr, now, logflags, driver_name, driver_kind);
1678 /* Hard failure. If there is an address to which an error message can be sent,
1679 put this address on the failed list. If not, put it on the deferred list and
1680 freeze the mail message for human attention. The latter action can also be
1681 explicitly requested by a router or transport. */
1685 /* If this is a delivery error, or a message for which no replies are
1686 wanted, and the message's age is greater than ignore_bounce_errors_after,
1687 force the af_ignore_error flag. This will cause the address to be discarded
1688 later (with a log entry). */
1690 if (!*sender_address && message_age >= ignore_bounce_errors_after)
1691 addr->prop.ignore_error = TRUE;
1693 /* Freeze the message if requested, or if this is a bounce message (or other
1694 message with null sender) and this address does not have its own errors
1695 address. However, don't freeze if errors are being ignored. The actual code
1696 to ignore occurs later, instead of sending a message. Logging of freezing
1697 occurs later, just before writing the -H file. */
1699 if ( !addr->prop.ignore_error
1700 && ( addr->special_action == SPECIAL_FREEZE
1701 || (sender_address[0] == 0 && !addr->prop.errors_address)
1704 frozen_info = addr->special_action == SPECIAL_FREEZE
1706 : f.sender_local && !f.local_error_message
1707 ? US" (message created with -f <>)"
1708 : US" (delivery error message)";
1709 f.deliver_freeze = TRUE;
1710 deliver_frozen_at = time(NULL);
1711 update_spool = TRUE;
1713 /* The address is put on the defer rather than the failed queue, because
1714 the message is being retained. */
1716 addr->next = addr_defer;
1720 /* Don't put the address on the nonrecipients tree yet; wait until an
1721 error message has been successfully sent. */
1725 addr->next = addr_failed;
1729 failure_log(addr, driver_name ? NULL : driver_kind, now);
1732 /* Ensure logging is turned on again in all cases */
1734 f.disable_logging = FALSE;
1740 /*************************************************
1741 * Address-independent error *
1742 *************************************************/
1744 /* This function is called when there's an error that is not dependent on a
1745 particular address, such as an expansion string failure. It puts the error into
1746 all the addresses in a batch, logs the incident on the main and panic logs, and
1747 clears the expansions. It is mostly called from local_deliver(), but can be
1748 called for a remote delivery via findugid().
1751 logit TRUE if (MAIN+PANIC) logging required
1752 addr the first of the chain of addresses
1754 format format string for error message, or NULL if already set in addr
1755 ... arguments for the format
1761 common_error(BOOL logit, address_item *addr, int code, uschar *format, ...)
1763 address_item *addr2;
1764 addr->basic_errno = code;
1770 va_start(ap, format);
1771 if (!string_vformat(buffer, sizeof(buffer), CS format, ap))
1772 log_write(0, LOG_MAIN|LOG_PANIC_DIE,
1773 "common_error expansion was longer than " SIZE_T_FMT, sizeof(buffer));
1775 addr->message = string_copy(buffer);
1778 for (addr2 = addr->next; addr2; addr2 = addr2->next)
1780 addr2->basic_errno = code;
1781 addr2->message = addr->message;
1784 if (logit) log_write(0, LOG_MAIN|LOG_PANIC, "%s", addr->message);
1785 deliver_set_expansions(NULL);
1791 /*************************************************
1792 * Check a "never users" list *
1793 *************************************************/
1795 /* This function is called to check whether a uid is on one of the two "never
1799 uid the uid to be checked
1800 nusers the list to be scanned; the first item in the list is the count
1802 Returns: TRUE if the uid is on the list
1806 check_never_users(uid_t uid, uid_t *nusers)
1809 if (!nusers) return FALSE;
1810 for (i = 1; i <= (int)(nusers[0]); i++) if (nusers[i] == uid) return TRUE;
1816 /*************************************************
1817 * Find uid and gid for a transport *
1818 *************************************************/
1820 /* This function is called for both local and remote deliveries, to find the
1821 uid/gid under which to run the delivery. The values are taken preferentially
1822 from the transport (either explicit or deliver_as_creator), then from the
1823 address (i.e. the router), and if nothing is set, the exim uid/gid are used. If
1824 the resulting uid is on the "never_users" or the "fixed_never_users" list, a
1825 panic error is logged, and the function fails (which normally leads to delivery
1829 addr the address (possibly a chain)
1831 uidp pointer to uid field
1832 gidp pointer to gid field
1833 igfp pointer to the use_initgroups field
1835 Returns: FALSE if failed - error has been set in address(es)
1839 findugid(address_item *addr, transport_instance *tp, uid_t *uidp, gid_t *gidp,
1843 BOOL gid_set = FALSE;
1845 /* Default initgroups flag comes from the transport */
1847 *igfp = tp->initgroups;
1849 /* First see if there's a gid on the transport, either fixed or expandable.
1850 The expanding function always logs failure itself. */
1857 else if (tp->expand_gid)
1859 if (!route_find_expanded_group(tp->expand_gid, tp->name, US"transport", gidp,
1862 common_error(FALSE, addr, ERRNO_GIDFAIL, NULL);
1868 /* If the transport did not set a group, see if the router did. */
1870 if (!gid_set && testflag(addr, af_gid_set))
1876 /* Pick up a uid from the transport if one is set. */
1878 if (tp->uid_set) *uidp = tp->uid;
1880 /* Otherwise, try for an expandable uid field. If it ends up as a numeric id,
1881 it does not provide a passwd value from which a gid can be taken. */
1883 else if (tp->expand_uid)
1886 if (!route_find_expanded_user(tp->expand_uid, tp->name, US"transport", &pw,
1887 uidp, &(addr->message)))
1889 common_error(FALSE, addr, ERRNO_UIDFAIL, NULL);
1899 /* If the transport doesn't set the uid, test the deliver_as_creator flag. */
1901 else if (tp->deliver_as_creator)
1903 *uidp = originator_uid;
1906 *gidp = originator_gid;
1911 /* Otherwise see if the address specifies the uid and if so, take it and its
1914 else if (testflag(addr, af_uid_set))
1917 *igfp = testflag(addr, af_initgroups);
1920 /* Nothing has specified the uid - default to the Exim user, and group if the
1933 /* If no gid is set, it is a disaster. We default to the Exim gid only if
1934 defaulting to the Exim uid. In other words, if the configuration has specified
1935 a uid, it must also provide a gid. */
1939 common_error(TRUE, addr, ERRNO_GIDFAIL, US"User set without group for "
1940 "%s transport", tp->name);
1944 /* Check that the uid is not on the lists of banned uids that may not be used
1945 for delivery processes. */
1947 nuname = check_never_users(*uidp, never_users)
1949 : check_never_users(*uidp, fixed_never_users)
1950 ? US"fixed_never_users"
1954 common_error(TRUE, addr, ERRNO_UIDFAIL, US"User %ld set for %s transport "
1955 "is on the %s list", (long int)(*uidp), tp->name, nuname);
1967 /*************************************************
1968 * Check the size of a message for a transport *
1969 *************************************************/
1971 /* Checks that the message isn't too big for the selected transport.
1972 This is called only when it is known that the limit is set.
1976 addr the (first) address being delivered
1979 DEFER expansion failed or did not yield an integer
1980 FAIL message too big
1984 check_message_size(transport_instance *tp, address_item *addr)
1989 deliver_set_expansions(addr);
1990 size_limit = expand_string_integer(tp->message_size_limit, TRUE);
1991 deliver_set_expansions(NULL);
1993 if (expand_string_message)
1996 addr->message = size_limit == -1
1997 ? string_sprintf("failed to expand message_size_limit "
1998 "in %s transport: %s", tp->name, expand_string_message)
1999 : string_sprintf("invalid message_size_limit "
2000 "in %s transport: %s", tp->name, expand_string_message);
2002 else if (size_limit > 0 && message_size > size_limit)
2006 string_sprintf("message is too big (transport limit = %d)",
2015 /*************************************************
2016 * Transport-time check for a previous delivery *
2017 *************************************************/
2019 /* Check that this base address hasn't previously been delivered to its routed
2020 transport. If it has been delivered, mark it done. The check is necessary at
2021 delivery time in order to handle homonymic addresses correctly in cases where
2022 the pattern of redirection changes between delivery attempts (so the unique
2023 fields change). Non-homonymic previous delivery is detected earlier, at routing
2024 time (which saves unnecessary routing).
2027 addr the address item
2028 testing TRUE if testing wanted only, without side effects
2030 Returns: TRUE if previously delivered by the transport
2034 previously_transported(address_item *addr, BOOL testing)
2036 (void)string_format(big_buffer, big_buffer_size, "%s/%s",
2037 addr->unique + (testflag(addr, af_homonym)? 3:0), addr->transport->name);
2039 if (tree_search(tree_nonrecipients, big_buffer) != 0)
2041 DEBUG(D_deliver|D_route|D_transport)
2042 debug_printf("%s was previously delivered (%s transport): discarded\n",
2043 addr->address, addr->transport->name);
2044 if (!testing) child_done(addr, tod_stamp(tod_log));
2053 /******************************************************
2054 * Check for a given header in a header string *
2055 ******************************************************/
2057 /* This function is used when generating quota warnings. The configuration may
2058 specify any header lines it likes in quota_warn_message. If certain of them are
2059 missing, defaults are inserted, so we need to be able to test for the presence
2063 hdr the required header name
2064 hstring the header string
2066 Returns: TRUE the header is in the string
2067 FALSE the header is not in the string
2071 contains_header(uschar *hdr, uschar *hstring)
2073 int len = Ustrlen(hdr);
2074 uschar *p = hstring;
2077 if (strncmpic(p, hdr, len) == 0)
2080 while (*p == ' ' || *p == '\t') p++;
2081 if (*p == ':') return TRUE;
2083 while (*p != 0 && *p != '\n') p++;
2084 if (*p == '\n') p++;
2092 /*************************************************
2093 * Perform a local delivery *
2094 *************************************************/
2096 /* Each local delivery is performed in a separate process which sets its
2097 uid and gid as specified. This is a safer way than simply changing and
2098 restoring using seteuid(); there is a body of opinion that seteuid() cannot be
2099 used safely. From release 4, Exim no longer makes any use of it. Besides, not
2100 all systems have seteuid().
2102 If the uid/gid are specified in the transport_instance, they are used; the
2103 transport initialization must ensure that either both or neither are set.
2104 Otherwise, the values associated with the address are used. If neither are set,
2105 it is a configuration error.
2107 The transport or the address may specify a home directory (transport over-
2108 rides), and if they do, this is set as $home. If neither have set a working
2109 directory, this value is used for that as well. Otherwise $home is left unset
2110 and the cwd is set to "/" - a directory that should be accessible to all users.
2112 Using a separate process makes it more complicated to get error information
2113 back. We use a pipe to pass the return code and also an error code and error
2114 text string back to the parent process.
2117 addr points to an address block for this delivery; for "normal" local
2118 deliveries this is the only address to be delivered, but for
2119 pseudo-remote deliveries (e.g. by batch SMTP to a file or pipe)
2120 a number of addresses can be handled simultaneously, and in this
2121 case addr will point to a chain of addresses with the same
2124 shadowing TRUE if running a shadow transport; this causes output from pipes
2131 deliver_local(address_item *addr, BOOL shadowing)
2133 BOOL use_initgroups;
2136 int status, len, rc;
2139 uschar *working_directory;
2140 address_item *addr2;
2141 transport_instance *tp = addr->transport;
2143 /* Set up the return path from the errors or sender address. If the transport
2144 has its own return path setting, expand it and replace the existing value. */
2146 if(addr->prop.errors_address)
2147 return_path = addr->prop.errors_address;
2148 #ifdef EXPERIMENTAL_SRS
2149 else if (addr->prop.srs_sender)
2150 return_path = addr->prop.srs_sender;
2153 return_path = sender_address;
2155 if (tp->return_path)
2157 uschar *new_return_path = expand_string(tp->return_path);
2158 if (!new_return_path)
2160 if (!f.expand_string_forcedfail)
2162 common_error(TRUE, addr, ERRNO_EXPANDFAIL,
2163 US"Failed to expand return path \"%s\" in %s transport: %s",
2164 tp->return_path, tp->name, expand_string_message);
2168 else return_path = new_return_path;
2171 /* For local deliveries, one at a time, the value used for logging can just be
2172 set directly, once and for all. */
2174 used_return_path = return_path;
2176 /* Sort out the uid, gid, and initgroups flag. If an error occurs, the message
2177 gets put into the address(es), and the expansions are unset, so we can just
2180 if (!findugid(addr, tp, &uid, &gid, &use_initgroups)) return;
2182 /* See if either the transport or the address specifies a home directory. A
2183 home directory set in the address may already be expanded; a flag is set to
2184 indicate that. In other cases we must expand it. */
2186 if ( (deliver_home = tp->home_dir) /* Set in transport, or */
2187 || ( (deliver_home = addr->home_dir) /* Set in address and */
2188 && !testflag(addr, af_home_expanded) /* not expanded */
2191 uschar *rawhome = deliver_home;
2192 deliver_home = NULL; /* in case it contains $home */
2193 if (!(deliver_home = expand_string(rawhome)))
2195 common_error(TRUE, addr, ERRNO_EXPANDFAIL, US"home directory \"%s\" failed "
2196 "to expand for %s transport: %s", rawhome, tp->name,
2197 expand_string_message);
2200 if (*deliver_home != '/')
2202 common_error(TRUE, addr, ERRNO_NOTABSOLUTE, US"home directory path \"%s\" "
2203 "is not absolute for %s transport", deliver_home, tp->name);
2208 /* See if either the transport or the address specifies a current directory,
2209 and if so, expand it. If nothing is set, use the home directory, unless it is
2210 also unset in which case use "/", which is assumed to be a directory to which
2211 all users have access. It is necessary to be in a visible directory for some
2212 operating systems when running pipes, as some commands (e.g. "rm" under Solaris
2213 2.5) require this. */
2215 working_directory = tp->current_dir ? tp->current_dir : addr->current_dir;
2216 if (working_directory)
2218 uschar *raw = working_directory;
2219 if (!(working_directory = expand_string(raw)))
2221 common_error(TRUE, addr, ERRNO_EXPANDFAIL, US"current directory \"%s\" "
2222 "failed to expand for %s transport: %s", raw, tp->name,
2223 expand_string_message);
2226 if (*working_directory != '/')
2228 common_error(TRUE, addr, ERRNO_NOTABSOLUTE, US"current directory path "
2229 "\"%s\" is not absolute for %s transport", working_directory, tp->name);
2233 else working_directory = deliver_home ? deliver_home : US"/";
2235 /* If one of the return_output flags is set on the transport, create and open a
2236 file in the message log directory for the transport to write its output onto.
2237 This is mainly used by pipe transports. The file needs to be unique to the
2238 address. This feature is not available for shadow transports. */
2241 && ( tp->return_output || tp->return_fail_output
2242 || tp->log_output || tp->log_fail_output || tp->log_defer_output
2247 addr->return_filename =
2248 spool_fname(US"msglog", message_subdir, message_id,
2249 string_sprintf("-%d-%d", getpid(), return_count++));
2251 if ((addr->return_file = open_msglog_file(addr->return_filename, 0400, &error)) < 0)
2253 common_error(TRUE, addr, errno, US"Unable to %s file for %s transport "
2254 "to return message: %s", error, tp->name, strerror(errno));
2259 /* Create the pipe for inter-process communication. */
2263 common_error(TRUE, addr, ERRNO_PIPEFAIL, US"Creation of pipe failed: %s",
2268 /* Now fork the process to do the real work in the subprocess, but first
2269 ensure that all cached resources are freed so that the subprocess starts with
2270 a clean slate and doesn't interfere with the parent process. */
2274 if ((pid = fork()) == 0)
2276 BOOL replicate = TRUE;
2278 /* Prevent core dumps, as we don't want them in users' home directories.
2279 HP-UX doesn't have RLIMIT_CORE; I don't know how to do this in that
2280 system. Some experimental/developing systems (e.g. GNU/Hurd) may define
2281 RLIMIT_CORE but not support it in setrlimit(). For such systems, do not
2282 complain if the error is "not supported".
2284 There are two scenarios where changing the max limit has an effect. In one,
2285 the user is using a .forward and invoking a command of their choice via pipe;
2286 for these, we do need the max limit to be 0 unless the admin chooses to
2287 permit an increased limit. In the other, the command is invoked directly by
2288 the transport and is under administrator control, thus being able to raise
2289 the limit aids in debugging. So there's no general always-right answer.
2291 Thus we inhibit core-dumps completely but let individual transports, while
2292 still root, re-raise the limits back up to aid debugging. We make the
2293 default be no core-dumps -- few enough people can use core dumps in
2294 diagnosis that it's reasonable to make them something that has to be explicitly requested.
2301 if (setrlimit(RLIMIT_CORE, &rl) < 0)
2303 # ifdef SETRLIMIT_NOT_SUPPORTED
2304 if (errno != ENOSYS && errno != ENOTSUP)
2306 log_write(0, LOG_MAIN|LOG_PANIC, "setrlimit(RLIMIT_CORE) failed: %s",
2311 /* Reset the random number generator, so different processes don't all
2312 have the same sequence. */
2316 /* If the transport has a setup entry, call this first, while still
2317 privileged. (Appendfile uses this to expand quota, for example, while
2318 able to read private files.) */
2320 if (addr->transport->setup)
2321 switch((addr->transport->setup)(addr->transport, addr, NULL, uid, gid,
2325 addr->transport_return = DEFER;
2329 addr->transport_return = PANIC;
2333 /* Ignore SIGINT and SIGTERM during delivery. Also ignore SIGUSR1, as
2334 when the process becomes unprivileged, it won't be able to write to the
2335 process log. SIGHUP is ignored throughout exim, except when it is being
2338 signal(SIGINT, SIG_IGN);
2339 signal(SIGTERM, SIG_IGN);
2340 signal(SIGUSR1, SIG_IGN);
2342 /* Close the unwanted half of the pipe, and set close-on-exec for the other
2343 half - for transports that exec things (e.g. pipe). Then set the required
2346 (void)close(pfd[pipe_read]);
2347 (void)fcntl(pfd[pipe_write], F_SETFD, fcntl(pfd[pipe_write], F_GETFD) |
2349 exim_setugid(uid, gid, use_initgroups,
2350 string_sprintf("local delivery to %s <%s> transport=%s", addr->local_part,
2351 addr->address, addr->transport->name));
2355 address_item *batched;
2356 debug_printf(" home=%s current=%s\n", deliver_home, working_directory);
2357 for (batched = addr->next; batched; batched = batched->next)
2358 debug_printf("additional batched address: %s\n", batched->address);
2361 /* Set an appropriate working directory. */
2363 if (Uchdir(working_directory) < 0)
2365 addr->transport_return = DEFER;
2366 addr->basic_errno = errno;
2367 addr->message = string_sprintf("failed to chdir to %s", working_directory);
2370 /* If successful, call the transport */
2375 set_process_info("delivering %s to %s using %s", message_id,
2376 addr->local_part, addr->transport->name);
2378 /* Setting this global in the subprocess means we need never clear it */
2379 transport_name = addr->transport->name;
2381 /* If a transport filter has been specified, set up its argument list.
2382 Any errors will get put into the address, and FALSE yielded. */
2384 if (addr->transport->filter_command)
2386 ok = transport_set_up_command(&transport_filter_argv,
2387 addr->transport->filter_command,
2388 TRUE, PANIC, addr, US"transport filter", NULL);
2389 transport_filter_timeout = addr->transport->filter_timeout;
2391 else transport_filter_argv = NULL;
2395 debug_print_string(addr->transport->debug_string);
2396 replicate = !(addr->transport->info->code)(addr->transport, addr);
2400 /* Pass the results back down the pipe. If necessary, first replicate the
2401 status in the top address to the others in the batch. The label is the
2402 subject of a goto when a call to the transport's setup function fails. We
2403 pass the pointer to the transport back in case it got changed as a result of
2404 file_format in appendfile. */
2408 if (replicate) replicate_status(addr);
2409 for (addr2 = addr; addr2; addr2 = addr2->next)
2412 int local_part_length = Ustrlen(addr2->local_part);
2416 if( (ret = write(pfd[pipe_write], &addr2->transport_return, sizeof(int))) != sizeof(int)
2417 || (ret = write(pfd[pipe_write], &transport_count, sizeof(transport_count))) != sizeof(transport_count)
2418 || (ret = write(pfd[pipe_write], &addr2->flags, sizeof(addr2->flags))) != sizeof(addr2->flags)
2419 || (ret = write(pfd[pipe_write], &addr2->basic_errno, sizeof(int))) != sizeof(int)
2420 || (ret = write(pfd[pipe_write], &addr2->more_errno, sizeof(int))) != sizeof(int)
2421 || (ret = write(pfd[pipe_write], &addr2->delivery_usec, sizeof(int))) != sizeof(int)
2422 || (ret = write(pfd[pipe_write], &addr2->special_action, sizeof(int))) != sizeof(int)
2423 || (ret = write(pfd[pipe_write], &addr2->transport,
2424 sizeof(transport_instance *))) != sizeof(transport_instance *)
2426 /* For a file delivery, pass back the local part, in case the original
2427 was only part of the final delivery path. This gives more complete
2430 || (testflag(addr2, af_file)
2431 && ( (ret = write(pfd[pipe_write], &local_part_length, sizeof(int))) != sizeof(int)
2432 || (ret = write(pfd[pipe_write], addr2->local_part, local_part_length)) != local_part_length
2436 log_write(0, LOG_MAIN|LOG_PANIC, "Failed writing transport results to pipe: %s",
2437 ret == -1 ? strerror(errno) : "short write");
2439 /* Now any messages */
2441 for (i = 0, s = addr2->message; i < 2; i++, s = addr2->user_message)
2443 int message_length = s ? Ustrlen(s) + 1 : 0;
2444 if( (ret = write(pfd[pipe_write], &message_length, sizeof(int))) != sizeof(int)
2445 || message_length > 0 && (ret = write(pfd[pipe_write], s, message_length)) != message_length
2447 log_write(0, LOG_MAIN|LOG_PANIC, "Failed writing transport results to pipe: %s",
2448 ret == -1 ? strerror(errno) : "short write");
2452 /* OK, this process is now done. Free any cached resources that it opened,
2453 and close the pipe we were writing down before exiting. */
2455 (void)close(pfd[pipe_write]);
2460 /* Back in the main process: panic if the fork did not succeed. This seems
2461 better than returning an error - if forking is failing it is probably best
2462 not to try other deliveries for this message. */
2465 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Fork failed for local delivery to %s",
2468 /* Read the pipe to get the delivery status codes and error messages. Our copy
2469 of the writing end must be closed first, as otherwise read() won't return zero
2470 on an empty pipe. We check that a status exists for each address before
2471 overwriting the address structure. If data is missing, the default DEFER status
2472 will remain. Afterwards, close the reading end. */
2474 (void)close(pfd[pipe_write]);
2476 for (addr2 = addr; addr2; addr2 = addr2->next)
2478 if ((len = read(pfd[pipe_read], &status, sizeof(int))) > 0)
2483 addr2->transport_return = status;
2484 len = read(pfd[pipe_read], &transport_count,
2485 sizeof(transport_count));
2486 len = read(pfd[pipe_read], &addr2->flags, sizeof(addr2->flags));
2487 len = read(pfd[pipe_read], &addr2->basic_errno, sizeof(int));
2488 len = read(pfd[pipe_read], &addr2->more_errno, sizeof(int));
2489 len = read(pfd[pipe_read], &addr2->delivery_usec, sizeof(int));
2490 len = read(pfd[pipe_read], &addr2->special_action, sizeof(int));
2491 len = read(pfd[pipe_read], &addr2->transport,
2492 sizeof(transport_instance *));
2494 if (testflag(addr2, af_file))
2497 if ( read(pfd[pipe_read], &llen, sizeof(int)) != sizeof(int)
2498 || llen > 64*4 /* limit from rfc 5821, times I18N factor */
2501 log_write(0, LOG_MAIN|LOG_PANIC, "bad local_part length read"
2502 " from delivery subprocess");
2505 /* sanity-checked llen so disable the Coverity error */
2506 /* coverity[tainted_data] */
2507 if (read(pfd[pipe_read], big_buffer, llen) != llen)
2509 log_write(0, LOG_MAIN|LOG_PANIC, "bad local_part read"
2510 " from delivery subprocess");
2513 big_buffer[llen] = 0;
2514 addr2->local_part = string_copy(big_buffer);
2517 for (i = 0, sptr = &addr2->message; i < 2; i++, sptr = &addr2->user_message)
2520 len = read(pfd[pipe_read], &message_length, sizeof(int));
2521 if (message_length > 0)
2523 len = read(pfd[pipe_read], big_buffer, message_length);
2524 big_buffer[big_buffer_size-1] = '\0'; /* guard byte */
2525 if (len > 0) *sptr = string_copy(big_buffer);
2532 log_write(0, LOG_MAIN|LOG_PANIC, "failed to read delivery status for %s "
2533 "from delivery subprocess", addr2->unique);
2538 (void)close(pfd[pipe_read]);
2540 /* Unless shadowing, write all successful addresses immediately to the journal
2541 file, to ensure they are recorded asap. For homonymic addresses, use the base
2542 address plus the transport name. Failure to write the journal is panic-worthy,
2543 but don't stop, as it may prove possible subsequently to update the spool file
2544 in order to record the delivery. */
2548 for (addr2 = addr; addr2; addr2 = addr2->next)
2549 if (addr2->transport_return == OK)
2551 if (testflag(addr2, af_homonym))
2552 sprintf(CS big_buffer, "%.500s/%s\n", addr2->unique + 3, tp->name);
2554 sprintf(CS big_buffer, "%.500s\n", addr2->unique);
2556 /* In the test harness, wait just a bit to let the subprocess finish off
2557 any debug output etc first. */
2559 if (f.running_in_test_harness) millisleep(300);
2561 DEBUG(D_deliver) debug_printf("journalling %s", big_buffer);
2562 len = Ustrlen(big_buffer);
2563 if (write(journal_fd, big_buffer, len) != len)
2564 log_write(0, LOG_MAIN|LOG_PANIC, "failed to update journal for %s: %s",
2565 big_buffer, strerror(errno));
2568 /* Ensure the journal file is pushed out to disk. */
2570 if (EXIMfsync(journal_fd) < 0)
2571 log_write(0, LOG_MAIN|LOG_PANIC, "failed to fsync journal: %s",
2575 /* Wait for the process to finish. If it terminates with a non-zero code,
2576 freeze the message (except for SIGTERM, SIGKILL and SIGQUIT), but leave the
2577 status values of all the addresses as they are. Take care to handle the case
2578 when the subprocess doesn't seem to exist. This has been seen on one system
2579 when Exim was called from an MUA that set SIGCHLD to SIG_IGN. When that
2580 happens, wait() doesn't recognize the termination of child processes. Exim now
2581 resets SIGCHLD to SIG_DFL, but this code should still be robust. */
2583 while ((rc = wait(&status)) != pid)
2584 if (rc < 0 && errno == ECHILD) /* Process has vanished */
2586 log_write(0, LOG_MAIN, "%s transport process vanished unexpectedly",
2587 addr->transport->driver_name);
2592 if ((status & 0xffff) != 0)
2594 int msb = (status >> 8) & 255;
2595 int lsb = status & 255;
2596 int code = (msb == 0)? (lsb & 0x7f) : msb;
2597 if (msb != 0 || (code != SIGTERM && code != SIGKILL && code != SIGQUIT))
2598 addr->special_action = SPECIAL_FREEZE;
2599 log_write(0, LOG_MAIN|LOG_PANIC, "%s transport process returned non-zero "
2600 "status 0x%04x: %s %d",
2601 addr->transport->driver_name,
2603 msb == 0 ? "terminated by signal" : "exit code",
2607 /* If SPECIAL_WARN is set in the top address, send a warning message. */
2609 if (addr->special_action == SPECIAL_WARN && addr->transport->warn_message)
2612 uschar *warn_message;
2615 DEBUG(D_deliver) debug_printf("Warning message requested by transport\n");
2617 if (!(warn_message = expand_string(addr->transport->warn_message)))
2618 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand \"%s\" (warning "
2619 "message for %s transport): %s", addr->transport->warn_message,
2620 addr->transport->name, expand_string_message);
2622 else if ((pid = child_open_exim(&fd)) > 0)
2624 FILE *f = fdopen(fd, "wb");
2625 if (errors_reply_to && !contains_header(US"Reply-To", warn_message))
2626 fprintf(f, "Reply-To: %s\n", errors_reply_to);
2627 fprintf(f, "Auto-Submitted: auto-replied\n");
2628 if (!contains_header(US"From", warn_message))
2630 fprintf(f, "%s", CS warn_message);
2632 /* Close and wait for child process to complete, without a timeout. */
2635 (void)child_close(pid, 0);
2638 addr->special_action = SPECIAL_NONE;
2645 /* Check transport for the given concurrency limit. Return TRUE if over
2646 the limit (or an expansion failure), else FALSE and if there was a limit,
2647 the key for the hints database used for the concurrency count. */
2650 tpt_parallel_check(transport_instance * tp, address_item * addr, uschar ** key)
2652 unsigned max_parallel;
2654 if (!tp->max_parallel) return FALSE;
2656 max_parallel = (unsigned) expand_string_integer(tp->max_parallel, TRUE);
2657 if (expand_string_message)
2659 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand max_parallel option "
2660 "in %s transport (%s): %s", tp->name, addr->address,
2661 expand_string_message);
2665 if (max_parallel > 0)
2667 uschar * serialize_key = string_sprintf("tpt-serialize-%s", tp->name);
2668 if (!enq_start(serialize_key, max_parallel))
2670 address_item * next;
2672 debug_printf("skipping tpt %s because concurrency limit %u reached\n",
2673 tp->name, max_parallel);
2677 addr->message = US"concurrency limit reached for transport";
2678 addr->basic_errno = ERRNO_TRETRY;
2679 post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_TRANSPORT, 0);
2680 } while ((addr = next));
2683 *key = serialize_key;
2690 /*************************************************
2691 * Do local deliveries *
2692 *************************************************/
2694 /* This function processes the list of addresses in addr_local. True local
2695 deliveries are always done one address at a time. However, local deliveries can
2696 be batched up in some cases. Typically this is when writing batched SMTP output
2697 files for use by some external transport mechanism, or when running local
2698 deliveries over LMTP.
2705 do_local_deliveries(void)
2708 open_db *dbm_file = NULL;
2709 time_t now = time(NULL);
2711 /* Loop until we have exhausted the supply of local deliveries */
2715 struct timeval delivery_start;
2716 struct timeval deliver_time;
2717 address_item *addr2, *addr3, *nextaddr;
2718 int logflags = LOG_MAIN;
2719 int logchar = f.dont_deliver? '*' : '=';
2720 transport_instance *tp;
2721 uschar * serialize_key = NULL;
2723 /* Pick the first undelivered address off the chain */
2725 address_item *addr = addr_local;
2726 addr_local = addr->next;
2729 DEBUG(D_deliver|D_transport)
2730 debug_printf("--------> %s <--------\n", addr->address);
2732 /* An internal disaster if there is no transport. Should not occur! */
2734 if (!(tp = addr->transport))
2736 logflags |= LOG_PANIC;
2737 f.disable_logging = FALSE; /* Jic */
2738 addr->message = addr->router
2739 ? string_sprintf("No transport set by %s router", addr->router->name)
2740 : string_sprintf("No transport set by system filter");
2741 post_process_one(addr, DEFER, logflags, EXIM_DTYPE_TRANSPORT, 0);
2745 /* Check that this base address hasn't previously been delivered to this
2746 transport. The check is necessary at this point to handle homonymic addresses
2747 correctly in cases where the pattern of redirection changes between delivery
2748 attempts. Non-homonymic previous delivery is detected earlier, at routing
2751 if (previously_transported(addr, FALSE)) continue;
2753 /* There are weird cases where logging is disabled */
2755 f.disable_logging = tp->disable_logging;
2757 /* Check for batched addresses and possible amalgamation. Skip all the work
2758 if either batch_max <= 1 or there aren't any other addresses for local
2761 if (tp->batch_max > 1 && addr_local)
2763 int batch_count = 1;
2764 BOOL uses_dom = readconf_depends((driver_instance *)tp, US"domain");
2765 BOOL uses_lp = ( testflag(addr, af_pfr)
2766 && (testflag(addr, af_file) || addr->local_part[0] == '|')
2768 || readconf_depends((driver_instance *)tp, US"local_part");
2769 uschar *batch_id = NULL;
2770 address_item **anchor = &addr_local;
2771 address_item *last = addr;
2774 /* Expand the batch_id string for comparison with other addresses.
2775 Expansion failure suppresses batching. */
2779 deliver_set_expansions(addr);
2780 batch_id = expand_string(tp->batch_id);
2781 deliver_set_expansions(NULL);
2784 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand batch_id option "
2785 "in %s transport (%s): %s", tp->name, addr->address,
2786 expand_string_message);
2787 batch_count = tp->batch_max;
2791 /* Until we reach the batch_max limit, pick off addresses which have the
2792 same characteristics. These are:
2795 not previously delivered (see comment about 50 lines above)
2796 same local part if the transport's configuration contains $local_part
2797 or if this is a file or pipe delivery from a redirection
2798 same domain if the transport's configuration contains $domain
2800 same additional headers
2801 same headers to be removed
2802 same uid/gid for running the transport
2803 same first host if a host list is set
2806 while ((next = *anchor) && batch_count < tp->batch_max)
2809 tp == next->transport
2810 && !previously_transported(next, TRUE)
2811 && testflag(addr, af_pfr) == testflag(next, af_pfr)
2812 && testflag(addr, af_file) == testflag(next, af_file)
2813 && (!uses_lp || Ustrcmp(next->local_part, addr->local_part) == 0)
2814 && (!uses_dom || Ustrcmp(next->domain, addr->domain) == 0)
2815 && same_strings(next->prop.errors_address, addr->prop.errors_address)
2816 && same_headers(next->prop.extra_headers, addr->prop.extra_headers)
2817 && same_strings(next->prop.remove_headers, addr->prop.remove_headers)
2818 && same_ugid(tp, addr, next)
2819 && ( !addr->host_list && !next->host_list
2822 && Ustrcmp(addr->host_list->name, next->host_list->name) == 0
2825 /* If the transport has a batch_id setting, batch_id will be non-NULL
2826 from the expansion outside the loop. Expand for this address and compare.
2827 Expansion failure makes this address ineligible for batching. */
2832 address_item *save_nextnext = next->next;
2833 next->next = NULL; /* Expansion for a single address */
2834 deliver_set_expansions(next);
2835 next->next = save_nextnext;
2836 bid = expand_string(tp->batch_id);
2837 deliver_set_expansions(NULL);
2840 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand batch_id option "
2841 "in %s transport (%s): %s", tp->name, next->address,
2842 expand_string_message);
2845 else ok = (Ustrcmp(batch_id, bid) == 0);
2848 /* Take address into batch if OK. */
2852 *anchor = next->next; /* Include the address */
2858 else anchor = &next->next; /* Skip the address */
2862 /* We now have one or more addresses that can be delivered in a batch. Check
2863 whether the transport is prepared to accept a message of this size. If not,
2864 fail them all forthwith. If the expansion fails, or does not yield an
2865 integer, defer delivery. */
2867 if (tp->message_size_limit)
2869 int rc = check_message_size(tp, addr);
2872 replicate_status(addr);
2876 post_process_one(addr, rc, logflags, EXIM_DTYPE_TRANSPORT, 0);
2879 continue; /* With next batch of addresses */
2883 /* If we are not running the queue, or if forcing, all deliveries will be
2884 attempted. Otherwise, we must respect the retry times for each address. Even
2885 when not doing this, we need to set up the retry key string, and determine
2886 whether a retry record exists, because after a successful delivery, a delete
2887 retry item must be set up. Keep the retry database open only for the duration
2888 of these checks, rather than for all local deliveries, because some local
2889 deliveries (e.g. to pipes) can take a substantial time. */
2891 if (!(dbm_file = dbfn_open(US"retry", O_RDONLY, &dbblock, FALSE)))
2893 DEBUG(D_deliver|D_retry|D_hints_lookup)
2894 debug_printf("no retry data available\n");
2901 BOOL ok = TRUE; /* to deliver this address */
2904 /* Set up the retry key to include the domain or not, and change its
2905 leading character from "R" to "T". Must make a copy before doing this,
2906 because the old key may be pointed to from a "delete" retry item after
2909 retry_key = string_copy(
2910 tp->retry_use_local_part ? addr2->address_retry_key :
2911 addr2->domain_retry_key);
2914 /* Inspect the retry data. If there is no hints file, delivery happens. */
2918 dbdata_retry *retry_record = dbfn_read(dbm_file, retry_key);
2920 /* If there is no retry record, delivery happens. If there is,
2921 remember it exists so it can be deleted after a successful delivery. */
2925 setflag(addr2, af_lt_retry_exists);
2927 /* A retry record exists for this address. If queue running and not
2928 forcing, inspect its contents. If the record is too old, or if its
2929 retry time has come, or if it has passed its cutoff time, delivery
2934 debug_printf("retry record exists: age=%s ",
2935 readconf_printtime(now - retry_record->time_stamp));
2936 debug_printf("(max %s)\n", readconf_printtime(retry_data_expire));
2937 debug_printf(" time to retry = %s expired = %d\n",
2938 readconf_printtime(retry_record->next_try - now),
2939 retry_record->expired);
2942 if (f.queue_running && !f.deliver_force)
2944 ok = (now - retry_record->time_stamp > retry_data_expire)
2945 || (now >= retry_record->next_try)
2946 || retry_record->expired;
2948 /* If we haven't reached the retry time, there is one more check
2949 to do, which is for the ultimate address timeout. */
2952 ok = retry_ultimate_address_timeout(retry_key, addr2->domain,
2956 else DEBUG(D_retry) debug_printf("no retry record exists\n");
2959 /* This address is to be delivered. Leave it on the chain. */
2964 addr2 = addr2->next;
2967 /* This address is to be deferred. Take it out of the chain, and
2968 post-process it as complete. Must take it out of the chain first,
2969 because post processing puts it on another chain. */
2973 address_item *this = addr2;
2974 this->message = US"Retry time not yet reached";
2975 this->basic_errno = ERRNO_LRETRY;
2976 addr2 = addr3 ? (addr3->next = addr2->next)
2977 : (addr = addr2->next);
2978 post_process_one(this, DEFER, logflags, EXIM_DTYPE_TRANSPORT, 0);
2982 if (dbm_file) dbfn_close(dbm_file);
2984 /* If there are no addresses left on the chain, they all deferred. Loop
2985 for the next set of addresses. */
2987 if (!addr) continue;
2989 /* If the transport is limited for parallellism, enforce that here.
2990 We use a hints DB entry, incremented here and decremented after
2991 the transport (and any shadow transport) completes. */
2993 if (tpt_parallel_check(tp, addr, &serialize_key))
2995 if (expand_string_message)
2997 logflags |= LOG_PANIC;
3001 post_process_one(addr, DEFER, logflags, EXIM_DTYPE_TRANSPORT, 0);
3002 } while ((addr = addr2));
3004 continue; /* Loop for the next set of addresses. */
3008 /* So, finally, we do have some addresses that can be passed to the
3009 transport. Before doing so, set up variables that are relevant to a
3012 deliver_set_expansions(addr);
3014 gettimeofday(&delivery_start, NULL);
3015 deliver_local(addr, FALSE);
3016 timesince(&deliver_time, &delivery_start);
3018 /* If a shadow transport (which must perforce be another local transport), is
3019 defined, and its condition is met, we must pass the message to the shadow
3020 too, but only those addresses that succeeded. We do this by making a new
3021 chain of addresses - also to keep the original chain uncontaminated. We must
3022 use a chain rather than doing it one by one, because the shadow transport may
3025 NOTE: if the condition fails because of a lookup defer, there is nothing we
3029 && ( !tp->shadow_condition
3030 || expand_check_condition(tp->shadow_condition, tp->name, US"transport")
3033 transport_instance *stp;
3034 address_item *shadow_addr = NULL;
3035 address_item **last = &shadow_addr;
3037 for (stp = transports; stp; stp = stp->next)
3038 if (Ustrcmp(stp->name, tp->shadow) == 0) break;
3041 log_write(0, LOG_MAIN|LOG_PANIC, "shadow transport \"%s\" not found ",
3044 /* Pick off the addresses that have succeeded, and make clones. Put into
3045 the shadow_message field a pointer to the shadow_message field of the real
3048 else for (addr2 = addr; addr2; addr2 = addr2->next)
3049 if (addr2->transport_return == OK)
3051 addr3 = store_get(sizeof(address_item));
3054 addr3->shadow_message = US &addr2->shadow_message;
3055 addr3->transport = stp;
3056 addr3->transport_return = DEFER;
3057 addr3->return_filename = NULL;
3058 addr3->return_file = -1;
3060 last = &addr3->next;
3063 /* If we found any addresses to shadow, run the delivery, and stick any
3064 message back into the shadow_message field in the original. */
3068 int save_count = transport_count;
3070 DEBUG(D_deliver|D_transport)
3071 debug_printf(">>>>>>>>>>>>>>>> Shadow delivery >>>>>>>>>>>>>>>>\n");
3072 deliver_local(shadow_addr, TRUE);
3074 for(; shadow_addr; shadow_addr = shadow_addr->next)
3076 int sresult = shadow_addr->transport_return;
3077 *(uschar **)shadow_addr->shadow_message =
3079 ? string_sprintf(" ST=%s", stp->name)
3080 : string_sprintf(" ST=%s (%s%s%s)", stp->name,
3081 shadow_addr->basic_errno <= 0
3083 : US strerror(shadow_addr->basic_errno),
3084 shadow_addr->basic_errno <= 0 || !shadow_addr->message
3087 shadow_addr->message
3088 ? shadow_addr->message
3089 : shadow_addr->basic_errno <= 0
3093 DEBUG(D_deliver|D_transport)
3094 debug_printf("%s shadow transport returned %s for %s\n",
3096 sresult == OK ? "OK" :
3097 sresult == DEFER ? "DEFER" :
3098 sresult == FAIL ? "FAIL" :
3099 sresult == PANIC ? "PANIC" : "?",
3100 shadow_addr->address);
3103 DEBUG(D_deliver|D_transport)
3104 debug_printf(">>>>>>>>>>>>>>>> End shadow delivery >>>>>>>>>>>>>>>>\n");
3106 transport_count = save_count; /* Restore original transport count */
3110 /* Cancel the expansions that were set up for the delivery. */
3112 deliver_set_expansions(NULL);
3114 /* If the transport was parallelism-limited, decrement the hints DB record. */
3116 if (serialize_key) enq_end(serialize_key);
3118 /* Now we can process the results of the real transport. We must take each
3119 address off the chain first, because post_process_one() puts it on another
3122 for (addr2 = addr; addr2; addr2 = nextaddr)
3124 int result = addr2->transport_return;
3125 nextaddr = addr2->next;
3127 DEBUG(D_deliver|D_transport)
3128 debug_printf("%s transport returned %s for %s\n",
3130 result == OK ? "OK" :
3131 result == DEFER ? "DEFER" :
3132 result == FAIL ? "FAIL" :
3133 result == PANIC ? "PANIC" : "?",
3136 /* If there is a retry_record, or if delivery is deferred, build a retry
3137 item for setting a new retry time or deleting the old retry record from
3138 the database. These items are handled all together after all addresses
3139 have been handled (so the database is open just for a short time for
3142 if (result == DEFER || testflag(addr2, af_lt_retry_exists))
3144 int flags = result == DEFER ? 0 : rf_delete;
3145 uschar *retry_key = string_copy(tp->retry_use_local_part
3146 ? addr2->address_retry_key : addr2->domain_retry_key);
3148 retry_add_item(addr2, retry_key, flags);
3151 /* Done with this address */
3155 addr2->more_errno = deliver_time.tv_sec;
3156 addr2->delivery_usec = deliver_time.tv_usec;
3158 post_process_one(addr2, result, logflags, EXIM_DTYPE_TRANSPORT, logchar);
3160 /* If a pipe delivery generated text to be sent back, the result may be
3161 changed to FAIL, and we must copy this for subsequent addresses in the
3164 if (addr2->transport_return != result)
3166 for (addr3 = nextaddr; addr3; addr3 = addr3->next)
3168 addr3->transport_return = addr2->transport_return;
3169 addr3->basic_errno = addr2->basic_errno;
3170 addr3->message = addr2->message;
3172 result = addr2->transport_return;
3175 /* Whether or not the result was changed to FAIL, we need to copy the
3176 return_file value from the first address into all the addresses of the
3177 batch, so they are all listed in the error message. */
3179 addr2->return_file = addr->return_file;
3181 /* Change log character for recording successful deliveries. */
3183 if (result == OK) logchar = '-';
3185 } /* Loop back for next batch of addresses */
3191 /*************************************************
3192 * Sort remote deliveries *
3193 *************************************************/
3195 /* This function is called if remote_sort_domains is set. It arranges that the
3196 chain of addresses for remote deliveries is ordered according to the strings
3197 specified. Try to make this shuffling reasonably efficient by handling
3198 sequences of addresses rather than just single ones.
3205 sort_remote_deliveries(void)
3208 address_item **aptr = &addr_remote;
3209 const uschar *listptr = remote_sort_domains;
3214 && (pattern = string_nextinlist(&listptr, &sep, patbuf, sizeof(patbuf)))
3217 address_item *moved = NULL;
3218 address_item **bptr = &moved;
3222 address_item **next;
3223 deliver_domain = (*aptr)->domain; /* set $domain */
3224 if (match_isinlist(deliver_domain, (const uschar **)&pattern, UCHAR_MAX+1,
3225 &domainlist_anchor, NULL, MCL_DOMAIN, TRUE, NULL) == OK)
3227 aptr = &(*aptr)->next;
3231 next = &(*aptr)->next;
3233 && (deliver_domain = (*next)->domain, /* Set $domain */
3234 match_isinlist(deliver_domain, (const uschar **)&pattern, UCHAR_MAX+1,
3235 &domainlist_anchor, NULL, MCL_DOMAIN, TRUE, NULL)) != OK
3237 next = &(*next)->next;
3239 /* If the batch of non-matchers is at the end, add on any that were
3240 extracted further up the chain, and end this iteration. Otherwise,
3241 extract them from the chain and hang on the moved chain. */
3253 aptr = &(*aptr)->next;
3256 /* If the loop ended because the final address matched, *aptr will
3257 be NULL. Add on to the end any extracted non-matching addresses. If
3258 *aptr is not NULL, the loop ended via "break" when *next is null, that
3259 is, there was a string of non-matching addresses at the end. In this
3260 case the extracted addresses have already been added on the end. */
3262 if (!*aptr) *aptr = moved;
3268 debug_printf("remote addresses after sorting:\n");
3269 for (addr = addr_remote; addr; addr = addr->next)
3270 debug_printf(" %s\n", addr->address);
3276 /*************************************************
3277 * Read from pipe for remote delivery subprocess *
3278 *************************************************/
3280 /* This function is called when the subprocess is complete, but can also be
3281 called before it is complete, in order to empty a pipe that is full (to prevent
3282 deadlock). It must therefore keep track of its progress in the parlist data
3285 We read the pipe to get the delivery status codes and a possible error message
3286 for each address, optionally preceded by unusability data for the hosts and
3287 also by optional retry data.
3289 Read in large chunks into the big buffer and then scan through, interpreting
3290 the data therein. In most cases, only a single read will be necessary. No
3291 individual item will ever be anywhere near 2500 bytes in length, so by ensuring
3292 that we read the next chunk when there is less than 2500 bytes left in the
3293 non-final chunk, we can assume each item is complete in the buffer before
3294 handling it. Each item is written using a single write(), which is atomic for
3295 small items (less than PIPE_BUF, which seems to be at least 512 in any Unix and
3296 often bigger) so even if we are reading while the subprocess is still going, we
3297 should never have only a partial item in the buffer.
3299 hs12: This assumption is not true anymore, since we got quit large items (certificate
3300 information and such)
3303 poffset the offset of the parlist item
3304 eop TRUE if the process has completed
3306 Returns: TRUE if the terminating 'Z' item has been read,
3307 or there has been a disaster (i.e. no more data needed);
3312 par_read_pipe(int poffset, BOOL eop)
3315 pardata *p = parlist + poffset;
3316 address_item *addrlist = p->addrlist;
3317 address_item *addr = p->addr;
3321 uschar *msg = p->msg;
3322 BOOL done = p->done;
3324 /* Loop through all items, reading from the pipe when necessary. The pipe
3325 used to be non-blocking. But I do not see a reason for using non-blocking I/O
3326 here, as the preceding select() tells us, if data is available for reading.
3328 A read() on a "selected" handle should never block, but(!) it may return
3329 less data then we expected. (The buffer size we pass to read() shouldn't be
3330 understood as a "request", but as a "limit".)
3332 Each separate item is written to the pipe in a timely manner. But, especially for
3333 larger items, the read(2) may already return partial data from the write(2).
3335 The write is atomic mostly (depending on the amount written), but atomic does
3336 not imply "all or noting", it just is "not intermixed" with other writes on the
3337 same channel (pipe).
3341 DEBUG(D_deliver) debug_printf("reading pipe for subprocess %d (%s)\n",
3342 (int)p->pid, eop? "ended" : "not ended yet");
3346 retry_item *r, **rp;
3347 uschar pipeheader[PIPE_HEADER_SIZE+1];
3348 uschar *id = &pipeheader[0];
3349 uschar *subid = &pipeheader[1];
3350 uschar *ptr = big_buffer;
3351 size_t required = PIPE_HEADER_SIZE; /* first the pipehaeder, later the data */
3354 DEBUG(D_deliver) debug_printf(
3355 "expect %lu bytes (pipeheader) from tpt process %d\n", (u_long)required, pid);
3357 /* We require(!) all the PIPE_HEADER_SIZE bytes here, as we know,
3358 they're written in a timely manner, so waiting for the write shouldn't hurt a lot.
3359 If we get less, we can assume the subprocess do be done and do not expect any further
3360 information from it. */
3362 if ((got = readn(fd, pipeheader, required)) != required)
3364 msg = string_sprintf("got " SSIZE_T_FMT " of %d bytes (pipeheader) "
3365 "from transport process %d for transport %s",
3366 got, PIPE_HEADER_SIZE, pid, addr->transport->driver_name);
3371 pipeheader[PIPE_HEADER_SIZE] = '\0';
3373 debug_printf("got %ld bytes (pipeheader) from transport process %d\n",
3377 /* If we can't decode the pipeheader, the subprocess seems to have a
3378 problem, we do not expect any furher information from it. */
3380 required = Ustrtol(pipeheader+2, &endc, 10);
3383 msg = string_sprintf("failed to read pipe "
3384 "from transport process %d for transport %s: error decoding size from header",
3385 pid, addr->transport->driver_name);
3392 debug_printf("expect %lu bytes (pipedata) from transport process %d\n",
3393 (u_long)required, pid);
3395 /* Same as above, the transport process will write the bytes announced
3396 in a timely manner, so we can just wait for the bytes, getting less than expected
3397 is considered a problem of the subprocess, we do not expect anything else from it. */
3398 if ((got = readn(fd, big_buffer, required)) != required)
3400 msg = string_sprintf("got only " SSIZE_T_FMT " of " SIZE_T_FMT
3401 " bytes (pipedata) from transport process %d for transport %s",
3402 got, required, pid, addr->transport->driver_name);
3407 /* Handle each possible type of item, assuming the complete item is
3408 available in store. */
3412 /* Host items exist only if any hosts were marked unusable. Match
3413 up by checking the IP address. */
3416 for (h = addrlist->host_list; h; h = h->next)
3418 if (!h->address || Ustrcmp(h->address, ptr+2) != 0) continue;
3426 /* Retry items are sent in a preceding R item for each address. This is
3427 kept separate to keep each message short enough to guarantee it won't
3428 be split in the pipe. Hopefully, in the majority of cases, there won't in
3429 fact be any retry items at all.
3431 The complete set of retry items might include an item to delete a
3432 routing retry if there was a previous routing delay. However, routing
3433 retries are also used when a remote transport identifies an address error.
3434 In that case, there may also be an "add" item for the same key. Arrange
3435 that a "delete" item is dropped in favour of an "add" item. */
3438 if (!addr) goto ADDR_MISMATCH;
3440 DEBUG(D_deliver|D_retry)
3441 debug_printf("reading retry information for %s from subprocess\n",
3444 /* Cut out any "delete" items on the list. */
3446 for (rp = &addr->retries; (r = *rp); rp = &r->next)
3447 if (Ustrcmp(r->key, ptr+1) == 0) /* Found item with same key */
3449 if (!(r->flags & rf_delete)) break; /* It was not "delete" */
3450 *rp = r->next; /* Excise a delete item */
3451 DEBUG(D_deliver|D_retry)
3452 debug_printf(" existing delete item dropped\n");
3455 /* We want to add a delete item only if there is no non-delete item;
3456 however we still have to step ptr through the data. */
3458 if (!r || !(*ptr & rf_delete))
3460 r = store_get(sizeof(retry_item));
3461 r->next = addr->retries;
3464 r->key = string_copy(ptr);
3466 memcpy(&r->basic_errno, ptr, sizeof(r->basic_errno));
3467 ptr += sizeof(r->basic_errno);
3468 memcpy(&r->more_errno, ptr, sizeof(r->more_errno));
3469 ptr += sizeof(r->more_errno);
3470 r->message = *ptr ? string_copy(ptr) : NULL;
3471 DEBUG(D_deliver|D_retry) debug_printf(" added %s item\n",
3472 r->flags & rf_delete ? "delete" : "retry");
3477 DEBUG(D_deliver|D_retry)
3478 debug_printf(" delete item not added: non-delete item exists\n");
3481 ptr += sizeof(r->basic_errno) + sizeof(r->more_errno);
3487 /* Put the amount of data written into the parlist block */
3490 memcpy(&(p->transport_count), ptr, sizeof(transport_count));
3491 ptr += sizeof(transport_count);
3494 /* Address items are in the order of items on the address chain. We
3495 remember the current address value in case this function is called
3496 several times to empty the pipe in stages. Information about delivery
3497 over TLS is sent in a preceding X item for each address. We don't put
3498 it in with the other info, in order to keep each message short enough to
3499 guarantee it won't be split in the pipe. */
3503 if (!addr) goto ADDR_MISMATCH; /* Below, in 'A' handler */
3507 addr->cipher = NULL;
3508 addr->peerdn = NULL;
3511 addr->cipher = string_copy(ptr);
3514 addr->peerdn = string_copy(ptr);
3519 (void) tls_import_cert(ptr, &addr->peercert);
3521 addr->peercert = NULL;
3526 (void) tls_import_cert(ptr, &addr->ourcert);
3528 addr->ourcert = NULL;
3531 # ifndef DISABLE_OCSP
3533 addr->ocsp = *ptr ? *ptr - '0' : OCSP_NOT_REQ;
3539 #endif /*SUPPORT_TLS*/
3541 case 'C': /* client authenticator information */
3544 case '1': addr->authenticator = *ptr ? string_copy(ptr) : NULL; break;
3545 case '2': addr->auth_id = *ptr ? string_copy(ptr) : NULL; break;
3546 case '3': addr->auth_sndr = *ptr ? string_copy(ptr) : NULL; break;
3551 #ifndef DISABLE_PRDR
3553 setflag(addr, af_prdr_used);
3560 case 1: setflag(addr, af_pipelining); break;
3565 setflag(addr, af_chunking_used);
3569 setflag(addr, af_tcp_fastopen_conn);
3570 if (*subid > '0') setflag(addr, af_tcp_fastopen);
3574 if (!addr) goto ADDR_MISMATCH;
3575 memcpy(&(addr->dsn_aware), ptr, sizeof(addr->dsn_aware));
3576 ptr += sizeof(addr->dsn_aware);
3577 DEBUG(D_deliver) debug_printf("DSN read: addr->dsn_aware = %d\n", addr->dsn_aware);
3584 msg = string_sprintf("address count mismatch for data read from pipe "
3585 "for transport process %d for transport %s", pid,
3586 addrlist->transport->driver_name);
3593 #ifdef SUPPORT_SOCKS
3594 case '2': /* proxy information; must arrive before A0 and applies to that addr XXX oops*/
3595 proxy_session = TRUE; /*XXX should this be cleared somewhere? */
3600 proxy_local_address = string_copy(ptr);
3602 memcpy(&proxy_local_port, ptr, sizeof(proxy_local_port));
3603 ptr += sizeof(proxy_local_port);
3608 #ifdef EXPERIMENTAL_DSN_INFO
3609 case '1': /* must arrive before A0, and applies to that addr */
3610 /* Two strings: smtp_greeting and helo_response */
3611 addr->smtp_greeting = string_copy(ptr);
3613 addr->helo_response = string_copy(ptr);
3619 DEBUG(D_deliver) debug_printf("A0 %s tret %d\n", addr->address, *ptr);
3620 addr->transport_return = *ptr++;
3621 addr->special_action = *ptr++;
3622 memcpy(&addr->basic_errno, ptr, sizeof(addr->basic_errno));
3623 ptr += sizeof(addr->basic_errno);
3624 memcpy(&addr->more_errno, ptr, sizeof(addr->more_errno));
3625 ptr += sizeof(addr->more_errno);
3626 memcpy(&addr->delivery_usec, ptr, sizeof(addr->delivery_usec));
3627 ptr += sizeof(addr->delivery_usec);
3628 memcpy(&addr->flags, ptr, sizeof(addr->flags));
3629 ptr += sizeof(addr->flags);
3630 addr->message = *ptr ? string_copy(ptr) : NULL;
3632 addr->user_message = *ptr ? string_copy(ptr) : NULL;
3635 /* Always two strings for host information, followed by the port number and DNSSEC mark */
3639 h = store_get(sizeof(host_item));
3640 h->name = string_copy(ptr);
3642 h->address = string_copy(ptr);
3644 memcpy(&h->port, ptr, sizeof(h->port));
3645 ptr += sizeof(h->port);
3646 h->dnssec = *ptr == '2' ? DS_YES
3647 : *ptr == '1' ? DS_NO
3650 addr->host_used = h;
3654 /* Finished with this address */
3661 /* Local interface address/port */
3663 if (*ptr) sending_ip_address = string_copy(ptr);
3665 if (*ptr) sending_port = atoi(CS ptr);
3669 /* Z marks the logical end of the data. It is followed by '0' if
3670 continue_transport was NULL at the end of transporting, otherwise '1'.
3671 We need to know when it becomes NULL during a delivery down a passed SMTP
3672 channel so that we don't try to pass anything more down it. Of course, for
3673 most normal messages it will remain NULL all the time. */
3678 continue_transport = NULL;
3679 continue_hostname = NULL;
3682 DEBUG(D_deliver) debug_printf("Z0%c item read\n", *ptr);
3685 /* Anything else is a disaster. */
3688 msg = string_sprintf("malformed data (%d) read from pipe for transport "
3689 "process %d for transport %s", ptr[-1], pid,
3690 addr->transport->driver_name);
3696 /* The done flag is inspected externally, to determine whether or not to
3697 call the function again when the process finishes. */
3701 /* If the process hadn't finished, and we haven't seen the end of the data
3702 or if we suffered a disaster, update the rest of the state, and return FALSE to
3703 indicate "not finished". */
3712 /* Close our end of the pipe, to prevent deadlock if the far end is still
3713 pushing stuff into it. */
3718 /* If we have finished without error, but haven't had data for every address,
3719 something is wrong. */
3722 msg = string_sprintf("insufficient address data read from pipe "
3723 "for transport process %d for transport %s", pid,
3724 addr->transport->driver_name);
3726 /* If an error message is set, something has gone wrong in getting back
3727 the delivery data. Put the message into each address and freeze it. */
3730 for (addr = addrlist; addr; addr = addr->next)
3732 addr->transport_return = DEFER;
3733 addr->special_action = SPECIAL_FREEZE;
3734 addr->message = msg;
3735 log_write(0, LOG_MAIN|LOG_PANIC, "Delivery status for %s: %s\n", addr->address, addr->message);
3738 /* Return TRUE to indicate we have got all we need from this process, even
3739 if it hasn't actually finished yet. */
3746 /*************************************************
3747 * Post-process a set of remote addresses *
3748 *************************************************/
3750 /* Do what has to be done immediately after a remote delivery for each set of
3751 addresses, then re-write the spool if necessary. Note that post_process_one
3752 puts the address on an appropriate queue; hence we must fish off the next
3753 one first. This function is also called if there is a problem with setting
3754 up a subprocess to do a remote delivery in parallel. In this case, the final
3755 argument contains a message, and the action must be forced to DEFER.
3758 addr pointer to chain of address items
3759 logflags flags for logging
3760 msg NULL for normal cases; -> error message for unexpected problems
3761 fallback TRUE if processing fallback hosts
3767 remote_post_process(address_item *addr, int logflags, uschar *msg,
3772 /* If any host addresses were found to be unusable, add them to the unusable
3773 tree so that subsequent deliveries don't try them. */
3775 for (h = addr->host_list; h; h = h->next)
3777 if (h->status >= hstatus_unusable) tree_add_unusable(h);
3779 /* Now handle each address on the chain. The transport has placed '=' or '-'
3780 into the special_action field for each successful delivery. */
3784 address_item *next = addr->next;
3786 /* If msg == NULL (normal processing) and the result is DEFER and we are
3787 processing the main hosts and there are fallback hosts available, put the
3788 address on the list for fallback delivery. */
3790 if ( addr->transport_return == DEFER
3791 && addr->fallback_hosts
3796 addr->host_list = addr->fallback_hosts;
3797 addr->next = addr_fallback;
3798 addr_fallback = addr;
3799 DEBUG(D_deliver) debug_printf("%s queued for fallback host(s)\n", addr->address);
3802 /* If msg is set (=> unexpected problem), set it in the address before
3803 doing the ordinary post processing. */
3809 addr->message = msg;
3810 addr->transport_return = DEFER;
3812 (void)post_process_one(addr, addr->transport_return, logflags,
3813 EXIM_DTYPE_TRANSPORT, addr->special_action);
3821 /* If we have just delivered down a passed SMTP channel, and that was
3822 the last address, the channel will have been closed down. Now that
3823 we have logged that delivery, set continue_sequence to 1 so that
3824 any subsequent deliveries don't get "*" incorrectly logged. */
3826 if (!continue_transport) continue_sequence = 1;
3831 /*************************************************
3832 * Wait for one remote delivery subprocess *
3833 *************************************************/
3835 /* This function is called while doing remote deliveries when either the
3836 maximum number of processes exist and we need one to complete so that another
3837 can be created, or when waiting for the last ones to complete. It must wait for
3838 the completion of one subprocess, empty the control block slot, and return a
3839 pointer to the address chain.
3842 Returns: pointer to the chain of addresses handled by the process;
3843 NULL if no subprocess found - this is an unexpected error
3846 static address_item *
3849 int poffset, status;
3850 address_item *addr, *addrlist;
3853 set_process_info("delivering %s: waiting for a remote delivery subprocess "
3854 "to finish", message_id);
3856 /* Loop until either a subprocess completes, or there are no subprocesses in
3857 existence - in which case give an error return. We cannot proceed just by
3858 waiting for a completion, because a subprocess may have filled up its pipe, and
3859 be waiting for it to be emptied. Therefore, if no processes have finished, we
3860 wait for one of the pipes to acquire some data by calling select(), with a
3861 timeout just in case.
3863 The simple approach is just to iterate after reading data from a ready pipe.
3864 This leads to non-ideal behaviour when the subprocess has written its final Z
3865 item, closed the pipe, and is in the process of exiting (the common case). A
3866 call to waitpid() yields nothing completed, but select() shows the pipe ready -
3867 reading it yields EOF, so you end up with busy-waiting until the subprocess has
3870 To avoid this, if all the data that is needed has been read from a subprocess
3871 after select(), an explicit wait() for it is done. We know that all it is doing
3872 is writing to the pipe and then exiting, so the wait should not be long.
3874 The non-blocking waitpid() is to some extent just insurance; if we could
3875 reliably detect end-of-file on the pipe, we could always know when to do a
3876 blocking wait() for a completed process. However, because some systems use
3877 NDELAY, which doesn't distinguish between EOF and pipe empty, it is easier to
3878 use code that functions without the need to recognize EOF.
3880 There's a double loop here just in case we end up with a process that is not in
3881 the list of remote delivery processes. Something has obviously gone wrong if
3882 this is the case. (For example, a process that is incorrectly left over from
3883 routing or local deliveries might be found.) The damage can be minimized by
3884 looping back and looking for another process. If there aren't any, the error
3885 return will happen. */
3887 for (;;) /* Normally we do not repeat this loop */
3889 while ((pid = waitpid(-1, &status, WNOHANG)) <= 0)
3892 fd_set select_pipes;
3893 int maxpipe, readycount;
3895 /* A return value of -1 can mean several things. If errno != ECHILD, it
3896 either means invalid options (which we discount), or that this process was
3897 interrupted by a signal. Just loop to try the waitpid() again.
3899 If errno == ECHILD, waitpid() is telling us that there are no subprocesses
3900 in existence. This should never happen, and is an unexpected error.
3901 However, there is a nasty complication when running under Linux. If "strace
3902 -f" is being used under Linux to trace this process and its children,
3903 subprocesses are "stolen" from their parents and become the children of the
3904 tracing process. A general wait such as the one we've just obeyed returns
3905 as if there are no children while subprocesses are running. Once a
3906 subprocess completes, it is restored to the parent, and waitpid(-1) finds
3907 it. Thanks to Joachim Wieland for finding all this out and suggesting a
3910 This does not happen using "truss" on Solaris, nor (I think) with other
3911 tracing facilities on other OS. It seems to be specific to Linux.
3913 What we do to get round this is to use kill() to see if any of our
3914 subprocesses are still in existence. If kill() gives an OK return, we know
3915 it must be for one of our processes - it can't be for a re-use of the pid,
3916 because if our process had finished, waitpid() would have found it. If any
3917 of our subprocesses are in existence, we proceed to use select() as if
3918 waitpid() had returned zero. I think this is safe. */
3922 if (errno != ECHILD) continue; /* Repeats the waitpid() */
3925 debug_printf("waitpid() returned -1/ECHILD: checking explicitly "
3926 "for process existence\n");
3928 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3930 if ((pid = parlist[poffset].pid) != 0 && kill(pid, 0) == 0)
3932 DEBUG(D_deliver) debug_printf("process %d still exists: assume "
3933 "stolen by strace\n", (int)pid);
3934 break; /* With poffset set */
3938 if (poffset >= remote_max_parallel)
3940 DEBUG(D_deliver) debug_printf("*** no delivery children found\n");
3941 return NULL; /* This is the error return */
3945 /* A pid value greater than 0 breaks the "while" loop. A negative value has
3946 been handled above. A return value of zero means that there is at least one
3947 subprocess, but there are no completed subprocesses. See if any pipes are
3948 ready with any data for reading. */
3950 DEBUG(D_deliver) debug_printf("selecting on subprocess pipes\n");
3953 FD_ZERO(&select_pipes);
3954 for (poffset = 0; poffset < remote_max_parallel; poffset++)
3955 if (parlist[poffset].pid != 0)
3957 int fd = parlist[poffset].fd;
3958 FD_SET(fd, &select_pipes);
3959 if (fd > maxpipe) maxpipe = fd;
3962 /* Stick in a 60-second timeout, just in case. */
3967 readycount = select(maxpipe + 1, (SELECT_ARG2_TYPE *)&select_pipes,
3970 /* Scan through the pipes and read any that are ready; use the count
3971 returned by select() to stop when there are no more. Select() can return
3972 with no processes (e.g. if interrupted). This shouldn't matter.
3974 If par_read_pipe() returns TRUE, it means that either the terminating Z was
3975 read, or there was a disaster. In either case, we are finished with this
3976 process. Do an explicit wait() for the process and break the main loop if
3979 It turns out that we have to deal with the case of an interrupted system
3980 call, which can happen on some operating systems if the signal handling is
3981 set up to do that by default. */
3984 readycount > 0 && poffset < remote_max_parallel;
3987 if ( (pid = parlist[poffset].pid) != 0
3988 && FD_ISSET(parlist[poffset].fd, &select_pipes)
3992 if (par_read_pipe(poffset, FALSE)) /* Finished with this pipe */
3993 for (;;) /* Loop for signals */
3995 pid_t endedpid = waitpid(pid, &status, 0);
3996 if (endedpid == pid) goto PROCESS_DONE;
3997 if (endedpid != (pid_t)(-1) || errno != EINTR)
3998 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Unexpected error return "
3999 "%d (errno = %d) from waitpid() for process %d",
4000 (int)endedpid, errno, (int)pid);
4005 /* Now go back and look for a completed subprocess again. */
4008 /* A completed process was detected by the non-blocking waitpid(). Find the
4009 data block that corresponds to this subprocess. */
4011 for (poffset = 0; poffset < remote_max_parallel; poffset++)
4012 if (pid == parlist[poffset].pid) break;
4014 /* Found the data block; this is a known remote delivery process. We don't
4015 need to repeat the outer loop. This should be what normally happens. */
4017 if (poffset < remote_max_parallel) break;
4019 /* This situation is an error, but it's probably better to carry on looking
4020 for another process than to give up (as we used to do). */
4022 log_write(0, LOG_MAIN|LOG_PANIC, "Process %d finished: not found in remote "
4023 "transport process list", pid);
4024 } /* End of the "for" loop */
4026 /* Come here when all the data was completely read after a select(), and
4027 the process in pid has been wait()ed for. */
4034 debug_printf("remote delivery process %d ended\n", (int)pid);
4036 debug_printf("remote delivery process %d ended: status=%04x\n", (int)pid,
4040 set_process_info("delivering %s", message_id);
4042 /* Get the chain of processed addresses */
4044 addrlist = parlist[poffset].addrlist;
4046 /* If the process did not finish cleanly, record an error and freeze (except
4047 for SIGTERM, SIGKILL and SIGQUIT), and also ensure the journal is not removed,
4048 in case the delivery did actually happen. */
4050 if ((status & 0xffff) != 0)
4053 int msb = (status >> 8) & 255;
4054 int lsb = status & 255;
4055 int code = (msb == 0)? (lsb & 0x7f) : msb;
4057 msg = string_sprintf("%s transport process returned non-zero status 0x%04x: "
4059 addrlist->transport->driver_name,
4061 (msb == 0)? "terminated by signal" : "exit code",
4064 if (msb != 0 || (code != SIGTERM && code != SIGKILL && code != SIGQUIT))
4065 addrlist->special_action = SPECIAL_FREEZE;
4067 for (addr = addrlist; addr; addr = addr->next)
4069 addr->transport_return = DEFER;
4070 addr->message = msg;
4073 remove_journal = FALSE;
4076 /* Else complete reading the pipe to get the result of the delivery, if all
4077 the data has not yet been obtained. */
4079 else if (!parlist[poffset].done) (void)par_read_pipe(poffset, TRUE);
4081 /* Put the data count and return path into globals, mark the data slot unused,
4082 decrement the count of subprocesses, and return the address chain. */
4084 transport_count = parlist[poffset].transport_count;
4085 used_return_path = parlist[poffset].return_path;
4086 parlist[poffset].pid = 0;
4093 /*************************************************
4094 * Wait for subprocesses and post-process *
4095 *************************************************/
4097 /* This function waits for subprocesses until the number that are still running
4098 is below a given threshold. For each complete subprocess, the addresses are
4099 post-processed. If we can't find a running process, there is some shambles.
4100 Better not bomb out, as that might lead to multiple copies of the message. Just
4101 log and proceed as if all done.
4104 max maximum number of subprocesses to leave running
4105 fallback TRUE if processing fallback hosts
4111 par_reduce(int max, BOOL fallback)
4113 while (parcount > max)
4115 address_item *doneaddr = par_wait();
4118 log_write(0, LOG_MAIN|LOG_PANIC,
4119 "remote delivery process count got out of step");
4124 transport_instance * tp = doneaddr->transport;
4125 if (tp->max_parallel)
4126 enq_end(string_sprintf("tpt-serialize-%s", tp->name));
4128 remote_post_process(doneaddr, LOG_MAIN, NULL, fallback);
4134 rmt_dlv_checked_write(int fd, char id, char subid, void * buf, ssize_t size)
4136 uschar pipe_header[PIPE_HEADER_SIZE+1];
4137 size_t total_len = PIPE_HEADER_SIZE + size;
4139 struct iovec iov[2] = {
4140 { pipe_header, PIPE_HEADER_SIZE }, /* indication about the data to expect */
4141 { buf, size } /* *the* data */
4146 /* we assume that size can't get larger then BIG_BUFFER_SIZE which currently is set to 16k */
4147 /* complain to log if someone tries with buffer sizes we can't handle*/
4149 if (size > BIG_BUFFER_SIZE-1)
4151 log_write(0, LOG_MAIN|LOG_PANIC_DIE,
4152 "Failed writing transport result to pipe: can't handle buffers > %d bytes. truncating!\n",
4154 size = BIG_BUFFER_SIZE;
4157 /* Should we check that we do not write more than PIPE_BUF? What would
4160 /* convert size to human readable string prepended by id and subid */
4161 if (PIPE_HEADER_SIZE != snprintf(CS pipe_header, PIPE_HEADER_SIZE+1, "%c%c%05ld",
4162 id, subid, (long)size))
4163 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "header snprintf failed\n");
4165 DEBUG(D_deliver) debug_printf("header write id:%c,subid:%c,size:%ld,final:%s\n",
4166 id, subid, (long)size, pipe_header);
4168 if ((ret = writev(fd, iov, 2)) != total_len)
4169 log_write(0, LOG_MAIN|LOG_PANIC_DIE,
4170 "Failed writing transport result to pipe (%ld of %ld bytes): %s",
4171 (long)ret, (long)total_len, ret == -1 ? strerror(errno) : "short write");
4174 /*************************************************
4175 * Do remote deliveries *
4176 *************************************************/
4178 /* This function is called to process the addresses in addr_remote. We must
4179 pick off the queue all addresses that have the same transport, remote
4180 destination, and errors address, and hand them to the transport in one go,
4181 subject to some configured limitations. If this is a run to continue delivering
4182 to an existing delivery channel, skip all but those addresses that can go to
4183 that channel. The skipped addresses just get deferred.
4185 If mua_wrapper is set, all addresses must be able to be sent in a single
4186 transaction. If not, this function yields FALSE.
4188 In Exim 4, remote deliveries are always done in separate processes, even
4189 if remote_max_parallel = 1 or if there's only one delivery to do. The reason
4190 is so that the base process can retain privilege. This makes the
4191 implementation of fallback transports feasible (though not initially done.)
4193 We create up to the configured number of subprocesses, each of which passes
4194 back the delivery state via a pipe. (However, when sending down an existing
4195 connection, remote_max_parallel is forced to 1.)
4198 fallback TRUE if processing fallback hosts
4200 Returns: TRUE normally
4201 FALSE if mua_wrapper is set and the addresses cannot all be sent
4206 do_remote_deliveries(BOOL fallback)
4212 parcount = 0; /* Number of executing subprocesses */
4214 /* When sending down an existing channel, only do one delivery at a time.
4215 We use a local variable (parmax) to hold the maximum number of processes;
4216 this gets reduced from remote_max_parallel if we can't create enough pipes. */
4218 if (continue_transport) remote_max_parallel = 1;
4219 parmax = remote_max_parallel;
4221 /* If the data for keeping a list of processes hasn't yet been
4226 parlist = store_get(remote_max_parallel * sizeof(pardata));
4227 for (poffset = 0; poffset < remote_max_parallel; poffset++)
4228 parlist[poffset].pid = 0;
4231 /* Now loop for each remote delivery */
4233 for (delivery_count = 0; addr_remote; delivery_count++)
4239 int address_count = 1;
4240 int address_count_max;
4242 BOOL use_initgroups;
4243 BOOL pipe_done = FALSE;
4244 transport_instance *tp;
4245 address_item **anchor = &addr_remote;
4246 address_item *addr = addr_remote;
4247 address_item *last = addr;
4250 uschar * serialize_key = NULL;
4252 /* Pull the first address right off the list. */
4254 addr_remote = addr->next;
4257 DEBUG(D_deliver|D_transport)
4258 debug_printf("--------> %s <--------\n", addr->address);
4260 /* If no transport has been set, there has been a big screw-up somewhere. */
4262 if (!(tp = addr->transport))
4264 f.disable_logging = FALSE; /* Jic */
4265 panicmsg = US"No transport set by router";
4266 goto panic_continue;
4269 /* Check that this base address hasn't previously been delivered to this
4270 transport. The check is necessary at this point to handle homonymic addresses
4271 correctly in cases where the pattern of redirection changes between delivery
4272 attempts. Non-homonymic previous delivery is detected earlier, at routing
4275 if (previously_transported(addr, FALSE)) continue;
4277 /* Force failure if the message is too big. */
4279 if (tp->message_size_limit)
4281 int rc = check_message_size(tp, addr);
4284 addr->transport_return = rc;
4285 remote_post_process(addr, LOG_MAIN, NULL, fallback);
4290 /* Get the flag which specifies whether the transport can handle different
4291 domains that nevertheless resolve to the same set of hosts. If it needs
4292 expanding, get variables set: $address_data, $domain_data, $localpart_data,
4293 $host, $host_address, $host_port. */
4294 if (tp->expand_multi_domain)
4295 deliver_set_expansions(addr);
4297 if (exp_bool(addr, US"transport", tp->name, D_transport,
4298 US"multi_domain", tp->multi_domain, tp->expand_multi_domain,
4299 &multi_domain) != OK)
4301 deliver_set_expansions(NULL);
4302 panicmsg = addr->message;
4303 goto panic_continue;
4306 /* Get the maximum it can handle in one envelope, with zero meaning
4307 unlimited, which is forced for the MUA wrapper case. */
4309 address_count_max = tp->max_addresses;
4310 if (address_count_max == 0 || mua_wrapper) address_count_max = 999999;
4313 /************************************************************************/
4314 /***** This is slightly experimental code, but should be safe. *****/
4316 /* The address_count_max value is the maximum number of addresses that the
4317 transport can send in one envelope. However, the transport must be capable of
4318 dealing with any number of addresses. If the number it gets exceeds its
4319 envelope limitation, it must send multiple copies of the message. This can be
4320 done over a single connection for SMTP, so uses less resources than making
4321 multiple connections. On the other hand, if remote_max_parallel is greater
4322 than one, it is perhaps a good idea to use parallel processing to move the
4323 message faster, even if that results in multiple simultaneous connections to
4326 How can we come to some compromise between these two ideals? What we do is to
4327 limit the number of addresses passed to a single instance of a transport to
4328 the greater of (a) its address limit (rcpt_max for SMTP) and (b) the total
4329 number of addresses routed to remote transports divided by
4330 remote_max_parallel. For example, if the message has 100 remote recipients,
4331 remote max parallel is 2, and rcpt_max is 10, we'd never send more than 50 at
4332 once. But if rcpt_max is 100, we could send up to 100.
4334 Of course, not all the remotely addresses in a message are going to go to the
4335 same set of hosts (except in smarthost configurations), so this is just a
4336 heuristic way of dividing up the work.
4338 Furthermore (1), because this may not be wanted in some cases, and also to
4339 cope with really pathological cases, there is also a limit to the number of
4340 messages that are sent over one connection. This is the same limit that is
4341 used when sending several different messages over the same connection.
4342 Continue_sequence is set when in this situation, to the number sent so
4343 far, including this message.
4345 Furthermore (2), when somebody explicitly sets the maximum value to 1, it
4346 is probably because they are using VERP, in which case they want to pass only
4347 one address at a time to the transport, in order to be able to use
4348 $local_part and $domain in constructing a new return path. We could test for
4349 the use of these variables, but as it is so likely they will be used when the
4350 maximum is 1, we don't bother. Just leave the value alone. */
4352 if ( address_count_max != 1
4353 && address_count_max < remote_delivery_count/remote_max_parallel
4356 int new_max = remote_delivery_count/remote_max_parallel;
4357 int message_max = tp->connection_max_messages;
4358 if (connection_max_messages >= 0) message_max = connection_max_messages;
4359 message_max -= continue_sequence - 1;
4360 if (message_max > 0 && new_max > address_count_max * message_max)
4361 new_max = address_count_max * message_max;
4362 address_count_max = new_max;
4365 /************************************************************************/
4368 /* Pick off all addresses which have the same transport, errors address,
4369 destination, and extra headers. In some cases they point to the same host
4370 list, but we also need to check for identical host lists generated from
4371 entirely different domains. The host list pointers can be NULL in the case
4372 where the hosts are defined in the transport. There is also a configured
4373 maximum limit of addresses that can be handled at once (see comments above
4374 for how it is computed).
4375 If the transport does not handle multiple domains, enforce that also,
4376 and if it might need a per-address check for this, re-evaluate it.
4379 while ((next = *anchor) && address_count < address_count_max)
4382 if ( (multi_domain || Ustrcmp(next->domain, addr->domain) == 0)
4383 && tp == next->transport
4384 && same_hosts(next->host_list, addr->host_list)
4385 && same_strings(next->prop.errors_address, addr->prop.errors_address)
4386 && same_headers(next->prop.extra_headers, addr->prop.extra_headers)
4387 && same_ugid(tp, next, addr)
4388 && ( next->prop.remove_headers == addr->prop.remove_headers
4389 || ( next->prop.remove_headers
4390 && addr->prop.remove_headers
4391 && Ustrcmp(next->prop.remove_headers, addr->prop.remove_headers) == 0
4395 (void)(!tp->expand_multi_domain || ((void)deliver_set_expansions(next), 1)),
4397 US"transport", next->transport->name, D_transport,
4398 US"multi_domain", next->transport->multi_domain,
4399 next->transport->expand_multi_domain, &md) == OK
4404 *anchor = next->next;
4406 next->first = addr; /* remember top one (for retry processing) */
4411 else anchor = &(next->next);
4412 deliver_set_expansions(NULL);
4415 /* If we are acting as an MUA wrapper, all addresses must go in a single
4416 transaction. If not, put them back on the chain and yield FALSE. */
4418 if (mua_wrapper && addr_remote)
4420 last->next = addr_remote;
4425 /* If the transport is limited for parallellism, enforce that here.
4426 The hints DB entry is decremented in par_reduce(), when we reap the
4427 transport process. */
4429 if (tpt_parallel_check(tp, addr, &serialize_key))
4430 if ((panicmsg = expand_string_message))
4431 goto panic_continue;
4433 continue; /* Loop for the next set of addresses. */
4435 /* Set up the expansion variables for this set of addresses */
4437 deliver_set_expansions(addr);
4439 /* Ensure any transport-set auth info is fresh */
4440 addr->authenticator = addr->auth_id = addr->auth_sndr = NULL;
4442 /* Compute the return path, expanding a new one if required. The old one
4443 must be set first, as it might be referred to in the expansion. */
4445 if(addr->prop.errors_address)
4446 return_path = addr->prop.errors_address;
4447 #ifdef EXPERIMENTAL_SRS
4448 else if(addr->prop.srs_sender)
4449 return_path = addr->prop.srs_sender;
4452 return_path = sender_address;
4454 if (tp->return_path)
4456 uschar *new_return_path = expand_string(tp->return_path);
4457 if (new_return_path)
4458 return_path = new_return_path;
4459 else if (!f.expand_string_forcedfail)
4461 panicmsg = string_sprintf("Failed to expand return path \"%s\": %s",
4462 tp->return_path, expand_string_message);
4467 /* Find the uid, gid, and use_initgroups setting for this transport. Failure
4468 logs and sets up error messages, so we just post-process and continue with
4469 the next address. */
4471 if (!findugid(addr, tp, &uid, &gid, &use_initgroups))
4477 /* If this transport has a setup function, call it now so that it gets
4478 run in this process and not in any subprocess. That way, the results of
4479 any setup that are retained by the transport can be reusable. One of the
4480 things the setup does is to set the fallback host lists in the addresses.
4481 That is why it is called at this point, before the continue delivery
4482 processing, because that might use the fallback hosts. */
4485 (void)((tp->setup)(addr->transport, addr, NULL, uid, gid, NULL));
4487 /* If we have a connection still open from a verify stage (lazy-close)
4488 treat it as if it is a continued connection (apart from the counter used
4489 for the log line mark). */
4491 if (cutthrough.cctx.sock >= 0 && cutthrough.callout_hold_only)
4494 debug_printf("lazy-callout-close: have conn still open from verification\n");
4495 continue_transport = cutthrough.transport;
4496 continue_hostname = string_copy(cutthrough.host.name);
4497 continue_host_address = string_copy(cutthrough.host.address);
4498 continue_sequence = 1;
4499 sending_ip_address = cutthrough.snd_ip;
4500 sending_port = cutthrough.snd_port;
4501 smtp_peer_options = cutthrough.peer_options;
4504 /* If this is a run to continue delivery down an already-established
4505 channel, check that this set of addresses matches the transport and
4506 the channel. If it does not, defer the addresses. If a host list exists,
4507 we must check that the continue host is on the list. Otherwise, the
4508 host is set in the transport. */
4510 f.continue_more = FALSE; /* In case got set for the last lot */
4511 if (continue_transport)
4513 BOOL ok = Ustrcmp(continue_transport, tp->name) == 0;
4515 /* If the transport is about to override the host list do not check
4516 it here but take the cost of running the transport process to discover
4517 if the continued_hostname connection is suitable. This is a layering
4518 violation which is unfortunate as it requires we haul in the smtp
4523 smtp_transport_options_block * ob;
4525 if ( !( Ustrcmp(tp->info->driver_name, "smtp") == 0
4526 && (ob = (smtp_transport_options_block *)tp->options_block)
4527 && ob->hosts_override && ob->hosts
4534 for (h = addr->host_list; h; h = h->next)
4535 if (Ustrcmp(h->name, continue_hostname) == 0)
4536 /*XXX should also check port here */
4537 { ok = TRUE; break; }
4541 /* Addresses not suitable; defer or queue for fallback hosts (which
4542 might be the continue host) and skip to next address. */
4546 DEBUG(D_deliver) debug_printf("not suitable for continue_transport (%s)\n",
4547 Ustrcmp(continue_transport, tp->name) != 0
4548 ? string_sprintf("tpt %s vs %s", continue_transport, tp->name)
4549 : string_sprintf("no host matching %s", continue_hostname));
4550 if (serialize_key) enq_end(serialize_key);
4552 if (addr->fallback_hosts && !fallback)
4554 for (next = addr; ; next = next->next)
4556 next->host_list = next->fallback_hosts;
4557 DEBUG(D_deliver) debug_printf("%s queued for fallback host(s)\n", next->address);
4558 if (!next->next) break;
4560 next->next = addr_fallback;
4561 addr_fallback = addr;
4566 for (next = addr; ; next = next->next)
4568 DEBUG(D_deliver) debug_printf(" %s to def list\n", next->address);
4569 if (!next->next) break;
4571 next->next = addr_defer;
4578 /* Set a flag indicating whether there are further addresses that list
4579 the continued host. This tells the transport to leave the channel open,
4580 but not to pass it to another delivery process. We'd like to do that
4581 for non-continue_transport cases too but the knowlege of which host is
4582 connected to is too hard to manage. Perhaps we need a finer-grain
4583 interface to the transport. */
4585 for (next = addr_remote; next && !f.continue_more; next = next->next)
4588 for (h = next->host_list; h; h = h->next)
4589 if (Ustrcmp(h->name, continue_hostname) == 0)
4590 { f.continue_more = TRUE; break; }
4594 /* The transports set up the process info themselves as they may connect
4595 to more than one remote machine. They also have to set up the filter
4596 arguments, if required, so that the host name and address are available
4599 transport_filter_argv = NULL;
4601 /* Create the pipe for inter-process communication. If pipe creation
4602 fails, it is probably because the value of remote_max_parallel is so
4603 large that too many file descriptors for pipes have been created. Arrange
4604 to wait for a process to finish, and then try again. If we still can't
4605 create a pipe when all processes have finished, break the retry loop. */
4609 if (pipe(pfd) == 0) pipe_done = TRUE;
4610 else if (parcount > 0) parmax = parcount;
4613 /* We need to make the reading end of the pipe non-blocking. There are
4614 two different options for this. Exim is cunningly (I hope!) coded so
4615 that it can use either of them, though it prefers O_NONBLOCK, which
4616 distinguishes between EOF and no-more-data. */
4618 /* The data appears in a timely manner and we already did a select on
4619 all pipes, so I do not see a reason to use non-blocking IO here
4622 (void)fcntl(pfd[pipe_read], F_SETFL, O_NONBLOCK);
4624 (void)fcntl(pfd[pipe_read], F_SETFL, O_NDELAY);
4628 /* If the maximum number of subprocesses already exist, wait for a process
4629 to finish. If we ran out of file descriptors, parmax will have been reduced
4630 from its initial value of remote_max_parallel. */
4632 par_reduce(parmax - 1, fallback);
4635 /* If we failed to create a pipe and there were no processes to wait
4636 for, we have to give up on this one. Do this outside the above loop
4637 so that we can continue the main loop. */
4641 panicmsg = string_sprintf("unable to create pipe: %s", strerror(errno));
4645 /* Find a free slot in the pardata list. Must do this after the possible
4646 waiting for processes to finish, because a terminating process will free
4649 for (poffset = 0; poffset < remote_max_parallel; poffset++)
4650 if (parlist[poffset].pid == 0)
4653 /* If there isn't one, there has been a horrible disaster. */
4655 if (poffset >= remote_max_parallel)
4657 (void)close(pfd[pipe_write]);
4658 (void)close(pfd[pipe_read]);
4659 panicmsg = US"Unexpectedly no free subprocess slot";
4663 /* Now fork a subprocess to do the remote delivery, but before doing so,
4664 ensure that any cached resources are released so as not to interfere with
4665 what happens in the subprocess. */
4670 if ((pid = fork()) == 0)
4672 int fd = pfd[pipe_write];
4674 DEBUG(D_deliver) debug_selector |= D_pid; // hs12
4676 /* Setting this global in the subprocess means we need never clear it */
4677 transport_name = tp->name;
4679 /* There are weird circumstances in which logging is disabled */
4680 f.disable_logging = tp->disable_logging;
4682 /* Show pids on debug output if parallelism possible */
4684 if (parmax > 1 && (parcount > 0 || addr_remote))
4686 DEBUG(D_any|D_v) debug_selector |= D_pid;
4687 DEBUG(D_deliver) debug_printf("Remote delivery process started\n");
4690 /* Reset the random number generator, so different processes don't all
4691 have the same sequence. In the test harness we want different, but
4692 predictable settings for each delivery process, so do something explicit
4693 here rather they rely on the fixed reset in the random number function. */
4695 random_seed = f.running_in_test_harness ? 42 + 2*delivery_count : 0;
4697 /* Set close-on-exec on the pipe so that it doesn't get passed on to
4698 a new process that may be forked to do another delivery down the same
4701 (void)fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
4703 /* Close open file descriptors for the pipes of other processes
4704 that are running in parallel. */
4706 for (poffset = 0; poffset < remote_max_parallel; poffset++)
4707 if (parlist[poffset].pid != 0) (void)close(parlist[poffset].fd);
4709 /* This process has inherited a copy of the file descriptor
4710 for the data file, but its file pointer is shared with all the
4711 other processes running in parallel. Therefore, we have to re-open
4712 the file in order to get a new file descriptor with its own
4713 file pointer. We don't need to lock it, as the lock is held by
4714 the parent process. There doesn't seem to be any way of doing
4715 a dup-with-new-file-pointer. */
4717 (void)close(deliver_datafile);
4719 uschar * fname = spool_fname(US"input", message_subdir, message_id, US"-D");
4721 if ((deliver_datafile = Uopen(fname,
4725 O_RDWR | O_APPEND, 0)) < 0)
4726 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Failed to reopen %s for remote "
4727 "parallel delivery: %s", fname, strerror(errno));
4730 /* Set the close-on-exec flag */
4732 (void)fcntl(deliver_datafile, F_SETFD, fcntl(deliver_datafile, F_GETFD) |
4736 /* Set the uid/gid of this process; bombs out on failure. */
4738 exim_setugid(uid, gid, use_initgroups,
4739 string_sprintf("remote delivery to %s with transport=%s",
4740 addr->address, tp->name));
4742 /* Close the unwanted half of this process' pipe, set the process state,
4743 and run the transport. Afterwards, transport_count will contain the number
4744 of bytes written. */
4746 (void)close(pfd[pipe_read]);
4747 set_process_info("delivering %s using %s", message_id, tp->name);
4748 debug_print_string(tp->debug_string);
4749 if (!(tp->info->code)(addr->transport, addr)) replicate_status(addr);
4751 set_process_info("delivering %s (just run %s for %s%s in subprocess)",
4752 message_id, tp->name, addr->address, addr->next ? ", ..." : "");
4754 /* Ensure any cached resources that we used are now released */
4758 /* Pass the result back down the pipe. This is a lot more information
4759 than is needed for a local delivery. We have to send back the error
4760 status for each address, the usability status for each host that is
4761 flagged as unusable, and all the retry items. When TLS is in use, we
4762 send also the cipher and peerdn information. Each type of information
4763 is flagged by an identifying byte, and is then in a fixed format (with
4764 strings terminated by zeros), and there is a final terminator at the
4765 end. The host information and retry information is all attached to
4766 the first address, so that gets sent at the start. */
4768 /* Host unusability information: for most success cases this will
4771 for (h = addr->host_list; h; h = h->next)
4773 if (!h->address || h->status < hstatus_unusable) continue;
4774 sprintf(CS big_buffer, "%c%c%s", h->status, h->why, h->address);
4775 rmt_dlv_checked_write(fd, 'H', '0', big_buffer, Ustrlen(big_buffer+2) + 3);
4778 /* The number of bytes written. This is the same for each address. Even
4779 if we sent several copies of the message down the same connection, the
4780 size of each one is the same, and it's that value we have got because
4781 transport_count gets reset before calling transport_write_message(). */
4783 memcpy(big_buffer, &transport_count, sizeof(transport_count));
4784 rmt_dlv_checked_write(fd, 'S', '0', big_buffer, sizeof(transport_count));
4786 /* Information about what happened to each address. Four item types are
4787 used: an optional 'X' item first, for TLS information, then an optional "C"
4788 item for any client-auth info followed by 'R' items for any retry settings,
4789 and finally an 'A' item for the remaining data. */
4791 for(; addr; addr = addr->next)
4796 /* The certificate verification status goes into the flags */
4797 if (tls_out.certificate_verified) setflag(addr, af_cert_verified);
4799 if (tls_out.dane_verified) setflag(addr, af_dane_verified);
4802 /* Use an X item only if there's something to send */
4806 ptr = big_buffer + sprintf(CS big_buffer, "%.128s", addr->cipher) + 1;
4810 ptr += sprintf(CS ptr, "%.512s", addr->peerdn) + 1;
4812 rmt_dlv_checked_write(fd, 'X', '1', big_buffer, ptr - big_buffer);
4814 else if (continue_proxy_cipher)
4816 ptr = big_buffer + sprintf(CS big_buffer, "%.128s", continue_proxy_cipher) + 1;
4818 rmt_dlv_checked_write(fd, 'X', '1', big_buffer, ptr - big_buffer);
4824 if (!tls_export_cert(ptr, big_buffer_size-2, addr->peercert))
4828 rmt_dlv_checked_write(fd, 'X', '2', big_buffer, ptr - big_buffer);
4833 if (!tls_export_cert(ptr, big_buffer_size-2, addr->ourcert))
4837 rmt_dlv_checked_write(fd, 'X', '3', big_buffer, ptr - big_buffer);
4839 # ifndef DISABLE_OCSP
4840 if (addr->ocsp > OCSP_NOT_REQ)
4842 ptr = big_buffer + sprintf(CS big_buffer, "%c", addr->ocsp + '0') + 1;
4843 rmt_dlv_checked_write(fd, 'X', '4', big_buffer, ptr - big_buffer);
4846 #endif /*SUPPORT_TLS*/
4848 if (client_authenticator)
4850 ptr = big_buffer + sprintf(CS big_buffer, "%.64s", client_authenticator) + 1;
4851 rmt_dlv_checked_write(fd, 'C', '1', big_buffer, ptr - big_buffer);
4853 if (client_authenticated_id)
4855 ptr = big_buffer + sprintf(CS big_buffer, "%.64s", client_authenticated_id) + 1;
4856 rmt_dlv_checked_write(fd, 'C', '2', big_buffer, ptr - big_buffer);
4858 if (client_authenticated_sender)
4860 ptr = big_buffer + sprintf(CS big_buffer, "%.64s", client_authenticated_sender) + 1;
4861 rmt_dlv_checked_write(fd, 'C', '3', big_buffer, ptr - big_buffer);
4864 #ifndef DISABLE_PRDR
4865 if (testflag(addr, af_prdr_used))
4866 rmt_dlv_checked_write(fd, 'P', '0', NULL, 0);
4869 if (testflag(addr, af_pipelining))
4870 rmt_dlv_checked_write(fd, 'L', '1', NULL, 0);
4872 if (testflag(addr, af_chunking_used))
4873 rmt_dlv_checked_write(fd, 'K', '0', NULL, 0);
4875 if (testflag(addr, af_tcp_fastopen_conn))
4876 rmt_dlv_checked_write(fd, 'T',
4877 testflag(addr, af_tcp_fastopen) ? '1' : '0', NULL, 0);
4879 memcpy(big_buffer, &addr->dsn_aware, sizeof(addr->dsn_aware));
4880 rmt_dlv_checked_write(fd, 'D', '0', big_buffer, sizeof(addr->dsn_aware));
4882 /* Retry information: for most success cases this will be null. */
4884 for (r = addr->retries; r; r = r->next)
4886 sprintf(CS big_buffer, "%c%.500s", r->flags, r->key);
4887 ptr = big_buffer + Ustrlen(big_buffer+2) + 3;
4888 memcpy(ptr, &r->basic_errno, sizeof(r->basic_errno));
4889 ptr += sizeof(r->basic_errno);
4890 memcpy(ptr, &r->more_errno, sizeof(r->more_errno));
4891 ptr += sizeof(r->more_errno);
4892 if (!r->message) *ptr++ = 0; else
4894 sprintf(CS ptr, "%.512s", r->message);
4897 rmt_dlv_checked_write(fd, 'R', '0', big_buffer, ptr - big_buffer);
4900 #ifdef SUPPORT_SOCKS
4901 if (LOGGING(proxy) && proxy_session)
4904 if (proxy_local_address)
4906 DEBUG(D_deliver) debug_printf("proxy_local_address '%s'\n", proxy_local_address);
4907 ptr = big_buffer + sprintf(CS ptr, "%.128s", proxy_local_address) + 1;
4908 DEBUG(D_deliver) debug_printf("proxy_local_port %d\n", proxy_local_port);
4909 memcpy(ptr, &proxy_local_port, sizeof(proxy_local_port));
4910 ptr += sizeof(proxy_local_port);
4914 rmt_dlv_checked_write(fd, 'A', '2', big_buffer, ptr - big_buffer);
4918 #ifdef EXPERIMENTAL_DSN_INFO
4919 /*um, are they really per-addr? Other per-conn stuff is not (auth, tls). But host_used is! */
4920 if (addr->smtp_greeting)
4922 DEBUG(D_deliver) debug_printf("smtp_greeting '%s'\n", addr->smtp_greeting);
4923 ptr = big_buffer + sprintf(CS big_buffer, "%.128s", addr->smtp_greeting) + 1;
4924 if (addr->helo_response)
4926 DEBUG(D_deliver) debug_printf("helo_response '%s'\n", addr->helo_response);
4927 ptr += sprintf(CS ptr, "%.128s", addr->helo_response) + 1;
4931 rmt_dlv_checked_write(fd, 'A', '1', big_buffer, ptr - big_buffer);
4935 /* The rest of the information goes in an 'A0' item. */
4937 sprintf(CS big_buffer, "%c%c", addr->transport_return, addr->special_action);
4938 ptr = big_buffer + 2;
4939 memcpy(ptr, &addr->basic_errno, sizeof(addr->basic_errno));
4940 ptr += sizeof(addr->basic_errno);
4941 memcpy(ptr, &addr->more_errno, sizeof(addr->more_errno));
4942 ptr += sizeof(addr->more_errno);
4943 memcpy(ptr, &addr->delivery_usec, sizeof(addr->delivery_usec));
4944 ptr += sizeof(addr->delivery_usec);
4945 memcpy(ptr, &addr->flags, sizeof(addr->flags));
4946 ptr += sizeof(addr->flags);
4948 if (!addr->message) *ptr++ = 0; else
4949 ptr += sprintf(CS ptr, "%.1024s", addr->message) + 1;
4951 if (!addr->user_message) *ptr++ = 0; else
4952 ptr += sprintf(CS ptr, "%.1024s", addr->user_message) + 1;
4954 if (!addr->host_used) *ptr++ = 0; else
4956 ptr += sprintf(CS ptr, "%.256s", addr->host_used->name) + 1;
4957 ptr += sprintf(CS ptr, "%.64s", addr->host_used->address) + 1;
4958 memcpy(ptr, &addr->host_used->port, sizeof(addr->host_used->port));
4959 ptr += sizeof(addr->host_used->port);
4961 /* DNS lookup status */
4962 *ptr++ = addr->host_used->dnssec==DS_YES ? '2'
4963 : addr->host_used->dnssec==DS_NO ? '1' : '0';
4966 rmt_dlv_checked_write(fd, 'A', '0', big_buffer, ptr - big_buffer);
4969 /* Local interface address/port */
4970 #ifdef EXPERIMENTAL_DSN_INFO
4971 if (sending_ip_address)
4973 if (LOGGING(incoming_interface) && sending_ip_address)
4977 ptr = big_buffer + sprintf(CS big_buffer, "%.128s", sending_ip_address) + 1;
4978 ptr += sprintf(CS ptr, "%d", sending_port) + 1;
4979 rmt_dlv_checked_write(fd, 'I', '0', big_buffer, ptr - big_buffer);
4982 /* Add termination flag, close the pipe, and that's it. The character
4983 after 'Z' indicates whether continue_transport is now NULL or not.
4984 A change from non-NULL to NULL indicates a problem with a continuing
4987 big_buffer[0] = continue_transport ? '1' : '0';
4988 rmt_dlv_checked_write(fd, 'Z', '0', big_buffer, 1);
4993 /* Back in the mainline: close the unwanted half of the pipe. */
4995 (void)close(pfd[pipe_write]);
4997 /* If we have a connection still open from a verify stage (lazy-close)
4998 release its TLS library context (if any) as responsibility was passed to
4999 the delivery child process. */
5001 if (cutthrough.cctx.sock >= 0 && cutthrough.callout_hold_only)
5004 if (cutthrough.is_tls)
5005 tls_close(cutthrough.cctx.tls_ctx, TLS_NO_SHUTDOWN);
5007 (void) close(cutthrough.cctx.sock);
5008 release_cutthrough_connection(US"passed to transport proc");
5011 /* Fork failed; defer with error message */
5015 (void)close(pfd[pipe_read]);
5016 panicmsg = string_sprintf("fork failed for remote delivery to %s: %s",
5017 addr->domain, strerror(errno));
5021 /* Fork succeeded; increment the count, and remember relevant data for
5022 when the process finishes. */
5025 parlist[poffset].addrlist = parlist[poffset].addr = addr;
5026 parlist[poffset].pid = pid;
5027 parlist[poffset].fd = pfd[pipe_read];
5028 parlist[poffset].done = FALSE;
5029 parlist[poffset].msg = NULL;
5030 parlist[poffset].return_path = return_path;
5032 /* If the process we've just started is sending a message down an existing
5033 channel, wait for it now. This ensures that only one such process runs at
5034 once, whatever the value of remote_max parallel. Otherwise, we might try to
5035 send two or more messages simultaneously down the same channel. This could
5036 happen if there are different domains that include the same host in otherwise
5037 different host lists.
5039 Also, if the transport closes down the channel, this information gets back
5040 (continue_transport gets set to NULL) before we consider any other addresses
5043 if (continue_transport) par_reduce(0, fallback);
5045 /* Otherwise, if we are running in the test harness, wait a bit, to let the
5046 newly created process get going before we create another process. This should
5047 ensure repeatability in the tests. We only need to wait a tad. */
5049 else if (f.running_in_test_harness) millisleep(500);
5054 if (serialize_key) enq_end(serialize_key);
5056 remote_post_process(addr, LOG_MAIN|LOG_PANIC, panicmsg, fallback);
5060 /* Reached the end of the list of addresses. Wait for all the subprocesses that
5061 are still running and post-process their addresses. */
5063 par_reduce(0, fallback);
5070 /*************************************************
5071 * Split an address into local part and domain *
5072 *************************************************/
5074 /* This function initializes an address for routing by splitting it up into a
5075 local part and a domain. The local part is set up twice - once in its original
5076 casing, and once in lower case, and it is dequoted. We also do the "percent
5077 hack" for configured domains. This may lead to a DEFER result if a lookup
5078 defers. When a percent-hacking takes place, we insert a copy of the original
5079 address as a new parent of this address, as if we have had a redirection.
5082 addr points to an addr_item block containing the address
5085 DEFER - could not determine if domain is %-hackable
5089 deliver_split_address(address_item * addr)
5091 uschar * address = addr->address;
5096 if (!(domain = Ustrrchr(address, '@')))
5097 return DEFER; /* should always have a domain, but just in case... */
5099 len = domain - address;
5100 addr->domain = string_copylc(domain+1); /* Domains are always caseless */
5102 /* The implication in the RFCs (though I can't say I've seen it spelled out
5103 explicitly) is that quoting should be removed from local parts at the point
5104 where they are locally interpreted. [The new draft "821" is more explicit on
5105 this, Jan 1999.] We know the syntax is valid, so this can be done by simply
5106 removing quoting backslashes and any unquoted doublequotes. */
5108 t = addr->cc_local_part = store_get(len+1);
5112 if (c == '\"') continue;
5122 /* We do the percent hack only for those domains that are listed in
5123 percent_hack_domains. A loop is required, to copy with multiple %-hacks. */
5125 if (percent_hack_domains)
5128 uschar *new_address = NULL;
5129 uschar *local_part = addr->cc_local_part;
5131 deliver_domain = addr->domain; /* set $domain */
5133 while ( (rc = match_isinlist(deliver_domain, (const uschar **)&percent_hack_domains, 0,
5134 &domainlist_anchor, addr->domain_cache, MCL_DOMAIN, TRUE, NULL))
5136 && (t = Ustrrchr(local_part, '%')) != NULL
5139 new_address = string_copy(local_part);
5140 new_address[t - local_part] = '@';
5141 deliver_domain = string_copylc(t+1);
5142 local_part = string_copyn(local_part, t - local_part);
5145 if (rc == DEFER) return DEFER; /* lookup deferred */
5147 /* If hackery happened, set up new parent and alter the current address. */
5151 address_item *new_parent = store_get(sizeof(address_item));
5152 *new_parent = *addr;
5153 addr->parent = new_parent;
5154 new_parent->child_count = 1;
5155 addr->address = new_address;
5156 addr->unique = string_copy(new_address);
5157 addr->domain = deliver_domain;
5158 addr->cc_local_part = local_part;
5159 DEBUG(D_deliver) debug_printf("%%-hack changed address to: %s\n",
5164 /* Create the lowercased version of the final local part, and make that the
5165 default one to be used. */
5167 addr->local_part = addr->lc_local_part = string_copylc(addr->cc_local_part);
5174 /*************************************************
5175 * Get next error message text *
5176 *************************************************/
5178 /* If f is not NULL, read the next "paragraph", from a customized error message
5179 text file, terminated by a line containing ****, and expand it.
5182 f NULL or a file to read from
5183 which string indicating which string (for errors)
5185 Returns: NULL or an expanded string
5189 next_emf(FILE *f, uschar *which)
5195 if (!f) return NULL;
5197 if (!Ufgets(buffer, sizeof(buffer), f) || Ustrcmp(buffer, "****\n") == 0)
5200 para = string_get(256);
5203 para = string_cat(para, buffer);
5204 if (!Ufgets(buffer, sizeof(buffer), f) || Ustrcmp(buffer, "****\n") == 0)
5207 if ((yield = expand_string(string_from_gstring(para))))
5210 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to expand string from "
5211 "bounce_message_file or warn_message_file (%s): %s", which,
5212 expand_string_message);
5219 /*************************************************
5220 * Close down a passed transport channel *
5221 *************************************************/
5223 /* This function is called when a passed transport channel cannot be used.
5224 It attempts to close it down tidily. The yield is always DELIVER_NOT_ATTEMPTED
5225 so that the function call can be the argument of a "return" statement.
5228 Returns: DELIVER_NOT_ATTEMPTED
5232 continue_closedown(void)
5234 if (continue_transport)
5236 transport_instance *t;
5237 for (t = transports; t; t = t->next)
5238 if (Ustrcmp(t->name, continue_transport) == 0)
5240 if (t->info->closedown) (t->info->closedown)(t);
5244 return DELIVER_NOT_ATTEMPTED;
5250 /*************************************************
5251 * Print address information *
5252 *************************************************/
5254 /* This function is called to output an address, or information about an
5255 address, for bounce or defer messages. If the hide_child flag is set, all we
5256 output is the original ancestor address.
5259 addr points to the address
5260 f the FILE to print to
5261 si an initial string
5262 sc a continuation string for before "generated"
5265 Returns: TRUE if the address is not hidden
5269 print_address_information(address_item *addr, FILE *f, uschar *si, uschar *sc,
5273 uschar *printed = US"";
5274 address_item *ancestor = addr;
5275 while (ancestor->parent) ancestor = ancestor->parent;
5277 fprintf(f, "%s", CS si);
5279 if (addr->parent && testflag(addr, af_hide_child))
5281 printed = US"an undisclosed address";
5284 else if (!testflag(addr, af_pfr) || !addr->parent)
5285 printed = addr->address;
5289 uschar *s = addr->address;
5292 if (addr->address[0] == '>') { ss = US"mail"; s++; }
5293 else if (addr->address[0] == '|') ss = US"pipe";
5296 fprintf(f, "%s to %s%sgenerated by ", ss, s, sc);
5297 printed = addr->parent->address;
5300 fprintf(f, "%s", CS string_printing(printed));
5302 if (ancestor != addr)
5304 uschar *original = ancestor->onetime_parent;
5305 if (!original) original= ancestor->address;
5306 if (strcmpic(original, printed) != 0)
5307 fprintf(f, "%s(%sgenerated from %s)", sc,
5308 ancestor != addr->parent ? "ultimately " : "",
5309 string_printing(original));
5312 if (addr->host_used)
5313 fprintf(f, "\n host %s [%s]",
5314 addr->host_used->name, addr->host_used->address);
5316 fprintf(f, "%s", CS se);
5324 /*************************************************
5325 * Print error for an address *
5326 *************************************************/
5328 /* This function is called to print the error information out of an address for
5329 a bounce or a warning message. It tries to format the message reasonably by
5330 introducing newlines. All lines are indented by 4; the initial printing
5331 position must be set before calling.
5333 This function used always to print the error. Nowadays we want to restrict it
5334 to cases such as LMTP/SMTP errors from a remote host, and errors from :fail:
5335 and filter "fail". We no longer pass other information willy-nilly in bounce
5336 and warning messages. Text in user_message is always output; text in message
5337 only if the af_pass_message flag is set.
5341 f the FILE to print on
5348 print_address_error(address_item *addr, FILE *f, uschar *t)
5350 int count = Ustrlen(t);
5351 uschar *s = testflag(addr, af_pass_message)? addr->message : NULL;
5353 if (!s && !(s = addr->user_message))
5356 fprintf(f, "\n %s", t);
5359 if (*s == '\\' && s[1] == 'n')
5369 if (*s++ == ':' && isspace(*s) && count > 45)
5371 fprintf(f, "\n "); /* sic (because space follows) */
5378 /***********************************************************
5379 * Print Diagnostic-Code for an address *
5380 ************************************************************/
5382 /* This function is called to print the error information out of an address for
5383 a bounce or a warning message. It tries to format the message reasonably as
5384 required by RFC 3461 by adding a space after each newline
5386 it uses the same logic as print_address_error() above. if af_pass_message is true
5387 and addr->message is set it uses the remote host answer. if not addr->user_message
5388 is used instead if available.
5392 f the FILE to print on
5398 print_dsn_diagnostic_code(const address_item *addr, FILE *f)
5400 uschar *s = testflag(addr, af_pass_message) ? addr->message : NULL;
5402 /* af_pass_message and addr->message set ? print remote host answer */
5406 debug_printf("DSN Diagnostic-Code: addr->message = %s\n", addr->message);
5408 /* search first ": ". we assume to find the remote-MTA answer there */
5409 if (!(s = Ustrstr(addr->message, ": ")))
5410 return; /* not found, bail out */
5411 s += 2; /* skip ": " */
5412 fprintf(f, "Diagnostic-Code: smtp; ");
5414 /* no message available. do nothing */
5418 if (*s == '\\' && s[1] == 'n')
5420 fputs("\n ", f); /* as defined in RFC 3461 */
5430 /*************************************************
5431 * Check list of addresses for duplication *
5432 *************************************************/
5434 /* This function was introduced when the test for duplicate addresses that are
5435 not pipes, files, or autoreplies was moved from the middle of routing to when
5436 routing was complete. That was to fix obscure cases when the routing history
5437 affects the subsequent routing of identical addresses. This function is called
5438 after routing, to check that the final routed addresses are not duplicates.
5440 If we detect a duplicate, we remember what it is a duplicate of. Note that
5441 pipe, file, and autoreply de-duplication is handled during routing, so we must
5442 leave such "addresses" alone here, as otherwise they will incorrectly be
5445 Argument: address of list anchor
5450 do_duplicate_check(address_item **anchor)
5453 while ((addr = *anchor))
5456 if (testflag(addr, af_pfr))
5458 anchor = &(addr->next);
5460 else if ((tnode = tree_search(tree_duplicates, addr->unique)))
5462 DEBUG(D_deliver|D_route)
5463 debug_printf("%s is a duplicate address: discarded\n", addr->unique);
5464 *anchor = addr->next;
5465 addr->dupof = tnode->data.ptr;
5466 addr->next = addr_duplicate;
5467 addr_duplicate = addr;
5471 tree_add_duplicate(addr->unique, addr);
5472 anchor = &(addr->next);
5480 /*************************************************
5481 * Deliver one message *
5482 *************************************************/
5484 /* This is the function which is called when a message is to be delivered. It
5485 is passed the id of the message. It is possible that the message no longer
5486 exists, if some other process has delivered it, and it is also possible that
5487 the message is being worked on by another process, in which case the data file
5490 If no delivery is attempted for any of the above reasons, the function returns
5491 DELIVER_NOT_ATTEMPTED.
5493 If the give_up flag is set true, do not attempt any deliveries, but instead
5494 fail all outstanding addresses and return the message to the sender (or
5497 A delivery operation has a process all to itself; we never deliver more than
5498 one message in the same process. Therefore we needn't worry too much about
5501 Liable to be called as root.
5504 id the id of the message to be delivered
5505 forced TRUE if delivery was forced by an administrator; this overrides
5506 retry delays and causes a delivery to be tried regardless
5507 give_up TRUE if an administrator has requested that delivery attempts
5510 Returns: When the global variable mua_wrapper is FALSE:
5511 DELIVER_ATTEMPTED_NORMAL if a delivery attempt was made
5512 DELIVER_NOT_ATTEMPTED otherwise (see comment above)
5513 When the global variable mua_wrapper is TRUE:
5514 DELIVER_MUA_SUCCEEDED if delivery succeeded
5515 DELIVER_MUA_FAILED if delivery failed
5516 DELIVER_NOT_ATTEMPTED if not attempted (should not occur)
5520 deliver_message(uschar *id, BOOL forced, BOOL give_up)
5523 int final_yield = DELIVER_ATTEMPTED_NORMAL;
5524 time_t now = time(NULL);
5525 address_item *addr_last = NULL;
5526 uschar *filter_message = NULL;
5527 int process_recipients = RECIP_ACCEPT;
5530 extern int acl_where;
5532 uschar *info = queue_run_pid == (pid_t)0
5533 ? string_sprintf("delivering %s", id)
5534 : string_sprintf("delivering %s (queue run pid %d)", id, queue_run_pid);
5536 /* If the D_process_info bit is on, set_process_info() will output debugging
5537 information. If not, we want to show this initial information if D_deliver or
5538 D_queue_run is set or in verbose mode. */
5540 set_process_info("%s", info);
5542 if ( !(debug_selector & D_process_info)
5543 && (debug_selector & (D_deliver|D_queue_run|D_v))
5545 debug_printf("%s\n", info);
5547 /* Ensure that we catch any subprocesses that are created. Although Exim
5548 sets SIG_DFL as its initial default, some routes through the code end up
5549 here with it set to SIG_IGN - cases where a non-synchronous delivery process
5550 has been forked, but no re-exec has been done. We use sigaction rather than
5551 plain signal() on those OS where SA_NOCLDWAIT exists, because we want to be
5552 sure it is turned off. (There was a problem on AIX with this.) */
5556 struct sigaction act;
5557 act.sa_handler = SIG_DFL;
5558 sigemptyset(&(act.sa_mask));
5560 sigaction(SIGCHLD, &act, NULL);
5563 signal(SIGCHLD, SIG_DFL);
5566 /* Make the forcing flag available for routers and transports, set up the
5567 global message id field, and initialize the count for returned files and the
5568 message size. This use of strcpy() is OK because the length id is checked when
5569 it is obtained from a command line (the -M or -q options), and otherwise it is
5570 known to be a valid message id. */
5572 Ustrcpy(message_id, id);
5573 f.deliver_force = forced;
5577 /* Initialize some flags */
5579 update_spool = FALSE;
5580 remove_journal = TRUE;
5582 /* Set a known context for any ACLs we call via expansions */
5583 acl_where = ACL_WHERE_DELIVERY;
5585 /* Reset the random number generator, so that if several delivery processes are
5586 started from a queue runner that has already used random numbers (for sorting),
5587 they don't all get the same sequence. */
5591 /* Open and lock the message's data file. Exim locks on this one because the
5592 header file may get replaced as it is re-written during the delivery process.
5593 Any failures cause messages to be written to the log, except for missing files
5594 while queue running - another process probably completed delivery. As part of
5595 opening the data file, message_subdir gets set. */
5597 if ((deliver_datafile = spool_open_datafile(id)) < 0)
5598 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5600 /* The value of message_size at this point has been set to the data length,
5601 plus one for the blank line that notionally precedes the data. */
5603 /* Now read the contents of the header file, which will set up the headers in
5604 store, and also the list of recipients and the tree of non-recipients and
5605 assorted flags. It updates message_size. If there is a reading or format error,
5606 give up; if the message has been around for sufficiently long, remove it. */
5609 uschar * spoolname = string_sprintf("%s-H", id);
5610 if ((rc = spool_read_header(spoolname, TRUE, TRUE)) != spool_read_OK)
5612 if (errno == ERRNO_SPOOLFORMAT)
5614 struct stat statbuf;
5615 if (Ustat(spool_fname(US"input", message_subdir, spoolname, US""),
5617 log_write(0, LOG_MAIN, "Format error in spool file %s: "
5618 "size=" OFF_T_FMT, spoolname, statbuf.st_size);
5620 log_write(0, LOG_MAIN, "Format error in spool file %s", spoolname);
5623 log_write(0, LOG_MAIN, "Error reading spool file %s: %s", spoolname,
5626 /* If we managed to read the envelope data, received_time contains the
5627 time the message was received. Otherwise, we can calculate it from the
5630 if (rc != spool_read_hdrerror)
5632 received_time.tv_sec = received_time.tv_usec = 0;
5633 /*XXX subsec precision?*/
5634 for (i = 0; i < 6; i++)
5635 received_time.tv_sec = received_time.tv_sec * BASE_62 + tab62[id[i] - '0'];
5638 /* If we've had this malformed message too long, sling it. */
5640 if (now - received_time.tv_sec > keep_malformed)
5642 Uunlink(spool_fname(US"msglog", message_subdir, id, US""));
5643 Uunlink(spool_fname(US"input", message_subdir, id, US"-D"));
5644 Uunlink(spool_fname(US"input", message_subdir, id, US"-H"));
5645 Uunlink(spool_fname(US"input", message_subdir, id, US"-J"));
5646 log_write(0, LOG_MAIN, "Message removed because older than %s",
5647 readconf_printtime(keep_malformed));
5650 (void)close(deliver_datafile);
5651 deliver_datafile = -1;
5652 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5656 /* The spool header file has been read. Look to see if there is an existing
5657 journal file for this message. If there is, it means that a previous delivery
5658 attempt crashed (program or host) before it could update the spool header file.
5659 Read the list of delivered addresses from the journal and add them to the
5660 nonrecipients tree. Then update the spool file. We can leave the journal in
5661 existence, as it will get further successful deliveries added to it in this
5662 run, and it will be deleted if this function gets to its end successfully.
5663 Otherwise it might be needed again. */
5666 uschar * fname = spool_fname(US"input", message_subdir, id, US"-J");
5669 if ( (journal_fd = Uopen(fname, O_RDWR|O_APPEND
5677 && lseek(journal_fd, 0, SEEK_SET) == 0
5678 && (jread = fdopen(journal_fd, "rb"))
5681 while (Ufgets(big_buffer, big_buffer_size, jread))
5683 int n = Ustrlen(big_buffer);
5684 big_buffer[n-1] = 0;
5685 tree_add_nonrecipient(big_buffer);
5686 DEBUG(D_deliver) debug_printf("Previously delivered address %s taken from "
5687 "journal file\n", big_buffer);
5690 if ((journal_fd = dup(fileno(jread))) < 0)
5691 journal_fd = fileno(jread);
5693 (void) fclose(jread); /* Try to not leak the FILE resource */
5695 /* Panic-dies on error */
5696 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
5698 else if (errno != ENOENT)
5700 log_write(0, LOG_MAIN|LOG_PANIC, "attempt to open journal for reading gave: "
5701 "%s", strerror(errno));
5702 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5705 /* A null recipients list indicates some kind of disaster. */
5707 if (!recipients_list)
5709 (void)close(deliver_datafile);
5710 deliver_datafile = -1;
5711 log_write(0, LOG_MAIN, "Spool error: no recipients for %s", fname);
5712 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5717 /* Handle a message that is frozen. There are a number of different things that
5718 can happen, but in the default situation, unless forced, no delivery is
5721 if (f.deliver_freeze)
5723 #ifdef SUPPORT_MOVE_FROZEN_MESSAGES
5724 /* Moving to another directory removes the message from Exim's view. Other
5725 tools must be used to deal with it. Logging of this action happens in
5726 spool_move_message() and its subfunctions. */
5728 if ( move_frozen_messages
5729 && spool_move_message(id, message_subdir, US"", US"F")
5731 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5734 /* For all frozen messages (bounces or not), timeout_frozen_after sets the
5735 maximum time to keep messages that are frozen. Thaw if we reach it, with a
5736 flag causing all recipients to be failed. The time is the age of the
5737 message, not the time since freezing. */
5739 if (timeout_frozen_after > 0 && message_age >= timeout_frozen_after)
5741 log_write(0, LOG_MAIN, "cancelled by timeout_frozen_after");
5742 process_recipients = RECIP_FAIL_TIMEOUT;
5745 /* For bounce messages (and others with no sender), thaw if the error message
5746 ignore timer is exceeded. The message will be discarded if this delivery
5749 else if (!*sender_address && message_age >= ignore_bounce_errors_after)
5750 log_write(0, LOG_MAIN, "Unfrozen by errmsg timer");
5752 /* If this is a bounce message, or there's no auto thaw, or we haven't
5753 reached the auto thaw time yet, and this delivery is not forced by an admin
5754 user, do not attempt delivery of this message. Note that forced is set for
5755 continuing messages down the same channel, in order to skip load checking and
5756 ignore hold domains, but we don't want unfreezing in that case. */
5760 if ( ( sender_address[0] == 0
5762 || now <= deliver_frozen_at + auto_thaw
5764 && ( !forced || !f.deliver_force_thaw
5765 || !f.admin_user || continue_hostname
5768 (void)close(deliver_datafile);
5769 deliver_datafile = -1;
5770 log_write(L_skip_delivery, LOG_MAIN, "Message is frozen");
5771 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5774 /* If delivery was forced (by an admin user), assume a manual thaw.
5775 Otherwise it's an auto thaw. */
5779 f.deliver_manual_thaw = TRUE;
5780 log_write(0, LOG_MAIN, "Unfrozen by forced delivery");
5782 else log_write(0, LOG_MAIN, "Unfrozen by auto-thaw");
5785 /* We get here if any of the rules for unfreezing have triggered. */
5787 f.deliver_freeze = FALSE;
5788 update_spool = TRUE;
5792 /* Open the message log file if we are using them. This records details of
5793 deliveries, deferments, and failures for the benefit of the mail administrator.
5794 The log is not used by exim itself to track the progress of a message; that is
5795 done by rewriting the header spool file. */
5799 uschar * fname = spool_fname(US"msglog", message_subdir, id, US"");
5803 if ((fd = open_msglog_file(fname, SPOOL_MODE, &error)) < 0)
5805 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't %s message log %s: %s", error,
5806 fname, strerror(errno));
5807 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5810 /* Make a C stream out of it. */
5812 if (!(message_log = fdopen(fd, "a")))
5814 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't fdopen message log %s: %s",
5815 fname, strerror(errno));
5816 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5821 /* If asked to give up on a message, log who did it, and set the action for all
5826 struct passwd *pw = getpwuid(real_uid);
5827 log_write(0, LOG_MAIN, "cancelled by %s",
5828 pw ? US pw->pw_name : string_sprintf("uid %ld", (long int)real_uid));
5829 process_recipients = RECIP_FAIL;
5832 /* Otherwise, if there are too many Received: headers, fail all recipients. */
5834 else if (received_count > received_headers_max)
5835 process_recipients = RECIP_FAIL_LOOP;
5837 /* Otherwise, if a system-wide, address-independent message filter is
5838 specified, run it now, except in the case when we are failing all recipients as
5839 a result of timeout_frozen_after. If the system filter yields "delivered", then
5840 ignore the true recipients of the message. Failure of the filter file is
5841 logged, and the delivery attempt fails. */
5843 else if (system_filter && process_recipients != RECIP_FAIL_TIMEOUT)
5848 redirect_block redirect;
5850 if (system_filter_uid_set)
5852 ugid.uid = system_filter_uid;
5853 ugid.gid = system_filter_gid;
5854 ugid.uid_set = ugid.gid_set = TRUE;
5858 ugid.uid_set = ugid.gid_set = FALSE;
5861 return_path = sender_address;
5862 f.enable_dollar_recipients = TRUE; /* Permit $recipients in system filter */
5863 f.system_filtering = TRUE;
5865 /* Any error in the filter file causes a delivery to be abandoned. */
5867 redirect.string = system_filter;
5868 redirect.isfile = TRUE;
5869 redirect.check_owner = redirect.check_group = FALSE;
5870 redirect.owners = NULL;
5871 redirect.owngroups = NULL;
5873 redirect.modemask = 0;
5875 DEBUG(D_deliver|D_filter) debug_printf("running system filter\n");
5878 &redirect, /* Where the data is */
5879 RDO_DEFER | /* Turn on all the enabling options */
5880 RDO_FAIL | /* Leave off all the disabling options */
5885 NULL, /* No :include: restriction (not used in filter) */
5886 NULL, /* No sieve vacation directory (not sieve!) */
5887 NULL, /* No sieve enotify mailto owner (not sieve!) */
5888 NULL, /* No sieve user address (not sieve!) */
5889 NULL, /* No sieve subaddress (not sieve!) */
5890 &ugid, /* uid/gid data */
5891 &addr_new, /* Where to hang generated addresses */
5892 &filter_message, /* Where to put error message */
5893 NULL, /* Don't skip syntax errors */
5894 &filtertype, /* Will always be set to FILTER_EXIM for this call */
5895 US"system filter"); /* For error messages */
5897 DEBUG(D_deliver|D_filter) debug_printf("system filter returned %d\n", rc);
5899 if (rc == FF_ERROR || rc == FF_NONEXIST)
5901 (void)close(deliver_datafile);
5902 deliver_datafile = -1;
5903 log_write(0, LOG_MAIN|LOG_PANIC, "Error in system filter: %s",
5904 string_printing(filter_message));
5905 return continue_closedown(); /* yields DELIVER_NOT_ATTEMPTED */
5908 /* Reset things. If the filter message is an empty string, which can happen
5909 for a filter "fail" or "freeze" command with no text, reset it to NULL. */
5911 f.system_filtering = FALSE;
5912 f.enable_dollar_recipients = FALSE;
5913 if (filter_message && filter_message[0] == 0) filter_message = NULL;
5915 /* Save the values of the system filter variables so that user filters
5918 memcpy(filter_sn, filter_n, sizeof(filter_sn));
5920 /* The filter can request that delivery of the original addresses be
5925 process_recipients = RECIP_DEFER;
5926 deliver_msglog("Delivery deferred by system filter\n");
5927 log_write(0, LOG_MAIN, "Delivery deferred by system filter");
5930 /* The filter can request that a message be frozen, but this does not
5931 take place if the message has been manually thawed. In that case, we must
5932 unset "delivered", which is forced by the "freeze" command to make -bF
5935 else if (rc == FF_FREEZE && !f.deliver_manual_thaw)
5937 f.deliver_freeze = TRUE;
5938 deliver_frozen_at = time(NULL);
5939 process_recipients = RECIP_DEFER;
5940 frozen_info = string_sprintf(" by the system filter%s%s",
5941 filter_message ? US": " : US"",
5942 filter_message ? filter_message : US"");
5945 /* The filter can request that a message be failed. The error message may be
5946 quite long - it is sent back to the sender in the bounce - but we don't want
5947 to fill up the log with repetitions of it. If it starts with << then the text
5948 between << and >> is written to the log, with the rest left for the bounce
5951 else if (rc == FF_FAIL)
5953 uschar *colon = US"";
5954 uschar *logmsg = US"";
5957 process_recipients = RECIP_FAIL_FILTER;
5963 if ( filter_message[0] == '<'
5964 && filter_message[1] == '<'
5965 && (logend = Ustrstr(filter_message, ">>"))
5968 logmsg = filter_message + 2;
5969 loglen = logend - logmsg;
5970 filter_message = logend + 2;
5971 if (filter_message[0] == 0) filter_message = NULL;
5975 logmsg = filter_message;
5976 loglen = Ustrlen(filter_message);
5980 log_write(0, LOG_MAIN, "cancelled by system filter%s%.*s", colon, loglen,
5984 /* Delivery can be restricted only to those recipients (if any) that the
5985 filter specified. */
5987 else if (rc == FF_DELIVERED)
5989 process_recipients = RECIP_IGNORE;
5991 log_write(0, LOG_MAIN, "original recipients ignored (system filter)");
5993 log_write(0, LOG_MAIN, "=> discarded (system filter)");
5996 /* If any new addresses were created by the filter, fake up a "parent"
5997 for them. This is necessary for pipes, etc., which are expected to have
5998 parents, and it also gives some sensible logging for others. Allow
5999 pipes, files, and autoreplies, and run them as the filter uid if set,
6000 otherwise as the current uid. */
6004 int uid = (system_filter_uid_set)? system_filter_uid : geteuid();
6005 int gid = (system_filter_gid_set)? system_filter_gid : getegid();
6007 /* The text "system-filter" is tested in transport_set_up_command() and in
6008 set_up_shell_command() in the pipe transport, to enable them to permit
6009 $recipients, so don't change it here without also changing it there. */
6011 address_item *p = addr_new;
6012 address_item *parent = deliver_make_addr(US"system-filter", FALSE);
6014 parent->domain = string_copylc(qualify_domain_recipient);
6015 parent->local_part = US"system-filter";
6017 /* As part of this loop, we arrange for addr_last to end up pointing
6018 at the final address. This is used if we go on to add addresses for the
6019 original recipients. */
6023 if (parent->child_count == USHRT_MAX)
6024 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "system filter generated more "
6025 "than %d delivery addresses", USHRT_MAX);
6026 parent->child_count++;
6029 if (testflag(p, af_pfr))
6035 setflag(p, af_uid_set);
6036 setflag(p, af_gid_set);
6037 setflag(p, af_allow_file);
6038 setflag(p, af_allow_pipe);
6039 setflag(p, af_allow_reply);
6041 /* Find the name of the system filter's appropriate pfr transport */
6043 if (p->address[0] == '|')
6046 tpname = system_filter_pipe_transport;
6047 address_pipe = p->address;
6049 else if (p->address[0] == '>')
6052 tpname = system_filter_reply_transport;
6056 if (p->address[Ustrlen(p->address)-1] == '/')
6058 type = US"directory";
6059 tpname = system_filter_directory_transport;
6064 tpname = system_filter_file_transport;
6066 address_file = p->address;
6069 /* Now find the actual transport, first expanding the name. We have
6070 set address_file or address_pipe above. */
6074 uschar *tmp = expand_string(tpname);
6075 address_file = address_pipe = NULL;
6077 p->message = string_sprintf("failed to expand \"%s\" as a "
6078 "system filter transport name", tpname);
6082 p->message = string_sprintf("system_filter_%s_transport is unset",
6087 transport_instance *tp;
6088 for (tp = transports; tp; tp = tp->next)
6089 if (Ustrcmp(tp->name, tpname) == 0)
6095 p->message = string_sprintf("failed to find \"%s\" transport "
6096 "for system filter delivery", tpname);
6099 /* If we couldn't set up a transport, defer the delivery, putting the
6100 error on the panic log as well as the main log. */
6104 address_item *badp = p;
6106 if (!addr_last) addr_new = p; else addr_last->next = p;
6107 badp->local_part = badp->address; /* Needed for log line */
6108 post_process_one(badp, DEFER, LOG_MAIN|LOG_PANIC, EXIM_DTYPE_ROUTER, 0);
6111 } /* End of pfr handling */
6113 /* Either a non-pfr delivery, or we found a transport */
6115 DEBUG(D_deliver|D_filter)
6116 debug_printf("system filter added %s\n", p->address);
6120 } /* Loop through all addr_new addresses */
6125 /* Scan the recipients list, and for every one that is not in the non-
6126 recipients tree, add an addr item to the chain of new addresses. If the pno
6127 value is non-negative, we must set the onetime parent from it. This which
6128 points to the relevant entry in the recipients list.
6130 This processing can be altered by the setting of the process_recipients
6131 variable, which is changed if recipients are to be ignored, failed, or
6132 deferred. This can happen as a result of system filter activity, or if the -Mg
6133 option is used to fail all of them.
6135 Duplicate addresses are handled later by a different tree structure; we can't
6136 just extend the non-recipients tree, because that will be re-written to the
6137 spool if the message is deferred, and in any case there are casing
6138 complications for local addresses. */
6140 if (process_recipients != RECIP_IGNORE)
6141 for (i = 0; i < recipients_count; i++)
6142 if (!tree_search(tree_nonrecipients, recipients_list[i].address))
6144 recipient_item *r = recipients_list + i;
6145 address_item *new = deliver_make_addr(r->address, FALSE);
6146 new->prop.errors_address = r->errors_to;
6148 if ((new->prop.utf8_msg = message_smtputf8))
6150 new->prop.utf8_downcvt = message_utf8_downconvert == 1;
6151 new->prop.utf8_downcvt_maybe = message_utf8_downconvert == -1;
6152 DEBUG(D_deliver) debug_printf("utf8, downconvert %s\n",
6153 new->prop.utf8_downcvt ? "yes"
6154 : new->prop.utf8_downcvt_maybe ? "ifneeded"
6160 new->onetime_parent = recipients_list[r->pno].address;
6162 /* If DSN support is enabled, set the dsn flags and the original receipt
6163 to be passed on to other DSN enabled MTAs */
6164 new->dsn_flags = r->dsn_flags & rf_dsnflags;
6165 new->dsn_orcpt = r->orcpt;
6166 DEBUG(D_deliver) debug_printf("DSN: set orcpt: %s flags: %d\n",
6167 new->dsn_orcpt ? new->dsn_orcpt : US"", new->dsn_flags);
6169 switch (process_recipients)
6171 /* RECIP_DEFER is set when a system filter freezes a message. */
6174 new->next = addr_defer;
6179 /* RECIP_FAIL_FILTER is set when a system filter has obeyed a "fail"
6182 case RECIP_FAIL_FILTER:
6184 filter_message ? filter_message : US"delivery cancelled";
6185 setflag(new, af_pass_message);
6186 goto RECIP_QUEUE_FAILED; /* below */
6189 /* RECIP_FAIL_TIMEOUT is set when a message is frozen, but is older
6190 than the value in timeout_frozen_after. Treat non-bounce messages
6191 similarly to -Mg; for bounce messages we just want to discard, so
6192 don't put the address on the failed list. The timeout has already
6195 case RECIP_FAIL_TIMEOUT:
6196 new->message = US"delivery cancelled; message timed out";
6197 goto RECIP_QUEUE_FAILED; /* below */
6200 /* RECIP_FAIL is set when -Mg has been used. */
6203 new->message = US"delivery cancelled by administrator";
6206 /* Common code for the failure cases above. If this is not a bounce
6207 message, put the address on the failed list so that it is used to
6208 create a bounce. Otherwise do nothing - this just discards the address.
6209 The incident has already been logged. */
6212 if (sender_address[0])
6214 new->next = addr_failed;
6220 /* RECIP_FAIL_LOOP is set when there are too many Received: headers
6221 in the message. Process each address as a routing failure; if this
6222 is a bounce message, it will get frozen. */
6224 case RECIP_FAIL_LOOP:
6225 new->message = US"Too many \"Received\" headers - suspected mail loop";
6226 post_process_one(new, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6230 /* Value should be RECIP_ACCEPT; take this as the safe default. */
6233 if (!addr_new) addr_new = new; else addr_last->next = new;
6238 #ifndef DISABLE_EVENT
6239 if (process_recipients != RECIP_ACCEPT)
6241 uschar * save_local = deliver_localpart;
6242 const uschar * save_domain = deliver_domain;
6243 uschar * addr = new->address, * errmsg = NULL;
6244 int start, end, dom;
6246 if (!parse_extract_address(addr, &errmsg, &start, &end, &dom, TRUE))
6247 log_write(0, LOG_MAIN|LOG_PANIC,
6248 "failed to parse address '%.100s': %s\n", addr, errmsg);
6252 string_copyn(addr+start, dom ? (dom-1) - start : end - start);
6253 deliver_domain = dom ? CUS string_copyn(addr+dom, end - dom) : CUS"";
6255 event_raise(event_action, US"msg:fail:internal", new->message);
6257 deliver_localpart = save_local;
6258 deliver_domain = save_domain;
6267 debug_printf("Delivery address list:\n");
6268 for (p = addr_new; p; p = p->next)
6269 debug_printf(" %s %s\n", p->address,
6270 p->onetime_parent ? p->onetime_parent : US"");
6273 /* Set up the buffers used for copying over the file when delivering. */
6275 deliver_in_buffer = store_malloc(DELIVER_IN_BUFFER_SIZE);
6276 deliver_out_buffer = store_malloc(DELIVER_OUT_BUFFER_SIZE);
6280 /* Until there are no more new addresses, handle each one as follows:
6282 . If this is a generated address (indicated by the presence of a parent
6283 pointer) then check to see whether it is a pipe, file, or autoreply, and
6284 if so, handle it directly here. The router that produced the address will
6285 have set the allow flags into the address, and also set the uid/gid required.
6286 Having the routers generate new addresses and then checking them here at
6287 the outer level is tidier than making each router do the checking, and
6288 means that routers don't need access to the failed address queue.
6290 . Break up the address into local part and domain, and make lowercased
6291 versions of these strings. We also make unquoted versions of the local part.
6293 . Handle the percent hack for those domains for which it is valid.
6295 . For child addresses, determine if any of the parents have the same address.
6296 If so, generate a different string for previous delivery checking. Without
6297 this code, if the address spqr generates spqr via a forward or alias file,
6298 delivery of the generated spqr stops further attempts at the top level spqr,
6299 which is not what is wanted - it may have generated other addresses.
6301 . Check on the retry database to see if routing was previously deferred, but
6302 only if in a queue run. Addresses that are to be routed are put on the
6303 addr_route chain. Addresses that are to be deferred are put on the
6304 addr_defer chain. We do all the checking first, so as not to keep the
6305 retry database open any longer than necessary.
6307 . Now we run the addresses through the routers. A router may put the address
6308 on either the addr_local or the addr_remote chain for local or remote
6309 delivery, respectively, or put it on the addr_failed chain if it is
6310 undeliveable, or it may generate child addresses and put them on the
6311 addr_new chain, or it may defer an address. All the chain anchors are
6312 passed as arguments so that the routers can be called for verification
6315 . If new addresses have been generated by the routers, da capo.
6318 f.header_rewritten = FALSE; /* No headers rewritten yet */
6319 while (addr_new) /* Loop until all addresses dealt with */
6321 address_item *addr, *parent;
6323 /* Failure to open the retry database is treated the same as if it does
6324 not exist. In both cases, dbm_file is NULL. */
6326 if (!(dbm_file = dbfn_open(US"retry", O_RDONLY, &dbblock, FALSE)))
6327 DEBUG(D_deliver|D_retry|D_route|D_hints_lookup)
6328 debug_printf("no retry data available\n");
6330 /* Scan the current batch of new addresses, to handle pipes, files and
6331 autoreplies, and determine which others are ready for routing. */
6338 dbdata_retry *domain_retry_record;
6339 dbdata_retry *address_retry_record;
6342 addr_new = addr->next;
6344 DEBUG(D_deliver|D_retry|D_route)
6346 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
6347 debug_printf("Considering: %s\n", addr->address);
6350 /* Handle generated address that is a pipe or a file or an autoreply. */
6352 if (testflag(addr, af_pfr))
6354 /* If an autoreply in a filter could not generate a syntactically valid
6355 address, give up forthwith. Set af_ignore_error so that we don't try to
6356 generate a bounce. */
6358 if (testflag(addr, af_bad_reply))
6360 addr->basic_errno = ERRNO_BADADDRESS2;
6361 addr->local_part = addr->address;
6363 US"filter autoreply generated syntactically invalid recipient";
6364 addr->prop.ignore_error = TRUE;
6365 (void) post_process_one(addr, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6366 continue; /* with the next new address */
6369 /* If two different users specify delivery to the same pipe or file or
6370 autoreply, there should be two different deliveries, so build a unique
6371 string that incorporates the original address, and use this for
6372 duplicate testing and recording delivery, and also for retrying. */
6375 string_sprintf("%s:%s", addr->address, addr->parent->unique +
6376 (testflag(addr->parent, af_homonym)? 3:0));
6378 addr->address_retry_key = addr->domain_retry_key =
6379 string_sprintf("T:%s", addr->unique);
6381 /* If a filter file specifies two deliveries to the same pipe or file,
6382 we want to de-duplicate, but this is probably not wanted for two mail
6383 commands to the same address, where probably both should be delivered.
6384 So, we have to invent a different unique string in that case. Just
6385 keep piling '>' characters on the front. */
6387 if (addr->address[0] == '>')
6389 while (tree_search(tree_duplicates, addr->unique))
6390 addr->unique = string_sprintf(">%s", addr->unique);
6393 else if ((tnode = tree_search(tree_duplicates, addr->unique)))
6395 DEBUG(D_deliver|D_route)
6396 debug_printf("%s is a duplicate address: discarded\n", addr->address);
6397 addr->dupof = tnode->data.ptr;
6398 addr->next = addr_duplicate;
6399 addr_duplicate = addr;
6403 DEBUG(D_deliver|D_route) debug_printf("unique = %s\n", addr->unique);
6405 /* Check for previous delivery */
6407 if (tree_search(tree_nonrecipients, addr->unique))
6409 DEBUG(D_deliver|D_route)
6410 debug_printf("%s was previously delivered: discarded\n", addr->address);
6411 child_done(addr, tod_stamp(tod_log));
6415 /* Save for checking future duplicates */
6417 tree_add_duplicate(addr->unique, addr);
6419 /* Set local part and domain */
6421 addr->local_part = addr->address;
6422 addr->domain = addr->parent->domain;
6424 /* Ensure that the delivery is permitted. */
6426 if (testflag(addr, af_file))
6428 if (!testflag(addr, af_allow_file))
6430 addr->basic_errno = ERRNO_FORBIDFILE;
6431 addr->message = US"delivery to file forbidden";
6432 (void)post_process_one(addr, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6433 continue; /* with the next new address */
6436 else if (addr->address[0] == '|')
6438 if (!testflag(addr, af_allow_pipe))
6440 addr->basic_errno = ERRNO_FORBIDPIPE;
6441 addr->message = US"delivery to pipe forbidden";
6442 (void)post_process_one(addr, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6443 continue; /* with the next new address */
6446 else if (!testflag(addr, af_allow_reply))
6448 addr->basic_errno = ERRNO_FORBIDREPLY;
6449 addr->message = US"autoreply forbidden";
6450 (void)post_process_one(addr, FAIL, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6451 continue; /* with the next new address */
6454 /* If the errno field is already set to BADTRANSPORT, it indicates
6455 failure to expand a transport string, or find the associated transport,
6456 or an unset transport when one is required. Leave this test till now so
6457 that the forbid errors are given in preference. */
6459 if (addr->basic_errno == ERRNO_BADTRANSPORT)
6461 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6465 /* Treat /dev/null as a special case and abandon the delivery. This
6466 avoids having to specify a uid on the transport just for this case.
6467 Arrange for the transport name to be logged as "**bypassed**". */
6469 if (Ustrcmp(addr->address, "/dev/null") == 0)
6471 uschar *save = addr->transport->name;
6472 addr->transport->name = US"**bypassed**";
6473 (void)post_process_one(addr, OK, LOG_MAIN, EXIM_DTYPE_TRANSPORT, '=');
6474 addr->transport->name = save;
6475 continue; /* with the next new address */
6478 /* Pipe, file, or autoreply delivery is to go ahead as a normal local
6481 DEBUG(D_deliver|D_route)
6482 debug_printf("queued for %s transport\n", addr->transport->name);
6483 addr->next = addr_local;
6485 continue; /* with the next new address */
6488 /* Handle normal addresses. First, split up into local part and domain,
6489 handling the %-hack if necessary. There is the possibility of a defer from
6490 a lookup in percent_hack_domains. */
6492 if ((rc = deliver_split_address(addr)) == DEFER)
6494 addr->message = US"cannot check percent_hack_domains";
6495 addr->basic_errno = ERRNO_LISTDEFER;
6496 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_NONE, 0);
6500 /* Check to see if the domain is held. If so, proceed only if the
6501 delivery was forced by hand. */
6503 deliver_domain = addr->domain; /* set $domain */
6504 if ( !forced && hold_domains
6505 && (rc = match_isinlist(addr->domain, (const uschar **)&hold_domains, 0,
6506 &domainlist_anchor, addr->domain_cache, MCL_DOMAIN, TRUE,
6512 addr->message = US"hold_domains lookup deferred";
6513 addr->basic_errno = ERRNO_LISTDEFER;
6517 addr->message = US"domain is held";
6518 addr->basic_errno = ERRNO_HELD;
6520 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_NONE, 0);
6524 /* Now we can check for duplicates and previously delivered addresses. In
6525 order to do this, we have to generate a "unique" value for each address,
6526 because there may be identical actual addresses in a line of descendents.
6527 The "unique" field is initialized to the same value as the "address" field,
6528 but gets changed here to cope with identically-named descendents. */
6530 for (parent = addr->parent; parent; parent = parent->parent)
6531 if (strcmpic(addr->address, parent->address) == 0) break;
6533 /* If there's an ancestor with the same name, set the homonym flag. This
6534 influences how deliveries are recorded. Then add a prefix on the front of
6535 the unique address. We use \n\ where n starts at 0 and increases each time.
6536 It is unlikely to pass 9, but if it does, it may look odd but will still
6537 work. This means that siblings or cousins with the same names are treated
6538 as duplicates, which is what we want. */
6542 setflag(addr, af_homonym);
6543 if (parent->unique[0] != '\\')
6544 addr->unique = string_sprintf("\\0\\%s", addr->address);
6546 addr->unique = string_sprintf("\\%c\\%s", parent->unique[1] + 1,
6550 /* Ensure that the domain in the unique field is lower cased, because
6551 domains are always handled caselessly. */
6553 p = Ustrrchr(addr->unique, '@');
6554 while (*p != 0) { *p = tolower(*p); p++; }
6556 DEBUG(D_deliver|D_route) debug_printf("unique = %s\n", addr->unique);
6558 if (tree_search(tree_nonrecipients, addr->unique))
6560 DEBUG(D_deliver|D_route)
6561 debug_printf("%s was previously delivered: discarded\n", addr->unique);
6562 child_done(addr, tod_stamp(tod_log));
6566 /* Get the routing retry status, saving the two retry keys (with and
6567 without the local part) for subsequent use. If there is no retry record for
6568 the standard address routing retry key, we look for the same key with the
6569 sender attached, because this form is used by the smtp transport after a
6570 4xx response to RCPT when address_retry_include_sender is true. */
6572 addr->domain_retry_key = string_sprintf("R:%s", addr->domain);
6573 addr->address_retry_key = string_sprintf("R:%s@%s", addr->local_part,
6578 domain_retry_record = dbfn_read(dbm_file, addr->domain_retry_key);
6579 if ( domain_retry_record
6580 && now - domain_retry_record->time_stamp > retry_data_expire
6582 domain_retry_record = NULL; /* Ignore if too old */
6584 address_retry_record = dbfn_read(dbm_file, addr->address_retry_key);
6585 if ( address_retry_record
6586 && now - address_retry_record->time_stamp > retry_data_expire
6588 address_retry_record = NULL; /* Ignore if too old */
6590 if (!address_retry_record)
6592 uschar *altkey = string_sprintf("%s:<%s>", addr->address_retry_key,
6594 address_retry_record = dbfn_read(dbm_file, altkey);
6595 if ( address_retry_record
6596 && now - address_retry_record->time_stamp > retry_data_expire)
6597 address_retry_record = NULL; /* Ignore if too old */
6601 domain_retry_record = address_retry_record = NULL;
6603 DEBUG(D_deliver|D_retry)
6605 if (!domain_retry_record)
6606 debug_printf("no domain retry record\n");
6607 if (!address_retry_record)
6608 debug_printf("no address retry record\n");
6611 /* If we are sending a message down an existing SMTP connection, we must
6612 assume that the message which created the connection managed to route
6613 an address to that connection. We do not want to run the risk of taking
6614 a long time over routing here, because if we do, the server at the other
6615 end of the connection may time it out. This is especially true for messages
6616 with lots of addresses. For this kind of delivery, queue_running is not
6617 set, so we would normally route all addresses. We take a pragmatic approach
6618 and defer routing any addresses that have any kind of domain retry record.
6619 That is, we don't even look at their retry times. It doesn't matter if this
6620 doesn't work occasionally. This is all just an optimization, after all.
6622 The reason for not doing the same for address retries is that they normally
6623 arise from 4xx responses, not DNS timeouts. */
6625 if (continue_hostname && domain_retry_record)
6627 addr->message = US"reusing SMTP connection skips previous routing defer";
6628 addr->basic_errno = ERRNO_RRETRY;
6629 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6632 /* If we are in a queue run, defer routing unless there is no retry data or
6633 we've passed the next retry time, or this message is forced. In other
6634 words, ignore retry data when not in a queue run.
6636 However, if the domain retry time has expired, always allow the routing
6637 attempt. If it fails again, the address will be failed. This ensures that
6638 each address is routed at least once, even after long-term routing
6641 If there is an address retry, check that too; just wait for the next
6642 retry time. This helps with the case when the temporary error on the
6643 address was really message-specific rather than address specific, since
6644 it allows other messages through.
6646 We also wait for the next retry time if this is a message sent down an
6647 existing SMTP connection (even though that will be forced). Otherwise there
6648 will be far too many attempts for an address that gets a 4xx error. In
6649 fact, after such an error, we should not get here because, the host should
6650 not be remembered as one this message needs. However, there was a bug that
6651 used to cause this to happen, so it is best to be on the safe side.
6653 Even if we haven't reached the retry time in the hints, there is one more
6654 check to do, which is for the ultimate address timeout. We only do this
6655 check if there is an address retry record and there is not a domain retry
6656 record; this implies that previous attempts to handle the address had the
6657 retry_use_local_parts option turned on. We use this as an approximation
6658 for the destination being like a local delivery, for example delivery over
6659 LMTP to an IMAP message store. In this situation users are liable to bump
6660 into their quota and thereby have intermittently successful deliveries,
6661 which keep the retry record fresh, which can lead to us perpetually
6662 deferring messages. */
6664 else if ( ( f.queue_running && !f.deliver_force
6665 || continue_hostname
6667 && ( ( domain_retry_record
6668 && now < domain_retry_record->next_try
6669 && !domain_retry_record->expired
6671 || ( address_retry_record
6672 && now < address_retry_record->next_try
6674 && ( domain_retry_record
6675 || !address_retry_record
6676 || !retry_ultimate_address_timeout(addr->address_retry_key,
6677 addr->domain, address_retry_record, now)
6680 addr->message = US"retry time not reached";
6681 addr->basic_errno = ERRNO_RRETRY;
6682 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6685 /* The domain is OK for routing. Remember if retry data exists so it
6686 can be cleaned up after a successful delivery. */
6690 if (domain_retry_record || address_retry_record)
6691 setflag(addr, af_dr_retry_exists);
6692 addr->next = addr_route;
6694 DEBUG(D_deliver|D_route)
6695 debug_printf("%s: queued for routing\n", addr->address);
6699 /* The database is closed while routing is actually happening. Requests to
6700 update it are put on a chain and all processed together at the end. */
6702 if (dbm_file) dbfn_close(dbm_file);
6704 /* If queue_domains is set, we don't even want to try routing addresses in
6705 those domains. During queue runs, queue_domains is forced to be unset.
6706 Optimize by skipping this pass through the addresses if nothing is set. */
6708 if (!f.deliver_force && queue_domains)
6710 address_item *okaddr = NULL;
6713 address_item *addr = addr_route;
6714 addr_route = addr->next;
6716 deliver_domain = addr->domain; /* set $domain */
6717 if ((rc = match_isinlist(addr->domain, (const uschar **)&queue_domains, 0,
6718 &domainlist_anchor, addr->domain_cache, MCL_DOMAIN, TRUE, NULL))
6722 addr->basic_errno = ERRNO_LISTDEFER;
6723 addr->message = US"queue_domains lookup deferred";
6724 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6728 addr->next = okaddr;
6733 addr->basic_errno = ERRNO_QUEUE_DOMAIN;
6734 addr->message = US"domain is in queue_domains";
6735 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6739 addr_route = okaddr;
6742 /* Now route those addresses that are not deferred. */
6747 address_item *addr = addr_route;
6748 const uschar *old_domain = addr->domain;
6749 uschar *old_unique = addr->unique;
6750 addr_route = addr->next;
6753 /* Just in case some router parameter refers to it. */
6755 if (!(return_path = addr->prop.errors_address))
6756 return_path = sender_address;
6758 /* If a router defers an address, add a retry item. Whether or not to
6759 use the local part in the key is a property of the router. */
6761 if ((rc = route_address(addr, &addr_local, &addr_remote, &addr_new,
6762 &addr_succeed, v_none)) == DEFER)
6763 retry_add_item(addr,
6764 addr->router->retry_use_local_part
6765 ? string_sprintf("R:%s@%s", addr->local_part, addr->domain)
6766 : string_sprintf("R:%s", addr->domain),
6769 /* Otherwise, if there is an existing retry record in the database, add
6770 retry items to delete both forms. We must also allow for the possibility
6771 of a routing retry that includes the sender address. Since the domain might
6772 have been rewritten (expanded to fully qualified) as a result of routing,
6773 ensure that the rewritten form is also deleted. */
6775 else if (testflag(addr, af_dr_retry_exists))
6777 uschar *altkey = string_sprintf("%s:<%s>", addr->address_retry_key,
6779 retry_add_item(addr, altkey, rf_delete);
6780 retry_add_item(addr, addr->address_retry_key, rf_delete);
6781 retry_add_item(addr, addr->domain_retry_key, rf_delete);
6782 if (Ustrcmp(addr->domain, old_domain) != 0)
6783 retry_add_item(addr, string_sprintf("R:%s", old_domain), rf_delete);
6786 /* DISCARD is given for :blackhole: and "seen finish". The event has been
6787 logged, but we need to ensure the address (and maybe parents) is marked
6792 address_done(addr, tod_stamp(tod_log));
6793 continue; /* route next address */
6796 /* The address is finished with (failed or deferred). */
6800 (void)post_process_one(addr, rc, LOG_MAIN, EXIM_DTYPE_ROUTER, 0);
6801 continue; /* route next address */
6804 /* The address has been routed. If the router changed the domain, it will
6805 also have changed the unique address. We have to test whether this address
6806 has already been delivered, because it's the unique address that finally
6809 if ( addr->unique != old_unique
6810 && tree_search(tree_nonrecipients, addr->unique) != 0
6813 DEBUG(D_deliver|D_route) debug_printf("%s was previously delivered: "
6814 "discarded\n", addr->address);
6815 if (addr_remote == addr) addr_remote = addr->next;
6816 else if (addr_local == addr) addr_local = addr->next;
6819 /* If the router has same_domain_copy_routing set, we are permitted to copy
6820 the routing for any other addresses with the same domain. This is an
6821 optimisation to save repeated DNS lookups for "standard" remote domain
6822 routing. The option is settable only on routers that generate host lists.
6823 We play it very safe, and do the optimization only if the address is routed
6824 to a remote transport, there are no header changes, and the domain was not
6825 modified by the router. */
6827 if ( addr_remote == addr
6828 && addr->router->same_domain_copy_routing
6829 && !addr->prop.extra_headers
6830 && !addr->prop.remove_headers
6831 && old_domain == addr->domain
6834 address_item **chain = &addr_route;
6837 address_item *addr2 = *chain;
6838 if (Ustrcmp(addr2->domain, addr->domain) != 0)
6840 chain = &(addr2->next);
6844 /* Found a suitable address; take it off the routing list and add it to
6845 the remote delivery list. */
6847 *chain = addr2->next;
6848 addr2->next = addr_remote;
6849 addr_remote = addr2;
6851 /* Copy the routing data */
6853 addr2->domain = addr->domain;
6854 addr2->router = addr->router;
6855 addr2->transport = addr->transport;
6856 addr2->host_list = addr->host_list;
6857 addr2->fallback_hosts = addr->fallback_hosts;
6858 addr2->prop.errors_address = addr->prop.errors_address;
6859 copyflag(addr2, addr, af_hide_child);
6860 copyflag(addr2, addr, af_local_host_removed);
6862 DEBUG(D_deliver|D_route)
6863 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"
6865 "Routing for %s copied from %s\n",
6866 addr2->address, addr2->address, addr->address);
6869 } /* Continue with routing the next address. */
6870 } /* Loop to process any child addresses that the routers created, and
6871 any rerouted addresses that got put back on the new chain. */
6874 /* Debugging: show the results of the routing */
6876 DEBUG(D_deliver|D_retry|D_route)
6879 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
6880 debug_printf("After routing:\n Local deliveries:\n");
6881 for (p = addr_local; p; p = p->next)
6882 debug_printf(" %s\n", p->address);
6884 debug_printf(" Remote deliveries:\n");
6885 for (p = addr_remote; p; p = p->next)
6886 debug_printf(" %s\n", p->address);
6888 debug_printf(" Failed addresses:\n");
6889 for (p = addr_failed; p; p = p->next)
6890 debug_printf(" %s\n", p->address);
6892 debug_printf(" Deferred addresses:\n");
6893 for (p = addr_defer; p; p = p->next)
6894 debug_printf(" %s\n", p->address);
6897 /* Free any resources that were cached during routing. */
6902 /* These two variables are set only during routing, after check_local_user.
6903 Ensure they are not set in transports. */
6905 local_user_gid = (gid_t)(-1);
6906 local_user_uid = (uid_t)(-1);
6908 /* Check for any duplicate addresses. This check is delayed until after
6909 routing, because the flexibility of the routing configuration means that
6910 identical addresses with different parentage may end up being redirected to
6911 different addresses. Checking for duplicates too early (as we previously used
6912 to) makes this kind of thing not work. */
6914 do_duplicate_check(&addr_local);
6915 do_duplicate_check(&addr_remote);
6917 /* When acting as an MUA wrapper, we proceed only if all addresses route to a
6918 remote transport. The check that they all end up in one transaction happens in
6919 the do_remote_deliveries() function. */
6922 && (addr_local || addr_failed || addr_defer)
6926 uschar *which, *colon, *msg;
6933 else if (addr_defer)
6936 which = US"deferred";
6944 while (addr->parent) addr = addr->parent;
6949 msg = addr->message;
6951 else colon = msg = US"";
6953 /* We don't need to log here for a forced failure as it will already
6954 have been logged. Defer will also have been logged, but as a defer, so we do
6955 need to do the failure logging. */
6957 if (addr != addr_failed)
6958 log_write(0, LOG_MAIN, "** %s routing yielded a %s delivery",
6959 addr->address, which);
6961 /* Always write an error to the caller */
6963 fprintf(stderr, "routing %s yielded a %s delivery%s%s\n", addr->address,
6966 final_yield = DELIVER_MUA_FAILED;
6967 addr_failed = addr_defer = NULL; /* So that we remove the message */
6968 goto DELIVERY_TIDYUP;
6972 /* If this is a run to continue deliveries to an external channel that is
6973 already set up, defer any local deliveries. */
6975 if (continue_transport)
6979 address_item *addr = addr_defer;
6980 while (addr->next) addr = addr->next;
6981 addr->next = addr_local;
6984 addr_defer = addr_local;
6989 /* Because address rewriting can happen in the routers, we should not really do
6990 ANY deliveries until all addresses have been routed, so that all recipients of
6991 the message get the same headers. However, this is in practice not always
6992 possible, since sometimes remote addresses give DNS timeouts for days on end.
6993 The pragmatic approach is to deliver what we can now, saving any rewritten
6994 headers so that at least the next lot of recipients benefit from the rewriting
6995 that has already been done.
6997 If any headers have been rewritten during routing, update the spool file to
6998 remember them for all subsequent deliveries. This can be delayed till later if
6999 there is only address to be delivered - if it succeeds the spool write need not
7002 if ( f.header_rewritten
7003 && ( addr_local && (addr_local->next || addr_remote)
7004 || addr_remote && addr_remote->next
7007 /* Panic-dies on error */
7008 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
7009 f.header_rewritten = FALSE;
7013 /* If there are any deliveries to be and we do not already have the journal
7014 file, create it. This is used to record successful deliveries as soon as
7015 possible after each delivery is known to be complete. A file opened with
7016 O_APPEND is used so that several processes can run simultaneously.
7018 The journal is just insurance against crashes. When the spool file is
7019 ultimately updated at the end of processing, the journal is deleted. If a
7020 journal is found to exist at the start of delivery, the addresses listed
7021 therein are added to the non-recipients. */
7023 if (addr_local || addr_remote)
7027 uschar * fname = spool_fname(US"input", message_subdir, id, US"-J");
7029 if ((journal_fd = Uopen(fname,
7033 O_WRONLY|O_APPEND|O_CREAT|O_EXCL, SPOOL_MODE)) < 0)
7035 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't open journal file %s: %s",
7036 fname, strerror(errno));
7037 return DELIVER_NOT_ATTEMPTED;
7040 /* Set the close-on-exec flag, make the file owned by Exim, and ensure
7041 that the mode is correct - the group setting doesn't always seem to get
7042 set automatically. */
7044 if( fchown(journal_fd, exim_uid, exim_gid)
7045 || fchmod(journal_fd, SPOOL_MODE)
7047 || fcntl(journal_fd, F_SETFD, fcntl(journal_fd, F_GETFD) | FD_CLOEXEC)
7051 int ret = Uunlink(fname);
7052 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't set perms on journal file %s: %s",
7053 fname, strerror(errno));
7054 if(ret && errno != ENOENT)
7055 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s",
7056 fname, strerror(errno));
7057 return DELIVER_NOT_ATTEMPTED;
7061 else if (journal_fd >= 0)
7069 /* Now we can get down to the business of actually doing deliveries. Local
7070 deliveries are done first, then remote ones. If ever the problems of how to
7071 handle fallback transports are figured out, this section can be put into a loop
7072 for handling fallbacks, though the uid switching will have to be revised. */
7074 /* Precompile a regex that is used to recognize a parameter in response
7075 to an LHLO command, if is isn't already compiled. This may be used on both
7076 local and remote LMTP deliveries. */
7078 if (!regex_IGNOREQUOTA)
7080 regex_must_compile(US"\\n250[\\s\\-]IGNOREQUOTA(\\s|\\n|$)", FALSE, TRUE);
7082 /* Handle local deliveries */
7086 DEBUG(D_deliver|D_transport)
7087 debug_printf(">>>>>>>>>>>>>>>> Local deliveries >>>>>>>>>>>>>>>>\n");
7088 do_local_deliveries();
7089 f.disable_logging = FALSE;
7092 /* If queue_run_local is set, we do not want to attempt any remote deliveries,
7093 so just queue them all. */
7095 if (f.queue_run_local)
7098 address_item *addr = addr_remote;
7099 addr_remote = addr->next;
7101 addr->basic_errno = ERRNO_LOCAL_ONLY;
7102 addr->message = US"remote deliveries suppressed";
7103 (void)post_process_one(addr, DEFER, LOG_MAIN, EXIM_DTYPE_TRANSPORT, 0);
7106 /* Handle remote deliveries */
7110 DEBUG(D_deliver|D_transport)
7111 debug_printf(">>>>>>>>>>>>>>>> Remote deliveries >>>>>>>>>>>>>>>>\n");
7113 /* Precompile some regex that are used to recognize parameters in response
7114 to an EHLO command, if they aren't already compiled. */
7118 /* Now sort the addresses if required, and do the deliveries. The yield of
7119 do_remote_deliveries is FALSE when mua_wrapper is set and all addresses
7120 cannot be delivered in one transaction. */
7122 if (remote_sort_domains) sort_remote_deliveries();
7123 if (!do_remote_deliveries(FALSE))
7125 log_write(0, LOG_MAIN, "** mua_wrapper is set but recipients cannot all "
7126 "be delivered in one transaction");
7127 fprintf(stderr, "delivery to smarthost failed (configuration problem)\n");
7129 final_yield = DELIVER_MUA_FAILED;
7130 addr_failed = addr_defer = NULL; /* So that we remove the message */
7131 goto DELIVERY_TIDYUP;
7134 /* See if any of the addresses that failed got put on the queue for delivery
7135 to their fallback hosts. We do it this way because often the same fallback
7136 host is used for many domains, so all can be sent in a single transaction
7137 (if appropriately configured). */
7139 if (addr_fallback && !mua_wrapper)
7141 DEBUG(D_deliver) debug_printf("Delivering to fallback hosts\n");
7142 addr_remote = addr_fallback;
7143 addr_fallback = NULL;
7144 if (remote_sort_domains) sort_remote_deliveries();
7145 do_remote_deliveries(TRUE);
7147 f.disable_logging = FALSE;
7151 /* All deliveries are now complete. Ignore SIGTERM during this tidying up
7152 phase, to minimize cases of half-done things. */
7155 debug_printf(">>>>>>>>>>>>>>>> deliveries are done >>>>>>>>>>>>>>>>\n");
7156 cancel_cutthrough_connection(TRUE, US"deliveries are done");
7158 /* Root privilege is no longer needed */
7160 exim_setugid(exim_uid, exim_gid, FALSE, US"post-delivery tidying");
7162 set_process_info("tidying up after delivering %s", message_id);
7163 signal(SIGTERM, SIG_IGN);
7165 /* When we are acting as an MUA wrapper, the smtp transport will either have
7166 succeeded for all addresses, or failed them all in normal cases. However, there
7167 are some setup situations (e.g. when a named port does not exist) that cause an
7168 immediate exit with deferral of all addresses. Convert those into failures. We
7169 do not ever want to retry, nor do we want to send a bounce message. */
7175 address_item *addr, *nextaddr;
7176 for (addr = addr_defer; addr; addr = nextaddr)
7178 log_write(0, LOG_MAIN, "** %s mua_wrapper forced failure for deferred "
7179 "delivery", addr->address);
7180 nextaddr = addr->next;
7181 addr->next = addr_failed;
7187 /* Now all should either have succeeded or failed. */
7190 final_yield = DELIVER_MUA_SUCCEEDED;
7194 uschar *s = addr_failed->user_message;
7196 if (!s) s = addr_failed->message;
7198 fprintf(stderr, "Delivery failed: ");
7199 if (addr_failed->basic_errno > 0)
7201 fprintf(stderr, "%s", strerror(addr_failed->basic_errno));
7202 if (s) fprintf(stderr, ": ");
7204 if ((host = addr_failed->host_used))
7205 fprintf(stderr, "H=%s [%s]: ", host->name, host->address);
7207 fprintf(stderr, "%s", CS s);
7208 else if (addr_failed->basic_errno <= 0)
7209 fprintf(stderr, "unknown error");
7210 fprintf(stderr, "\n");
7212 final_yield = DELIVER_MUA_FAILED;
7217 /* In a normal configuration, we now update the retry database. This is done in
7218 one fell swoop at the end in order not to keep opening and closing (and
7219 locking) the database. The code for handling retries is hived off into a
7220 separate module for convenience. We pass it the addresses of the various
7221 chains, because deferred addresses can get moved onto the failed chain if the
7222 retry cutoff time has expired for all alternative destinations. Bypass the
7223 updating of the database if the -N flag is set, which is a debugging thing that
7224 prevents actual delivery. */
7226 else if (!f.dont_deliver)
7227 retry_update(&addr_defer, &addr_failed, &addr_succeed);
7229 /* Send DSN for successful messages if requested */
7230 addr_senddsn = NULL;
7232 for (addr_dsntmp = addr_succeed; addr_dsntmp; addr_dsntmp = addr_dsntmp->next)
7234 /* af_ignore_error not honored here. it's not an error */
7235 DEBUG(D_deliver) debug_printf("DSN: processing router : %s\n"
7236 "DSN: processing successful delivery address: %s\n"
7237 "DSN: Sender_address: %s\n"
7238 "DSN: orcpt: %s flags: %d\n"
7239 "DSN: envid: %s ret: %d\n"
7240 "DSN: Final recipient: %s\n"
7241 "DSN: Remote SMTP server supports DSN: %d\n",
7242 addr_dsntmp->router ? addr_dsntmp->router->name : US"(unknown)",
7243 addr_dsntmp->address,
7245 addr_dsntmp->dsn_orcpt ? addr_dsntmp->dsn_orcpt : US"NULL",
7246 addr_dsntmp->dsn_flags,
7247 dsn_envid ? dsn_envid : US"NULL", dsn_ret,
7248 addr_dsntmp->address,
7249 addr_dsntmp->dsn_aware
7252 /* send report if next hop not DSN aware or a router flagged "last DSN hop"
7253 and a report was requested */
7254 if ( ( addr_dsntmp->dsn_aware != dsn_support_yes
7255 || addr_dsntmp->dsn_flags & rf_dsnlasthop
7257 && addr_dsntmp->dsn_flags & rf_dsnflags
7258 && addr_dsntmp->dsn_flags & rf_notify_success
7261 /* copy and relink address_item and send report with all of them at once later */
7262 address_item * addr_next = addr_senddsn;
7263 addr_senddsn = store_get(sizeof(address_item));
7264 *addr_senddsn = *addr_dsntmp;
7265 addr_senddsn->next = addr_next;
7268 DEBUG(D_deliver) debug_printf("DSN: not sending DSN success message\n");
7276 /* create exim process to send message */
7277 pid = child_open_exim(&fd);
7279 DEBUG(D_deliver) debug_printf("DSN: child_open_exim returns: %d\n", pid);
7281 if (pid < 0) /* Creation of child failed */
7283 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Process %d (parent %d) failed to "
7284 "create child process to send failure message: %s", getpid(),
7285 getppid(), strerror(errno));
7287 DEBUG(D_deliver) debug_printf("DSN: child_open_exim failed\n");
7289 else /* Creation of child succeeded */
7291 FILE *f = fdopen(fd, "wb");
7292 /* header only as required by RFC. only failure DSN needs to honor RET=FULL */
7294 transport_ctx tctx = {{0}};
7297 debug_printf("sending error message to: %s\n", sender_address);
7299 /* build unique id for MIME boundary */
7300 bound = string_sprintf(TIME_T_FMT "-eximdsn-%d", time(NULL), rand());
7301 DEBUG(D_deliver) debug_printf("DSN: MIME boundary: %s\n", bound);
7303 if (errors_reply_to)
7304 fprintf(f, "Reply-To: %s\n", errors_reply_to);
7306 fprintf(f, "Auto-Submitted: auto-generated\n"
7307 "From: Mail Delivery System <Mailer-Daemon@%s>\n"
7309 "Subject: Delivery Status Notification\n"
7310 "Content-Type: multipart/report; report-type=delivery-status; boundary=%s\n"
7311 "MIME-Version: 1.0\n\n"
7314 "Content-type: text/plain; charset=us-ascii\n\n"
7316 "This message was created automatically by mail delivery software.\n"
7317 " ----- The following addresses had successful delivery notifications -----\n",
7318 qualify_domain_sender, sender_address, bound, bound);
7320 for (addr_dsntmp = addr_senddsn; addr_dsntmp;
7321 addr_dsntmp = addr_dsntmp->next)
7322 fprintf(f, "<%s> (relayed %s)\n\n",
7323 addr_dsntmp->address,
7324 (addr_dsntmp->dsn_flags & rf_dsnlasthop) == 1
7325 ? "via non DSN router"
7326 : addr_dsntmp->dsn_aware == dsn_support_no
7327 ? "to non-DSN-aware mailer"
7328 : "via non \"Remote SMTP\" router"
7332 "Content-type: message/delivery-status\n\n"
7333 "Reporting-MTA: dns; %s\n",
7334 bound, smtp_active_hostname);
7337 { /* must be decoded from xtext: see RFC 3461:6.3a */
7339 if (auth_xtextdecode(dsn_envid, &xdec_envid) > 0)
7340 fprintf(f, "Original-Envelope-ID: %s\n", dsn_envid);
7342 fprintf(f, "X-Original-Envelope-ID: error decoding xtext formatted ENVID\n");
7346 for (addr_dsntmp = addr_senddsn;
7348 addr_dsntmp = addr_dsntmp->next)
7350 if (addr_dsntmp->dsn_orcpt)
7351 fprintf(f,"Original-Recipient: %s\n", addr_dsntmp->dsn_orcpt);
7353 fprintf(f, "Action: delivered\n"
7354 "Final-Recipient: rfc822;%s\n"
7356 addr_dsntmp->address);
7358 if (addr_dsntmp->host_used && addr_dsntmp->host_used->name)
7359 fprintf(f, "Remote-MTA: dns; %s\nDiagnostic-Code: smtp; 250 Ok\n\n",
7360 addr_dsntmp->host_used->name);
7362 fprintf(f, "Diagnostic-Code: X-Exim; relayed via non %s router\n\n",
7363 (addr_dsntmp->dsn_flags & rf_dsnlasthop) == 1 ? "DSN" : "SMTP");
7366 fprintf(f, "--%s\nContent-type: text/rfc822-headers\n\n", bound);
7369 transport_filter_argv = NULL; /* Just in case */
7370 return_path = sender_address; /* In case not previously set */
7372 /* Write the original email out */
7374 tctx.u.fd = fileno(f);
7375 tctx.options = topt_add_return_path | topt_no_body;
7376 transport_write_message(&tctx, 0);
7379 fprintf(f,"\n--%s--\n", bound);
7383 rc = child_close(pid, 0); /* Waits for child to close, no timeout */
7387 /* If any addresses failed, we must send a message to somebody, unless
7388 af_ignore_error is set, in which case no action is taken. It is possible for
7389 several messages to get sent if there are addresses with different
7396 uschar *logtod = tod_stamp(tod_log);
7398 address_item *handled_addr = NULL;
7399 address_item **paddr;
7400 address_item *msgchain = NULL;
7401 address_item **pmsgchain = &msgchain;
7403 /* There are weird cases when logging is disabled in the transport. However,
7404 there may not be a transport (address failed by a router). */
7406 f.disable_logging = FALSE;
7407 if (addr_failed->transport)
7408 f.disable_logging = addr_failed->transport->disable_logging;
7411 debug_printf("processing failed address %s\n", addr_failed->address);
7413 /* There are only two ways an address in a bounce message can get here:
7415 (1) When delivery was initially deferred, but has now timed out (in the call
7416 to retry_update() above). We can detect this by testing for
7417 af_retry_timedout. If the address does not have its own errors address,
7418 we arrange to ignore the error.
7420 (2) If delivery failures for bounce messages are being ignored. We can detect
7421 this by testing for af_ignore_error. This will also be set if a bounce
7422 message has been autothawed and the ignore_bounce_errors_after time has
7423 passed. It might also be set if a router was explicitly configured to
7424 ignore errors (errors_to = "").
7426 If neither of these cases obtains, something has gone wrong. Log the
7427 incident, but then ignore the error. */
7429 if (sender_address[0] == 0 && !addr_failed->prop.errors_address)
7431 if ( !testflag(addr_failed, af_retry_timedout)
7432 && !addr_failed->prop.ignore_error)
7433 log_write(0, LOG_MAIN|LOG_PANIC, "internal error: bounce message "
7434 "failure is neither frozen nor ignored (it's been ignored)");
7436 addr_failed->prop.ignore_error = TRUE;
7439 /* If the first address on the list has af_ignore_error set, just remove
7440 it from the list, throw away any saved message file, log it, and
7441 mark the recipient done. */
7443 if ( addr_failed->prop.ignore_error
7444 || ( addr_failed->dsn_flags & rf_dsnflags
7445 && (addr_failed->dsn_flags & rf_notify_failure) != rf_notify_failure
7449 addr_failed = addr->next;
7450 if (addr->return_filename) Uunlink(addr->return_filename);
7452 log_write(0, LOG_MAIN, "%s%s%s%s: error ignored",
7454 !addr->parent ? US"" : US" <",
7455 !addr->parent ? US"" : addr->parent->address,
7456 !addr->parent ? US"" : US">");
7458 address_done(addr, logtod);
7459 child_done(addr, logtod);
7460 /* Panic-dies on error */
7461 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
7464 /* Otherwise, handle the sending of a message. Find the error address for
7465 the first address, then send a message that includes all failed addresses
7466 that have the same error address. Note the bounce_recipient is a global so
7467 that it can be accessed by $bounce_recipient while creating a customized
7472 if (!(bounce_recipient = addr_failed->prop.errors_address))
7473 bounce_recipient = sender_address;
7475 /* Make a subprocess to send a message */
7477 if ((pid = child_open_exim(&fd)) < 0)
7478 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Process %d (parent %d) failed to "
7479 "create child process to send failure message: %s", getpid(),
7480 getppid(), strerror(errno));
7482 /* Creation of child succeeded */
7489 uschar *bcc, *emf_text;
7490 FILE * fp = fdopen(fd, "wb");
7492 BOOL to_sender = strcmpic(sender_address, bounce_recipient) == 0;
7493 int max = (bounce_return_size_limit/DELIVER_IN_BUFFER_SIZE + 1) *
7494 DELIVER_IN_BUFFER_SIZE;
7496 uschar *dsnlimitmsg;
7497 uschar *dsnnotifyhdr;
7501 debug_printf("sending error message to: %s\n", bounce_recipient);
7503 /* Scan the addresses for all that have the same errors address, removing
7504 them from the addr_failed chain, and putting them on msgchain. */
7506 paddr = &addr_failed;
7507 for (addr = addr_failed; addr; addr = *paddr)
7508 if (Ustrcmp(bounce_recipient, addr->prop.errors_address
7509 ? addr->prop.errors_address : sender_address) == 0)
7510 { /* The same - dechain */
7511 *paddr = addr->next;
7514 pmsgchain = &(addr->next);
7517 paddr = &addr->next; /* Not the same; skip */
7519 /* Include X-Failed-Recipients: for automatic interpretation, but do
7520 not let any one header line get too long. We do this by starting a
7521 new header every 50 recipients. Omit any addresses for which the
7522 "hide_child" flag is set. */
7524 for (addr = msgchain; addr; addr = addr->next)
7526 if (testflag(addr, af_hide_child)) continue;
7534 ? "X-Failed-Recipients: "
7536 testflag(addr, af_pfr) && addr->parent
7537 ? string_printing(addr->parent->address)
7538 : string_printing(addr->address));
7540 if (rcount > 0) fprintf(fp, "\n");
7542 /* Output the standard headers */
7544 if (errors_reply_to)
7545 fprintf(fp, "Reply-To: %s\n", errors_reply_to);
7546 fprintf(fp, "Auto-Submitted: auto-replied\n");
7547 moan_write_from(fp);
7548 fprintf(fp, "To: %s\n", bounce_recipient);
7550 /* generate boundary string and output MIME-Headers */
7551 bound = string_sprintf(TIME_T_FMT "-eximdsn-%d", time(NULL), rand());
7553 fprintf(fp, "Content-Type: multipart/report;"
7554 " report-type=delivery-status; boundary=%s\n"
7555 "MIME-Version: 1.0\n",
7558 /* Open a template file if one is provided. Log failure to open, but
7559 carry on - default texts will be used. */
7561 if (bounce_message_file)
7562 if (!(emf = Ufopen(bounce_message_file, "rb")))
7563 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to open %s for error "
7564 "message texts: %s", bounce_message_file, strerror(errno));
7566 /* Quietly copy to configured additional addresses if required. */
7568 if ((bcc = moan_check_errorcopy(bounce_recipient)))
7569 fprintf(fp, "Bcc: %s\n", bcc);
7571 /* The texts for the message can be read from a template file; if there
7572 isn't one, or if it is too short, built-in texts are used. The first
7573 emf text is a Subject: and any other headers. */
7575 if ((emf_text = next_emf(emf, US"header")))
7576 fprintf(fp, "%s\n", emf_text);
7578 fprintf(fp, "Subject: Mail delivery failed%s\n\n",
7579 to_sender? ": returning message to sender" : "");
7581 /* output human readable part as text/plain section */
7582 fprintf(fp, "--%s\n"
7583 "Content-type: text/plain; charset=us-ascii\n\n",
7586 if ((emf_text = next_emf(emf, US"intro")))
7587 fprintf(fp, "%s", CS emf_text);
7591 /* This message has been reworded several times. It seems to be confusing to
7592 somebody, however it is worded. I have retreated to the original, simple
7594 "This message was created automatically by mail delivery software.\n");
7596 if (bounce_message_text)
7597 fprintf(fp, "%s", CS bounce_message_text);
7600 "\nA message that you sent could not be delivered to one or more of its\n"
7601 "recipients. This is a permanent error. The following address(es) failed:\n");
7604 "\nA message sent by\n\n <%s>\n\n"
7605 "could not be delivered to one or more of its recipients. The following\n"
7606 "address(es) failed:\n", sender_address);
7610 /* Process the addresses, leaving them on the msgchain if they have a
7611 file name for a return message. (There has already been a check in
7612 post_process_one() for the existence of data in the message file.) A TRUE
7613 return from print_address_information() means that the address is not
7617 for (addr = msgchain; addr; addr = *paddr)
7619 if (print_address_information(addr, fp, US" ", US"\n ", US""))
7620 print_address_error(addr, fp, US"");
7622 /* End the final line for the address */
7626 /* Leave on msgchain if there's a return file. */
7628 if (addr->return_file >= 0)
7630 paddr = &(addr->next);
7634 /* Else save so that we can tick off the recipient when the
7639 *paddr = addr->next;
7640 addr->next = handled_addr;
7641 handled_addr = addr;
7647 /* Get the next text, whether we need it or not, so as to be
7648 positioned for the one after. */
7650 emf_text = next_emf(emf, US"generated text");
7652 /* If there were any file messages passed by the local transports,
7653 include them in the message. Then put the address on the handled chain.
7654 In the case of a batch of addresses that were all sent to the same
7655 transport, the return_file field in all of them will contain the same
7656 fd, and the return_filename field in the *last* one will be set (to the
7657 name of the file). */
7661 address_item *nextaddr;
7664 fprintf(fp, "%s", CS emf_text);
7667 "The following text was generated during the delivery "
7668 "attempt%s:\n", (filecount > 1)? "s" : "");
7670 for (addr = msgchain; addr; addr = nextaddr)
7673 address_item *topaddr = addr;
7675 /* List all the addresses that relate to this file */
7678 while(addr) /* Insurance */
7680 print_address_information(addr, fp, US"------ ", US"\n ",
7682 if (addr->return_filename) break;
7687 /* Now copy the file */
7689 if (!(fm = Ufopen(addr->return_filename, "rb")))
7690 fprintf(fp, " +++ Exim error... failed to open text file: %s\n",
7694 while ((ch = fgetc(fm)) != EOF) fputc(ch, fp);
7697 Uunlink(addr->return_filename);
7699 /* Can now add to handled chain, first fishing off the next
7700 address on the msgchain. */
7702 nextaddr = addr->next;
7703 addr->next = handled_addr;
7704 handled_addr = topaddr;
7709 /* output machine readable part */
7711 if (message_smtputf8)
7712 fprintf(fp, "--%s\n"
7713 "Content-type: message/global-delivery-status\n\n"
7714 "Reporting-MTA: dns; %s\n",
7715 bound, smtp_active_hostname);
7718 fprintf(fp, "--%s\n"
7719 "Content-type: message/delivery-status\n\n"
7720 "Reporting-MTA: dns; %s\n",
7721 bound, smtp_active_hostname);
7725 /* must be decoded from xtext: see RFC 3461:6.3a */
7727 if (auth_xtextdecode(dsn_envid, &xdec_envid) > 0)
7728 fprintf(fp, "Original-Envelope-ID: %s\n", dsn_envid);
7730 fprintf(fp, "X-Original-Envelope-ID: error decoding xtext formatted ENVID\n");
7734 for (addr = handled_addr; addr; addr = addr->next)
7737 fprintf(fp, "Action: failed\n"
7738 "Final-Recipient: rfc822;%s\n"
7741 if ((hu = addr->host_used) && hu->name)
7743 fprintf(fp, "Remote-MTA: dns; %s\n", hu->name);
7744 #ifdef EXPERIMENTAL_DSN_INFO
7749 uschar * p = hu->port == 25
7750 ? US"" : string_sprintf(":%d", hu->port);
7751 fprintf(fp, "Remote-MTA: X-ip; [%s]%s\n", hu->address, p);
7753 if ((s = addr->smtp_greeting) && *s)
7754 fprintf(fp, "X-Remote-MTA-smtp-greeting: X-str; %s\n", s);
7755 if ((s = addr->helo_response) && *s)
7756 fprintf(fp, "X-Remote-MTA-helo-response: X-str; %s\n", s);
7757 if ((s = addr->message) && *s)
7758 fprintf(fp, "X-Exim-Diagnostic: X-str; %s\n", s);
7761 print_dsn_diagnostic_code(addr, fp);
7766 /* Now copy the message, trying to give an intelligible comment if
7767 it is too long for it all to be copied. The limit isn't strictly
7768 applied because of the buffering. There is, however, an option
7769 to suppress copying altogether. */
7771 emf_text = next_emf(emf, US"copy");
7774 we ignore the intro text from template and add
7775 the text for bounce_return_size_limit at the end.
7777 bounce_return_message is ignored
7778 in case RET= is defined we honor these values
7779 otherwise bounce_return_body is honored.
7781 bounce_return_size_limit is always honored.
7784 fprintf(fp, "--%s\n", bound);
7786 dsnlimitmsg = US"X-Exim-DSN-Information: Due to administrative limits only headers are returned";
7787 dsnnotifyhdr = NULL;
7788 topt = topt_add_return_path;
7790 /* RET=HDRS? top priority */
7791 if (dsn_ret == dsn_ret_hdrs)
7792 topt |= topt_no_body;
7795 struct stat statbuf;
7797 /* no full body return at all? */
7798 if (!bounce_return_body)
7800 topt |= topt_no_body;
7801 /* add header if we overrule RET=FULL */
7802 if (dsn_ret == dsn_ret_full)
7803 dsnnotifyhdr = dsnlimitmsg;
7805 /* line length limited... return headers only if oversize */
7806 /* size limited ... return headers only if limit reached */
7807 else if ( max_received_linelength > bounce_return_linesize_limit
7808 || ( bounce_return_size_limit > 0
7809 && fstat(deliver_datafile, &statbuf) == 0
7810 && statbuf.st_size > max
7813 topt |= topt_no_body;
7814 dsnnotifyhdr = dsnlimitmsg;
7819 if (message_smtputf8)
7820 fputs(topt & topt_no_body ? "Content-type: message/global-headers\n\n"
7821 : "Content-type: message/global\n\n",
7825 fputs(topt & topt_no_body ? "Content-type: text/rfc822-headers\n\n"
7826 : "Content-type: message/rfc822\n\n",
7830 transport_filter_argv = NULL; /* Just in case */
7831 return_path = sender_address; /* In case not previously set */
7832 { /* Dummy transport for headers add */
7833 transport_ctx tctx = {{0}};
7834 transport_instance tb = {0};
7836 tctx.u.fd = fileno(fp);
7838 tctx.options = topt;
7839 tb.add_headers = dsnnotifyhdr;
7841 transport_write_message(&tctx, 0);
7845 /* we never add the final text. close the file */
7849 fprintf(fp, "\n--%s--\n", bound);
7851 /* Close the file, which should send an EOF to the child process
7852 that is receiving the message. Wait for it to finish. */
7855 rc = child_close(pid, 0); /* Waits for child to close, no timeout */
7857 /* In the test harness, let the child do it's thing first. */
7859 if (f.running_in_test_harness) millisleep(500);
7861 /* If the process failed, there was some disaster in setting up the
7862 error message. Unless the message is very old, ensure that addr_defer
7863 is non-null, which will have the effect of leaving the message on the
7864 spool. The failed addresses will get tried again next time. However, we
7865 don't really want this to happen too often, so freeze the message unless
7866 there are some genuine deferred addresses to try. To do this we have
7867 to call spool_write_header() here, because with no genuine deferred
7868 addresses the normal code below doesn't get run. */
7873 if (now - received_time.tv_sec < retry_maximum_timeout && !addr_defer)
7875 addr_defer = (address_item *)(+1);
7876 f.deliver_freeze = TRUE;
7877 deliver_frozen_at = time(NULL);
7878 /* Panic-dies on error */
7879 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
7882 deliver_msglog("Process failed (%d) when writing error message "
7883 "to %s%s", rc, bounce_recipient, s);
7884 log_write(0, LOG_MAIN, "Process failed (%d) when writing error message "
7885 "to %s%s", rc, bounce_recipient, s);
7888 /* The message succeeded. Ensure that the recipients that failed are
7889 now marked finished with on the spool and their parents updated. */
7893 for (addr = handled_addr; addr; addr = addr->next)
7895 address_done(addr, logtod);
7896 child_done(addr, logtod);
7898 /* Panic-dies on error */
7899 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
7905 f.disable_logging = FALSE; /* In case left set */
7907 /* Come here from the mua_wrapper case if routing goes wrong */
7911 /* If there are now no deferred addresses, we are done. Preserve the
7912 message log if so configured, and we are using them. Otherwise, sling it.
7913 Then delete the message itself. */
7921 fname = spool_fname(US"msglog", message_subdir, id, US"");
7922 if (preserve_message_logs)
7925 uschar * moname = spool_fname(US"msglog.OLD", US"", id, US"");
7927 if ((rc = Urename(fname, moname)) < 0)
7929 (void)directory_make(spool_directory,
7930 spool_sname(US"msglog.OLD", US""),
7931 MSGLOG_DIRECTORY_MODE, TRUE);
7932 rc = Urename(fname, moname);
7935 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to move %s to the "
7936 "msglog.OLD directory", fname);
7939 if (Uunlink(fname) < 0)
7940 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s",
7941 fname, strerror(errno));
7944 /* Remove the two message files. */
7946 fname = spool_fname(US"input", message_subdir, id, US"-D");
7947 if (Uunlink(fname) < 0)
7948 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s",
7949 fname, strerror(errno));
7950 fname = spool_fname(US"input", message_subdir, id, US"-H");
7951 if (Uunlink(fname) < 0)
7952 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s",
7953 fname, strerror(errno));
7955 /* Log the end of this message, with queue time if requested. */
7957 if (LOGGING(queue_time_overall))
7958 log_write(0, LOG_MAIN, "Completed QT=%s", string_timesince(&received_time));
7960 log_write(0, LOG_MAIN, "Completed");
7962 /* Unset deliver_freeze so that we won't try to move the spool files further down */
7963 f.deliver_freeze = FALSE;
7965 #ifndef DISABLE_EVENT
7966 (void) event_raise(event_action, US"msg:complete", NULL);
7970 /* If there are deferred addresses, we are keeping this message because it is
7971 not yet completed. Lose any temporary files that were catching output from
7972 pipes for any of the deferred addresses, handle one-time aliases, and see if
7973 the message has been on the queue for so long that it is time to send a warning
7974 message to the sender, unless it is a mailer-daemon. If all deferred addresses
7975 have the same domain, we can set deliver_domain for the expansion of
7976 delay_warning_ condition - if any of them are pipes, files, or autoreplies, use
7977 the parent's domain.
7979 If all the deferred addresses have an error number that indicates "retry time
7980 not reached", skip sending the warning message, because it won't contain the
7981 reason for the delay. It will get sent at the next real delivery attempt.
7982 However, if at least one address has tried, we'd better include all of them in
7985 If we can't make a process to send the message, don't worry.
7987 For mailing list expansions we want to send the warning message to the
7988 mailing list manager. We can't do a perfect job here, as some addresses may
7989 have different errors addresses, but if we take the errors address from
7990 each deferred address it will probably be right in most cases.
7992 If addr_defer == +1, it means there was a problem sending an error message
7993 for failed addresses, and there were no "real" deferred addresses. The value
7994 was set just to keep the message on the spool, so there is nothing to do here.
7997 else if (addr_defer != (address_item *)(+1))
8000 uschar *recipients = US"";
8001 BOOL delivery_attempted = FALSE;
8003 deliver_domain = testflag(addr_defer, af_pfr)
8004 ? addr_defer->parent->domain : addr_defer->domain;
8006 for (addr = addr_defer; addr; addr = addr->next)
8008 address_item *otaddr;
8010 if (addr->basic_errno > ERRNO_RETRY_BASE) delivery_attempted = TRUE;
8014 const uschar *d = testflag(addr, af_pfr)
8015 ? addr->parent->domain : addr->domain;
8017 /* The domain may be unset for an address that has never been routed
8018 because the system filter froze the message. */
8020 if (!d || Ustrcmp(d, deliver_domain) != 0)
8021 deliver_domain = NULL;
8024 if (addr->return_filename) Uunlink(addr->return_filename);
8026 /* Handle the case of one-time aliases. If any address in the ancestry
8027 of this one is flagged, ensure it is in the recipients list, suitably
8028 flagged, and that its parent is marked delivered. */
8030 for (otaddr = addr; otaddr; otaddr = otaddr->parent)
8031 if (otaddr->onetime_parent) break;
8036 int t = recipients_count;
8038 for (i = 0; i < recipients_count; i++)
8040 uschar *r = recipients_list[i].address;
8041 if (Ustrcmp(otaddr->onetime_parent, r) == 0) t = i;
8042 if (Ustrcmp(otaddr->address, r) == 0) break;
8045 /* Didn't find the address already in the list, and did find the
8046 ultimate parent's address in the list, and they really are different
8047 (i.e. not from an identity-redirect). After adding the recipient,
8048 update the errors address in the recipients list. */
8050 if ( i >= recipients_count && t < recipients_count
8051 && Ustrcmp(otaddr->address, otaddr->parent->address) != 0)
8053 DEBUG(D_deliver) debug_printf("one_time: adding %s in place of %s\n",
8054 otaddr->address, otaddr->parent->address);
8055 receive_add_recipient(otaddr->address, t);
8056 recipients_list[recipients_count-1].errors_to = otaddr->prop.errors_address;
8057 tree_add_nonrecipient(otaddr->parent->address);
8058 update_spool = TRUE;
8062 /* Except for error messages, ensure that either the errors address for
8063 this deferred address or, if there is none, the sender address, is on the
8064 list of recipients for a warning message. */
8066 if (sender_address[0])
8068 uschar * s = addr->prop.errors_address;
8069 if (!s) s = sender_address;
8070 if (Ustrstr(recipients, s) == NULL)
8071 recipients = string_sprintf("%s%s%s", recipients,
8072 recipients[0] ? "," : "", s);
8076 /* Send a warning message if the conditions are right. If the condition check
8077 fails because of a lookup defer, there is nothing we can do. The warning
8078 is not sent. Another attempt will be made at the next delivery attempt (if
8081 if ( !f.queue_2stage
8082 && delivery_attempted
8083 && ( ((addr_defer->dsn_flags & rf_dsnflags) == 0)
8084 || (addr_defer->dsn_flags & rf_notify_delay) == rf_notify_delay
8086 && delay_warning[1] > 0
8087 && sender_address[0] != 0
8088 && ( !delay_warning_condition
8089 || expand_check_condition(delay_warning_condition,
8090 US"delay_warning", US"option")
8096 int queue_time = time(NULL) - received_time.tv_sec;
8098 /* When running in the test harness, there's an option that allows us to
8099 fudge this time so as to get repeatability of the tests. Take the first
8100 time off the list. In queue runs, the list pointer gets updated in the
8103 if (f.running_in_test_harness && fudged_queue_times[0] != 0)
8105 int qt = readconf_readtime(fudged_queue_times, '/', FALSE);
8108 DEBUG(D_deliver) debug_printf("fudged queue_times = %s\n",
8109 fudged_queue_times);
8114 /* See how many warnings we should have sent by now */
8116 for (count = 0; count < delay_warning[1]; count++)
8117 if (queue_time < delay_warning[count+2]) break;
8119 show_time = delay_warning[count+1];
8121 if (count >= delay_warning[1])
8124 int last_gap = show_time;
8125 if (count > 1) last_gap -= delay_warning[count];
8126 extra = (queue_time - delay_warning[count+1])/last_gap;
8127 show_time += last_gap * extra;
8133 debug_printf("time on queue = %s\n", readconf_printtime(queue_time));
8134 debug_printf("warning counts: required %d done %d\n", count,
8138 /* We have computed the number of warnings there should have been by now.
8139 If there haven't been enough, send one, and up the count to what it should
8142 if (warning_count < count)
8146 pid_t pid = child_open_exim(&fd);
8152 FILE *f = fdopen(fd, "wb");
8154 transport_ctx tctx = {{0}};
8156 if (warn_message_file)
8157 if (!(wmf = Ufopen(warn_message_file, "rb")))
8158 log_write(0, LOG_MAIN|LOG_PANIC, "Failed to open %s for warning "
8159 "message texts: %s", warn_message_file, strerror(errno));
8161 warnmsg_recipients = recipients;
8162 warnmsg_delay = queue_time < 120*60
8163 ? string_sprintf("%d minutes", show_time/60)
8164 : string_sprintf("%d hours", show_time/3600);
8166 if (errors_reply_to)
8167 fprintf(f, "Reply-To: %s\n", errors_reply_to);
8168 fprintf(f, "Auto-Submitted: auto-replied\n");
8170 fprintf(f, "To: %s\n", recipients);
8172 /* generated boundary string and output MIME-Headers */
8173 bound = string_sprintf(TIME_T_FMT "-eximdsn-%d", time(NULL), rand());
8175 fprintf(f, "Content-Type: multipart/report;"
8176 " report-type=delivery-status; boundary=%s\n"
8177 "MIME-Version: 1.0\n",
8180 if ((wmf_text = next_emf(wmf, US"header")))
8181 fprintf(f, "%s\n", wmf_text);
8183 fprintf(f, "Subject: Warning: message %s delayed %s\n\n",
8184 message_id, warnmsg_delay);
8186 /* output human readable part as text/plain section */
8188 "Content-type: text/plain; charset=us-ascii\n\n",
8191 if ((wmf_text = next_emf(wmf, US"intro")))
8192 fprintf(f, "%s", CS wmf_text);
8196 "This message was created automatically by mail delivery software.\n");
8198 if (Ustrcmp(recipients, sender_address) == 0)
8200 "A message that you sent has not yet been delivered to one or more of its\n"
8201 "recipients after more than ");
8205 "A message sent by\n\n <%s>\n\n"
8206 "has not yet been delivered to one or more of its recipients after more than \n",
8209 fprintf(f, "%s on the queue on %s.\n\n"
8210 "The message identifier is: %s\n",
8211 warnmsg_delay, primary_hostname, message_id);
8213 for (h = header_list; h; h = h->next)
8214 if (strncmpic(h->text, US"Subject:", 8) == 0)
8215 fprintf(f, "The subject of the message is: %s", h->text + 9);
8216 else if (strncmpic(h->text, US"Date:", 5) == 0)
8217 fprintf(f, "The date of the message is: %s", h->text + 6);
8220 fprintf(f, "The address%s to which the message has not yet been "
8222 !addr_defer->next ? "" : "es",
8223 !addr_defer->next ? "is": "are");
8226 /* List the addresses, with error information if allowed */
8228 /* store addr_defer for machine readable part */
8229 address_item *addr_dsndefer = addr_defer;
8233 address_item *addr = addr_defer;
8234 addr_defer = addr->next;
8235 if (print_address_information(addr, f, US" ", US"\n ", US""))
8236 print_address_error(addr, f, US"Delay reason: ");
8245 if ((wmf_text = next_emf(wmf, US"final")))
8246 fprintf(f, "%s", CS wmf_text);
8252 "No action is required on your part. Delivery attempts will continue for\n"
8253 "some time, and this warning may be repeated at intervals if the message\n"
8254 "remains undelivered. Eventually the mail delivery software will give up,\n"
8255 "and when that happens, the message will be returned to you.\n");
8258 /* output machine readable part */
8259 fprintf(f, "\n--%s\n"
8260 "Content-type: message/delivery-status\n\n"
8261 "Reporting-MTA: dns; %s\n",
8263 smtp_active_hostname);
8268 /* must be decoded from xtext: see RFC 3461:6.3a */
8270 if (auth_xtextdecode(dsn_envid, &xdec_envid) > 0)
8271 fprintf(f,"Original-Envelope-ID: %s\n", dsn_envid);
8273 fprintf(f,"X-Original-Envelope-ID: error decoding xtext formatted ENVID\n");
8277 for ( ; addr_dsndefer; addr_dsndefer = addr_dsndefer->next)
8279 if (addr_dsndefer->dsn_orcpt)
8280 fprintf(f, "Original-Recipient: %s\n", addr_dsndefer->dsn_orcpt);
8282 fprintf(f, "Action: delayed\n"
8283 "Final-Recipient: rfc822;%s\n"
8285 addr_dsndefer->address);
8286 if (addr_dsndefer->host_used && addr_dsndefer->host_used->name)
8288 fprintf(f, "Remote-MTA: dns; %s\n",
8289 addr_dsndefer->host_used->name);
8290 print_dsn_diagnostic_code(addr_dsndefer, f);
8296 "Content-type: text/rfc822-headers\n\n",
8300 /* header only as required by RFC. only failure DSN needs to honor RET=FULL */
8301 tctx.u.fd = fileno(f);
8302 tctx.options = topt_add_return_path | topt_no_body;
8303 transport_filter_argv = NULL; /* Just in case */
8304 return_path = sender_address; /* In case not previously set */
8306 /* Write the original email out */
8307 transport_write_message(&tctx, 0);
8310 fprintf(f,"\n--%s--\n", bound);
8314 /* Close and wait for child process to complete, without a timeout.
8315 If there's an error, don't update the count. */
8318 if (child_close(pid, 0) == 0)
8320 warning_count = count;
8321 update_spool = TRUE; /* Ensure spool rewritten */
8327 /* Clear deliver_domain */
8329 deliver_domain = NULL;
8331 /* If this was a first delivery attempt, unset the first time flag, and
8332 ensure that the spool gets updated. */
8334 if (f.deliver_firsttime)
8336 f.deliver_firsttime = FALSE;
8337 update_spool = TRUE;
8340 /* If delivery was frozen and freeze_tell is set, generate an appropriate
8341 message, unless the message is a local error message (to avoid loops). Then
8342 log the freezing. If the text in "frozen_info" came from a system filter,
8343 it has been escaped into printing characters so as not to mess up log lines.
8344 For the "tell" message, we turn \n back into newline. Also, insert a newline
8345 near the start instead of the ": " string. */
8347 if (f.deliver_freeze)
8349 if (freeze_tell && freeze_tell[0] != 0 && !f.local_error_message)
8351 uschar *s = string_copy(frozen_info);
8352 uschar *ss = Ustrstr(s, " by the system filter: ");
8363 if (*ss == '\\' && ss[1] == 'n')
8370 moan_tell_someone(freeze_tell, addr_defer, US"Message frozen",
8371 "Message %s has been frozen%s.\nThe sender is <%s>.\n", message_id,
8375 /* Log freezing just before we update the -H file, to minimize the chance
8376 of a race problem. */
8378 deliver_msglog("*** Frozen%s\n", frozen_info);
8379 log_write(0, LOG_MAIN, "Frozen%s", frozen_info);
8382 /* If there have been any updates to the non-recipients list, or other things
8383 that get written to the spool, we must now update the spool header file so
8384 that it has the right information for the next delivery attempt. If there
8385 was more than one address being delivered, the header_change update is done
8386 earlier, in case one succeeds and then something crashes. */
8389 debug_printf("delivery deferred: update_spool=%d header_rewritten=%d\n",
8390 update_spool, f.header_rewritten);
8392 if (update_spool || f.header_rewritten)
8393 /* Panic-dies on error */
8394 (void)spool_write_header(message_id, SW_DELIVERING, NULL);
8397 /* Finished with the message log. If the message is complete, it will have
8398 been unlinked or renamed above. */
8400 if (message_logs) (void)fclose(message_log);
8402 /* Now we can close and remove the journal file. Its only purpose is to record
8403 successfully completed deliveries asap so that this information doesn't get
8404 lost if Exim (or the machine) crashes. Forgetting about a failed delivery is
8405 not serious, as trying it again is not harmful. The journal might not be open
8406 if all addresses were deferred at routing or directing. Nevertheless, we must
8407 remove it if it exists (may have been lying around from a crash during the
8408 previous delivery attempt). We don't remove the journal if a delivery
8409 subprocess failed to pass back delivery information; this is controlled by
8410 the remove_journal flag. When the journal is left, we also don't move the
8411 message off the main spool if frozen and the option is set. It should get moved
8412 at the next attempt, after the journal has been inspected. */
8414 if (journal_fd >= 0) (void)close(journal_fd);
8418 uschar * fname = spool_fname(US"input", message_subdir, id, US"-J");
8420 if (Uunlink(fname) < 0 && errno != ENOENT)
8421 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "failed to unlink %s: %s", fname,
8424 /* Move the message off the spool if requested */
8426 #ifdef SUPPORT_MOVE_FROZEN_MESSAGES
8427 if (f.deliver_freeze && move_frozen_messages)
8428 (void)spool_move_message(id, message_subdir, US"", US"F");
8432 /* Closing the data file frees the lock; if the file has been unlinked it
8433 will go away. Otherwise the message becomes available for another process
8436 (void)close(deliver_datafile);
8437 deliver_datafile = -1;
8438 DEBUG(D_deliver) debug_printf("end delivery of %s\n", id);
8440 /* It is unlikely that there will be any cached resources, since they are
8441 released after routing, and in the delivery subprocesses. However, it's
8442 possible for an expansion for something afterwards (for example,
8443 expand_check_condition) to do a lookup. We must therefore be sure everything is
8447 acl_where = ACL_WHERE_UNKNOWN;
8456 #ifdef EXIM_TFO_PROBE
8459 f.tcp_fastopen_ok = TRUE;
8463 if (!regex_PIPELINING) regex_PIPELINING =
8464 regex_must_compile(US"\\n250[\\s\\-]PIPELINING(\\s|\\n|$)", FALSE, TRUE);
8466 if (!regex_SIZE) regex_SIZE =
8467 regex_must_compile(US"\\n250[\\s\\-]SIZE(\\s|\\n|$)", FALSE, TRUE);
8469 if (!regex_AUTH) regex_AUTH =
8470 regex_must_compile(US"\\n250[\\s\\-]AUTH\\s+([\\-\\w\\s]+)(?:\\n|$)",
8474 if (!regex_STARTTLS) regex_STARTTLS =
8475 regex_must_compile(US"\\n250[\\s\\-]STARTTLS(\\s|\\n|$)", FALSE, TRUE);
8477 # ifdef EXPERIMENTAL_REQUIRETLS
8478 if (!regex_REQUIRETLS) regex_REQUIRETLS =
8479 regex_must_compile(US"\\n250[\\s\\-]REQUIRETLS(\\s|\\n|$)", FALSE, TRUE);
8483 if (!regex_CHUNKING) regex_CHUNKING =
8484 regex_must_compile(US"\\n250[\\s\\-]CHUNKING(\\s|\\n|$)", FALSE, TRUE);
8486 #ifndef DISABLE_PRDR
8487 if (!regex_PRDR) regex_PRDR =
8488 regex_must_compile(US"\\n250[\\s\\-]PRDR(\\s|\\n|$)", FALSE, TRUE);
8492 if (!regex_UTF8) regex_UTF8 =
8493 regex_must_compile(US"\\n250[\\s\\-]SMTPUTF8(\\s|\\n|$)", FALSE, TRUE);
8496 if (!regex_DSN) regex_DSN =
8497 regex_must_compile(US"\\n250[\\s\\-]DSN(\\s|\\n|$)", FALSE, TRUE);
8499 if (!regex_IGNOREQUOTA) regex_IGNOREQUOTA =
8500 regex_must_compile(US"\\n250[\\s\\-]IGNOREQUOTA(\\s|\\n|$)", FALSE, TRUE);
8505 deliver_get_sender_address (uschar * id)
8508 uschar * new_sender_address,
8509 * save_sender_address;
8510 BOOL save_qr = f.queue_running;
8513 /* make spool_open_datafile non-noisy on fail */
8515 f.queue_running = TRUE;
8517 /* Side effect: message_subdir is set for the (possibly split) spool directory */
8519 deliver_datafile = spool_open_datafile(id);
8520 f.queue_running = save_qr;
8521 if (deliver_datafile < 0)
8524 /* Save and restore the global sender_address. I'm not sure if we should
8525 not save/restore all the other global variables too, because
8526 spool_read_header() may change all of them. But OTOH, when this
8527 deliver_get_sender_address() gets called, the current message is done
8528 already and nobody needs the globals anymore. (HS12, 2015-08-21) */
8530 spoolname = string_sprintf("%s-H", id);
8531 save_sender_address = sender_address;
8533 rc = spool_read_header(spoolname, TRUE, TRUE);
8535 new_sender_address = sender_address;
8536 sender_address = save_sender_address;
8538 if (rc != spool_read_OK)
8541 assert(new_sender_address);
8543 (void)close(deliver_datafile);
8544 deliver_datafile = -1;
8546 return new_sender_address;
8552 delivery_re_exec(int exec_type)
8556 if (cutthrough.cctx.sock >= 0 && cutthrough.callout_hold_only)
8558 int channel_fd = cutthrough.cctx.sock;
8560 smtp_peer_options = cutthrough.peer_options;
8561 continue_sequence = 0;
8564 if (cutthrough.is_tls)
8568 smtp_peer_options |= OPTION_TLS;
8569 sending_ip_address = cutthrough.snd_ip;
8570 sending_port = cutthrough.snd_port;
8572 where = US"socketpair";
8573 if (socketpair(AF_UNIX, SOCK_STREAM, 0, pfd) != 0)
8577 if ((pid = fork()) < 0)
8580 else if (pid == 0) /* child: fork again to totally disconnect */
8582 if (f.running_in_test_harness) millisleep(100); /* let parent debug out */
8583 /* does not return */
8584 smtp_proxy_tls(cutthrough.cctx.tls_ctx, big_buffer, big_buffer_size,
8588 DEBUG(D_transport) debug_printf("proxy-proc inter-pid %d\n", pid);
8590 waitpid(pid, NULL, 0);
8591 (void) close(channel_fd); /* release the client socket */
8592 channel_fd = pfd[1];
8596 transport_do_pass_socket(cutthrough.transport, cutthrough.host.name,
8597 cutthrough.host.address, message_id, channel_fd);
8601 cancel_cutthrough_connection(TRUE, US"non-continued delivery");
8602 (void) child_exec_exim(exec_type, FALSE, NULL, FALSE, 2, US"-Mc", message_id);
8604 return; /* compiler quietening; control does not reach here. */
8609 LOG_MAIN | (exec_type == CEE_EXEC_EXIT ? LOG_PANIC : LOG_PANIC_DIE),
8610 "delivery re-exec %s failed: %s", where, strerror(errno));
8612 /* Get here if exec_type == CEE_EXEC_EXIT.
8613 Note: this must be _exit(), not exit(). */
8615 _exit(EX_EXECFAILED);
8621 /* End of deliver.c */