+/*
+ * Author: Viktor Dukhovni
+ * License: THIS CODE IS IN THE PUBLIC DOMAIN.
+ *
+ * Copyright (c) The Exim Maintainers 2014 - 2018
+ */
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/evp.h>
+#include <openssl/bn.h>
#if OPENSSL_VERSION_NUMBER < 0x1000000fL
# error "OpenSSL 1.0.0 or higher required"
-#else /* remainder of file */
+#endif
+
+#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
+# define X509_up_ref(x) CRYPTO_add(&((x)->references), 1, CRYPTO_LOCK_X509)
+#endif
+#if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER)
+# define EXIM_HAVE_ASN1_MACROS
+# define EXIM_OPAQUE_X509
+#else
+# define X509_STORE_CTX_get_verify(ctx) (ctx)->verify
+# define X509_STORE_CTX_get_verify_cb(ctx) (ctx)->verify_cb
+# define X509_STORE_CTX_get0_cert(ctx) (ctx)->cert
+# define X509_STORE_CTX_get0_chain(ctx) (ctx)->chain
+# define X509_STORE_CTX_get0_untrusted(ctx) (ctx)->untrusted
+
+# define X509_STORE_CTX_set_verify(ctx, verify_chain) (ctx)->verify = (verify_chain)
+# define X509_STORE_CTX_set0_verified_chain(ctx, sk) (ctx)->chain = (sk)
+# define X509_STORE_CTX_set_error_depth(ctx, val) (ctx)->error_depth = (val)
+# define X509_STORE_CTX_set_current_cert(ctx, cert) (ctx)->current_cert = (cert)
+
+# define ASN1_STRING_get0_data ASN1_STRING_data
+# define X509_getm_notBefore X509_get_notBefore
+# define X509_getm_notAfter X509_get_notAfter
+
+# define CRYPTO_ONCE_STATIC_INIT 0
+# define CRYPTO_THREAD_run_once run_once
+typedef int CRYPTO_ONCE;
+#endif
+
#include "danessl.h"
-#define DANE_F_ADD_SKID 100
-#define DANE_F_CHECK_END_ENTITY 101
-#define DANE_F_GROW_CHAIN 102
-#define DANE_F_LIST_ALLOC 103
-#define DANE_F_MATCH 104
-#define DANE_F_PUSH_EXT 105
-#define DANE_F_SET_TRUST_ANCHOR 106
-#define DANE_F_SSL_CTX_DANE_INIT 107
-#define DANE_F_SSL_DANE_ADD_TLSA 108
-#define DANE_F_SSL_DANE_INIT 109
-#define DANE_F_SSL_DANE_LIBRARY_INIT 110
-#define DANE_F_VERIFY_CERT 111
-#define DANE_F_WRAP_CERT 112
-
-#define DANE_R_BAD_CERT 100
-#define DANE_R_BAD_CERT_PKEY 101
-#define DANE_R_BAD_DATA_LENGTH 102
-#define DANE_R_BAD_DIGEST 103
-#define DANE_R_BAD_NULL_DATA 104
-#define DANE_R_BAD_PKEY 105
-#define DANE_R_BAD_SELECTOR 106
-#define DANE_R_BAD_USAGE 107
-#define DANE_R_DANE_INIT 108
-#define DANE_R_DANE_SUPPORT 109
-#define DANE_R_LIBRARY_INIT 110
-#define DANE_R_NOSIGN_KEY 111
-#define DANE_R_SCTX_INIT 112
+#define DANESSL_F_ADD_SKID 100
+#define DANESSL_F_ADD_TLSA 101
+#define DANESSL_F_CHECK_END_ENTITY 102
+#define DANESSL_F_CTX_INIT 103
+#define DANESSL_F_GROW_CHAIN 104
+#define DANESSL_F_INIT 105
+#define DANESSL_F_LIBRARY_INIT 106
+#define DANESSL_F_LIST_ALLOC 107
+#define DANESSL_F_MATCH 108
+#define DANESSL_F_PUSH_EXT 109
+#define DANESSL_F_SET_TRUST_ANCHOR 110
+#define DANESSL_F_VERIFY_CERT 111
+#define DANESSL_F_WRAP_CERT 112
+#define DANESSL_F_DANESSL_VERIFY_CHAIN 113
+
+#define DANESSL_R_BAD_CERT 100
+#define DANESSL_R_BAD_CERT_PKEY 101
+#define DANESSL_R_BAD_DATA_LENGTH 102
+#define DANESSL_R_BAD_DIGEST 103
+#define DANESSL_R_BAD_NULL_DATA 104
+#define DANESSL_R_BAD_PKEY 105
+#define DANESSL_R_BAD_SELECTOR 106
+#define DANESSL_R_BAD_USAGE 107
+#define DANESSL_R_INIT 108
+#define DANESSL_R_LIBRARY_INIT 109
+#define DANESSL_R_NOSIGN_KEY 110
+#define DANESSL_R_SCTX_INIT 111
+#define DANESSL_R_SUPPORT 112
#ifndef OPENSSL_NO_ERR
-# define DANE_F_PLACEHOLDER 0 /* FIRST! Value TBD */
-static ERR_STRING_DATA dane_str_functs[] =
-{
- {DANE_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */
- {DANE_F_ADD_SKID, "add_skid"},
- {DANE_F_CHECK_END_ENTITY, "check_end_entity"},
- {DANE_F_GROW_CHAIN, "grow_chain"},
- {DANE_F_LIST_ALLOC, "list_alloc"},
- {DANE_F_MATCH, "match"},
- {DANE_F_PUSH_EXT, "push_ext"},
- {DANE_F_SET_TRUST_ANCHOR, "set_trust_anchor"},
- {DANE_F_SSL_CTX_DANE_INIT, "SSL_CTX_dane_init"},
- {DANE_F_SSL_DANE_ADD_TLSA, "SSL_dane_add_tlsa"},
- {DANE_F_SSL_DANE_INIT, "SSL_dane_init"},
- {DANE_F_SSL_DANE_LIBRARY_INIT, "SSL_dane_library_init"},
- {DANE_F_VERIFY_CERT, "verify_cert"},
- {DANE_F_WRAP_CERT, "wrap_cert"},
- {0, NULL}
+#define DANESSL_F_PLACEHOLDER 0 /* FIRST! Value TBD */
+static ERR_STRING_DATA dane_str_functs[] = {
+ /* error string */
+ {DANESSL_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */
+ {DANESSL_F_ADD_SKID, "add_skid"},
+ {DANESSL_F_ADD_TLSA, "DANESSL_add_tlsa"},
+ {DANESSL_F_CHECK_END_ENTITY, "check_end_entity"},
+ {DANESSL_F_CTX_INIT, "DANESSL_CTX_init"},
+ {DANESSL_F_GROW_CHAIN, "grow_chain"},
+ {DANESSL_F_INIT, "DANESSL_init"},
+ {DANESSL_F_LIBRARY_INIT, "DANESSL_library_init"},
+ {DANESSL_F_LIST_ALLOC, "list_alloc"},
+ {DANESSL_F_MATCH, "match"},
+ {DANESSL_F_PUSH_EXT, "push_ext"},
+ {DANESSL_F_SET_TRUST_ANCHOR, "set_trust_anchor"},
+ {DANESSL_F_VERIFY_CERT, "verify_cert"},
+ {DANESSL_F_WRAP_CERT, "wrap_cert"},
+ {0, NULL}
};
-static ERR_STRING_DATA dane_str_reasons[] =
-{
- {DANE_R_BAD_CERT, "Bad TLSA record certificate"},
- {DANE_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"},
- {DANE_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"},
- {DANE_R_BAD_DIGEST, "Bad TLSA record digest"},
- {DANE_R_BAD_NULL_DATA, "Bad TLSA record null data"},
- {DANE_R_BAD_PKEY, "Bad TLSA record public key"},
- {DANE_R_BAD_SELECTOR, "Bad TLSA record selector"},
- {DANE_R_BAD_USAGE, "Bad TLSA record usage"},
- {DANE_R_DANE_INIT, "SSL_dane_init() required"},
- {DANE_R_DANE_SUPPORT, "DANE library features not supported"},
- {DANE_R_LIBRARY_INIT, "SSL_dane_library_init() required"},
- {DANE_R_SCTX_INIT, "SSL_CTX_dane_init() required"},
- {DANE_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"},
- {0, NULL}
+static ERR_STRING_DATA dane_str_reasons[] = {
+ /* error string */
+ {DANESSL_R_BAD_CERT, "Bad TLSA record certificate"},
+ {DANESSL_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"},
+ {DANESSL_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"},
+ {DANESSL_R_BAD_DIGEST, "Bad TLSA record digest"},
+ {DANESSL_R_BAD_NULL_DATA, "Bad TLSA record null data"},
+ {DANESSL_R_BAD_PKEY, "Bad TLSA record public key"},
+ {DANESSL_R_BAD_SELECTOR, "Bad TLSA record selector"},
+ {DANESSL_R_BAD_USAGE, "Bad TLSA record usage"},
+ {DANESSL_R_INIT, "DANESSL_init() required"},
+ {DANESSL_R_LIBRARY_INIT, "DANESSL_library_init() required"},
+ {DANESSL_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"},
+ {DANESSL_R_SCTX_INIT, "DANESSL_CTX_init() required"},
+ {DANESSL_R_SUPPORT, "DANE library features not supported"},
+ {0, NULL}
};
-#endif /*OPENSSL_NO_ERR*/
+#endif
#define DANEerr(f, r) ERR_PUT_error(err_lib_dane, (f), (r), __FILE__, __LINE__)
int (*verify)(X509_STORE_CTX *);
STACK_OF(X509) *roots;
STACK_OF(X509) *chain;
- const char *thost; /* TLSA base domain */
- char *mhost; /* Matched, peer name */
+ X509 *match; /* Matched cert */
+ const char *thost; /* TLSA base domain */
+ char *mhost; /* Matched peer name */
dane_pkey_list pkeys;
dane_cert_list certs;
dane_host_list hosts;
- dane_selector_list selectors[SSL_DANE_USAGE_LAST + 1];
+ dane_selector_list selectors[DANESSL_USAGE_LAST + 1];
int depth;
- int multi; /* Multi-label wildcards? */
- int count; /* Number of TLSA records */
+ int mdpth; /* Depth of matched cert */
+ int multi; /* Multi-label wildcards? */
+ int count; /* Number of TLSA records */
} ssl_dane;
#ifndef X509_V_ERR_HOSTNAME_MISMATCH
# define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION
#endif
+
+
static int
match(dane_selector_list slist, X509 *cert, int depth)
{
* pkey digest or a certificate digest. We return MATCHED_PKEY or
* MATCHED_CERT accordingly.
*/
-#define MATCHED_CERT (SSL_DANE_SELECTOR_CERT + 1)
-#define MATCHED_PKEY (SSL_DANE_SELECTOR_SPKI + 1)
+#define MATCHED_CERT (DANESSL_SELECTOR_CERT + 1)
+#define MATCHED_PKEY (DANESSL_SELECTOR_SPKI + 1)
/*
* Loop over each selector, mtype, and associated data element looking
* for a match.
*/
-for(matched = 0; !matched && slist; slist = slist->next)
+for (matched = 0; !matched && slist; slist = slist->next)
{
dane_mtype_list m;
unsigned char mdbuf[EVP_MAX_MD_SIZE];
- unsigned char *buf;
+ unsigned char *buf = NULL;
unsigned char *buf2;
- unsigned int len;
+ unsigned int len = 0;
/*
* Extract ASN.1 DER form of certificate or public key.
*/
switch(slist->value->selector)
{
- case SSL_DANE_SELECTOR_CERT:
+ case DANESSL_SELECTOR_CERT:
len = i2d_X509(cert, NULL);
- buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
+ buf2 = buf = US OPENSSL_malloc(len);
if(buf) i2d_X509(cert, &buf2);
break;
- case SSL_DANE_SELECTOR_SPKI:
+ case DANESSL_SELECTOR_SPKI:
len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL);
- buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
+ buf2 = buf = US OPENSSL_malloc(len);
if(buf) i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2);
break;
}
- if(!buf)
+ if (!buf)
{
- DANEerr(DANE_F_MATCH, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_MATCH, ERR_R_MALLOC_FAILURE);
return 0;
}
OPENSSL_assert(buf2 - buf == len);
/*
* Loop over each mtype and data element
*/
- for(m = slist->value->mtype; !matched && m; m = m->next)
+ for (m = slist->value->mtype; !matched && m; m = m->next)
{
dane_data_list d;
unsigned char *cmpbuf = buf;
* If it is a digest, compute the corresponding digest of the
* DER data for comparison, otherwise, use the full object.
*/
- if(m->value->md)
+ if (m->value->md)
{
cmpbuf = mdbuf;
- if(!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0))
+ if (!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0))
matched = -1;
}
- for(d = m->value->data; !matched && d; d = d->next)
- if( cmplen == d->value->datalen
- && memcmp(cmpbuf, d->value->data, cmplen) == 0)
+ for (d = m->value->data; !matched && d; d = d->next)
+ if ( cmplen == d->value->datalen
+ && memcmp(cmpbuf, d->value->data, cmplen) == 0)
matched = slist->value->selector + 1;
}
static int
push_ext(X509 *cert, X509_EXTENSION *ext)
{
-X509_EXTENSIONS *exts;
-
-if(ext)
+if (ext)
{
- if(!(exts = cert->cert_info->extensions))
- exts = cert->cert_info->extensions = sk_X509_EXTENSION_new_null();
- if (exts && sk_X509_EXTENSION_push(exts, ext))
- return 1;
+ if (X509_add_ext(cert, ext, -1))
+ return 1;
X509_EXTENSION_free(ext);
}
-DANEerr(DANE_F_PUSH_EXT, ERR_R_MALLOC_FAILURE);
+DANEerr(DANESSL_F_PUSH_EXT, ERR_R_MALLOC_FAILURE);
return 0;
}
int ret = 0;
BIGNUM *bn;
-if(akid && akid->serial)
+if (akid && akid->serial)
return (X509_set_serialNumber(cert, akid->serial));
/*
* Add one to subject's serial to avoid collisions between TA serial and
* serial of signing root.
*/
-if( (bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
- && BN_add_word(bn, 1)
- && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
+if ( (bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
+ && BN_add_word(bn, 1)
+ && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
ret = 1;
-if(bn)
+if (bn)
BN_free(bn);
return ret;
}
add_akid(X509 *cert, AUTHORITY_KEYID *akid)
{
int nid = NID_authority_key_identifier;
-ASN1_STRING *id;
+ASN1_OCTET_STRING *id;
unsigned char c = 0;
int ret = 0;
* exempt from any potential (off by default for now in OpenSSL)
* self-signature checks!
*/
-id = (ASN1_STRING *) ((akid && akid->keyid) ? akid->keyid : 0);
-if(id && M_ASN1_STRING_length(id) == 1 && *M_ASN1_STRING_data(id) == c)
+id = akid && akid->keyid ? akid->keyid : 0;
+if (id && ASN1_STRING_length(id) == 1 && *ASN1_STRING_get0_data(id) == c)
c = 1;
-if( (akid = AUTHORITY_KEYID_new()) != 0
- && (akid->keyid = ASN1_OCTET_STRING_new()) != 0
- && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
- && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND))
+if ( (akid = AUTHORITY_KEYID_new()) != 0
+ && (akid->keyid = ASN1_OCTET_STRING_new()) != 0
+#ifdef EXIM_HAVE_ASN1_MACROS
+ && ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
+#else
+ && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
+#endif
+ && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND))
ret = 1;
-if(akid)
+if (akid)
AUTHORITY_KEYID_free(akid);
return ret;
}
{
int nid = NID_subject_key_identifier;
-if(!akid || !akid->keyid)
+if (!akid || !akid->keyid)
return add_ext(0, cert, nid, "hash");
return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0;
}
static X509_NAME *
akid_issuer_name(AUTHORITY_KEYID *akid)
{
-if(akid && akid->issuer)
+if (akid && akid->issuer)
{
int i;
GENERAL_NAMES *gens = akid->issuer;
- for(i = 0; i < sk_GENERAL_NAME_num(gens); ++i)
+ for (i = 0; i < sk_GENERAL_NAME_num(gens); ++i)
{
GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
- if(gn->type == GEN_DIRNAME)
+ if (gn->type == GEN_DIRNAME)
return (gn->d.dirn);
}
}
}
static int
-set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid)
+set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid, X509_NAME *subj)
{
X509_NAME *name = akid_issuer_name(akid);
/*
- * If subject's akid specifies an authority key identifer issuer name, we
+ * If subject's akid specifies an authority key identifier issuer name, we
* must use that.
*/
return X509_set_issuer_name(cert,
- name ? name : X509_get_subject_name(cert));
+ name ? name : subj);
}
static int
#define UNTRUSTED 0
#define TRUSTED 1
-if( trusted && !serverAuth
- && !(serverAuth = OBJ_nid2obj(NID_server_auth)))
+if ( trusted && !serverAuth
+ && !(serverAuth = OBJ_nid2obj(NID_server_auth)))
{
- DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
return 0;
}
-if(!*xs && !(*xs = sk_X509_new_null()))
+if (!*xs && !(*xs = sk_X509_new_null()))
{
- DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
return 0;
}
-if(cert)
+if (cert)
{
- if(trusted && !X509_add1_trust_object(cert, serverAuth))
+ if (trusted && !X509_add1_trust_object(cert, serverAuth))
return 0;
+#ifdef EXIM_OPAQUE_X509
+ X509_up_ref(cert);
+#else
CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
+#endif
if (!sk_X509_push(*xs, cert))
{
X509_free(cert);
- DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
return 0;
}
}
#define WRAP_MID 0 /* Ensure intermediate. */
#define WRAP_TOP 1 /* Ensure self-signed. */
-if(!name || !newkey || !(cert = X509_new()))
+if (!name || !newkey || !(cert = X509_new()))
return 0;
/*
* Record the depth of the trust-anchor certificate.
*/
-if(dane->depth < 0)
+if (dane->depth < 0)
dane->depth = depth + 1;
/*
*
* CA cert valid for +/- 30 days
*/
-if( !X509_set_version(cert, 2)
- || !set_serial(cert, akid, subject)
- || !X509_set_subject_name(cert, name)
- || !set_issuer_name(cert, akid)
- || !X509_gmtime_adj(X509_get_notBefore(cert), -30 * 86400L)
- || !X509_gmtime_adj(X509_get_notAfter(cert), 30 * 86400L)
- || !X509_set_pubkey(cert, newkey)
- || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
- || (!top && !add_akid(cert, akid))
- || !add_skid(cert, akid)
- || ( !top && wrap_to_root
- && !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP)))
+if ( !X509_set_version(cert, 2)
+ || !set_serial(cert, akid, subject)
+ || !set_issuer_name(cert, akid, name)
+ || !X509_gmtime_adj(X509_getm_notBefore(cert), -30 * 86400L)
+ || !X509_gmtime_adj(X509_getm_notAfter(cert), 30 * 86400L)
+ || !X509_set_subject_name(cert, name)
+ || !X509_set_pubkey(cert, newkey)
+ || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
+ || (!top && !add_akid(cert, akid))
+ || !add_skid(cert, akid)
+ || ( !top && wrap_to_root
+ && !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP)))
ret = 0;
-if(akid)
+if (akid)
AUTHORITY_KEYID_free(akid);
-if(!key)
+if (!key)
EVP_PKEY_free(newkey);
-if(ret)
+if (ret)
ret = grow_chain(dane, !top && wrap_to_root ? UNTRUSTED : TRUSTED, cert);
-if(cert)
+if (cert)
X509_free(cert);
return ret;
}
static int
wrap_cert(ssl_dane *dane, X509 *tacert, int depth)
{
-if(dane->depth < 0)
+if (dane->depth < 0)
dane->depth = depth + 1;
/*
* If the TA certificate is self-issued, or need not be, use it directly.
- * Otherwise, synthesize requisuite ancestors.
+ * Otherwise, synthesize requisite ancestors.
*/
-if( !wrap_to_root
- || X509_check_issued(tacert, tacert) == X509_V_OK)
+if ( !wrap_to_root
+ || X509_check_issued(tacert, tacert) == X509_V_OK)
return grow_chain(dane, TRUSTED, tacert);
-if(wrap_issuer(dane, 0, tacert, depth, WRAP_MID))
+if (wrap_issuer(dane, 0, tacert, depth, WRAP_MID))
return grow_chain(dane, UNTRUSTED, tacert);
return 0;
}
*/
for (x = dane->certs; !done && x; x = x->next)
{
- if(X509_check_issued(x->value, cert) == X509_V_OK)
+ if (X509_check_issued(x->value, cert) == X509_V_OK)
{
- if(!(pk = X509_get_pubkey(x->value)))
+ if (!(pk = X509_get_pubkey(x->value)))
{
/*
* The cert originally contained a valid pkey, which does
break;
}
/* Check signature, since some other TA may work if not this. */
- if(X509_verify(cert, pk) > 0)
+ if (X509_verify(cert, pk) > 0)
done = wrap_cert(dane, x->value, depth) ? 1 : -1;
EVP_PKEY_free(pk);
}
* This may push errors onto the stack when the certificate signature is
* not of the right type or length, throw these away,
*/
-for(k = dane->pkeys; !done && k; k = k->next)
- if(X509_verify(cert, k->value) > 0)
+for (k = dane->pkeys; !done && k; k = k->next)
+ if (X509_verify(cert, k->value) > 0)
done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1;
else
ERR_clear_error();
int depth = 0;
EVP_PKEY *takey;
X509 *ca;
-STACK_OF(X509) *in = ctx->untrusted; /* XXX: Accessor? */
+STACK_OF(X509) *in = X509_STORE_CTX_get0_untrusted(ctx);
-if(!grow_chain(dane, UNTRUSTED, 0))
+if (!grow_chain(dane, UNTRUSTED, 0))
return -1;
/*
* Accept a degenerate case: depth 0 self-signed trust-anchor.
*/
-if(X509_check_issued(cert, cert) == X509_V_OK)
+if (X509_check_issued(cert, cert) == X509_V_OK)
{
dane->depth = 0;
- matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], cert, 0);
- if(matched > 0 && !grow_chain(dane, TRUSTED, cert))
+ matched = match(dane->selectors[DANESSL_USAGE_DANE_TA], cert, 0);
+ if (matched > 0 && !grow_chain(dane, TRUSTED, cert))
matched = -1;
return matched;
}
/* Make a shallow copy of the input untrusted chain. */
-if(!(in = sk_X509_dup(in)))
+if (!(in = sk_X509_dup(in)))
{
- DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
return -1;
}
*
* Caller ensures that the initial certificate is not self-signed.
*/
-for(n = sk_X509_num(in); n > 0; --n, ++depth)
+for (n = sk_X509_num(in); n > 0; --n, ++depth)
{
- for(i = 0; i < n; ++i)
- if(X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
+ for (i = 0; i < n; ++i)
+ if (X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
break;
/*
* Final untrusted element with no issuer in the peer's chain, it may
* however be signed by a pkey or cert obtained via a TLSA RR.
*/
- if(i == n)
+ if (i == n)
break;
/* Peer's chain contains an issuer ca. */
ca = sk_X509_delete(in, i);
/* If not a trust anchor, record untrusted ca and continue. */
- if((matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], ca, depth+1))
- == 0)
+ if ((matched = match(dane->selectors[DANESSL_USAGE_DANE_TA], ca,
+ depth + 1)) == 0)
{
- if(grow_chain(dane, UNTRUSTED, ca))
+ if (grow_chain(dane, UNTRUSTED, ca))
{
- if(!X509_check_issued(ca, ca) == X509_V_OK)
+ if (X509_check_issued(ca, ca) != X509_V_OK)
{
/* Restart with issuer as subject */
cert = ca;
}
else if(matched == MATCHED_PKEY)
{
- if( !(takey = X509_get_pubkey(ca))
- || !wrap_issuer(dane, takey, cert, depth, WRAP_MID))
+ if ( !(takey = X509_get_pubkey(ca))
+ || !wrap_issuer(dane, takey, cert, depth, WRAP_MID))
{
- if(takey)
+ if (takey)
EVP_PKEY_free(takey);
else
- DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
matched = -1;
}
}
* no issuer in the chain, we check for a possible signature via a DNS
* obtained TA cert or public key.
*/
-if(matched == 0 && cert)
+if (matched == 0 && cert)
matched = ta_signed(dane, cert, depth);
return matched;
{
int matched;
-matched = match(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF], cert, 0);
-if(matched > 0)
- if(!ctx->chain)
- if( (ctx->chain = sk_X509_new_null())
- && sk_X509_push(ctx->chain, cert))
- CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
+matched = match(dane->selectors[DANESSL_USAGE_DANE_EE], cert, 0);
+if (matched > 0)
+ {
+ dane->mdpth = 0;
+ dane->match = cert;
+ X509_up_ref(cert);
+ if(!X509_STORE_CTX_get0_chain(ctx))
+ {
+ STACK_OF(X509) * sk = sk_X509_new_null();
+ if (sk && sk_X509_push(sk, cert))
+ {
+ X509_up_ref(cert);
+ X509_STORE_CTX_set0_verified_chain(ctx, sk);
+ }
else
{
- DANEerr(DANE_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE);
+ if (sk) sk_X509_free(sk);
+ DANEerr(DANESSL_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE);
return -1;
}
+ }
+ }
return matched;
}
int multi = dane->multi;
dane_host_list hosts;
-for(hosts = dane->hosts; hosts; hosts = hosts->next)
+for (hosts = dane->hosts; hosts; hosts = hosts->next)
{
int match_subdomain = 0;
const char *domain = hosts->value;
int idlen;
int domlen;
- if(*domain == '.' && domain[1] != '\0')
+ if (*domain == '.' && domain[1] != '\0')
{
++domain;
match_subdomain = 1;
* Sub-domain match: certid is any sub-domain of hostname.
*/
if(match_subdomain)
- if( (idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
- && certid[idlen - domlen - 1] == '.'
- && !strcasecmp(certid + (idlen - domlen), domain))
+ {
+ if ( (idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
+ && certid[idlen - domlen - 1] == '.'
+ && !strcasecmp(certid + (idlen - domlen), domain))
return 1;
else
continue;
+ }
/*
* Exact match and initial "*" match. The initial "*" in a certid
* matches one (if multi is false) or more hostname components under
* the condition that the certid contains multiple hostname components.
*/
- if( !strcasecmp(certid, domain)
- || ( certid[0] == '*' && certid[1] == '.' && certid[2] != 0
- && (parent = strchr(domain, '.')) != 0
- && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
- && strcasecmp(multi ? parent + domlen - idlen : parent, certid+1) == 0))
+ if ( !strcasecmp(certid, domain)
+ || ( certid[0] == '*' && certid[1] == '.' && certid[2] != 0
+ && (parent = strchr(domain, '.')) != 0
+ && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
+ && strcasecmp(multi ? parent + domlen - idlen : parent, certid+1) == 0))
return 1;
}
return 0;
}
-static char *
-check_name(char *name, int len)
+static const char *
+check_name(const char *name, int len)
{
-char *cp = name + len;
+const char *cp = name + len;
-while(len > 0 && !*--cp)
+while (len > 0 && !*--cp)
--len; /* Ignore trailing NULs */
-if(len <= 0)
+if (len <= 0)
return 0;
-for(cp = name; *cp; cp++)
+for (cp = name; *cp; cp++)
{
char c = *cp;
if (!((c >= 'a' && c <= 'z') ||
(c == '*')))
return 0; /* Only LDH, '.' and '*' */
}
-if(cp - name != len) /* Guard against internal NULs */
+if (cp - name != len) /* Guard against internal NULs */
return 0;
return name;
}
-static char *
+static const char *
parse_dns_name(const GENERAL_NAME *gn)
{
-if(gn->type != GEN_DNS)
+if (gn->type != GEN_DNS)
return 0;
-if(ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING)
+if (ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING)
return 0;
-return check_name((char *) ASN1_STRING_data(gn->d.ia5),
+return check_name(CCS ASN1_STRING_get0_data(gn->d.ia5),
ASN1_STRING_length(gn->d.ia5));
}
int len;
int i;
-if(!name || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0)
+if (!name || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0)
return 0;
-if(!(entry = X509_NAME_get_entry(name, i)))
+if (!(entry = X509_NAME_get_entry(name, i)))
return 0;
-if(!(entry_str = X509_NAME_ENTRY_get_data(entry)))
+if (!(entry_str = X509_NAME_ENTRY_get_data(entry)))
return 0;
-if((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0)
+if ((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0)
return 0;
-if(len <= 0 || check_name((char *) namebuf, len) == 0)
+if (len <= 0 || check_name(CS namebuf, len) == 0)
{
OPENSSL_free(namebuf);
return 0;
}
-return (char *) namebuf;
+return CS namebuf;
}
static int
GENERAL_NAMES *gens;
gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0);
-if(gens)
+if (gens)
{
int n = sk_GENERAL_NAME_num(gens);
int i;
- for(i = 0; i < n; ++i)
+ for (i = 0; i < n; ++i)
{
const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
const char *certid;
- if(gn->type != GEN_DNS)
+ if (gn->type != GEN_DNS)
continue;
got_altname = TRUE;
certid = parse_dns_name(gn);
- if(certid && *certid)
+ if (certid && *certid)
{
- if((matched = match_name(certid, dane)) == 0)
+ if ((matched = match_name(certid, dane)) == 0)
continue;
- if(!(dane->mhost = OPENSSL_strdup(certid)))
+ if (!(dane->mhost = OPENSSL_strdup(certid)))
matched = -1;
+ DEBUG(D_tls) debug_printf("Dane name_check: matched SAN %s\n", certid);
break;
}
}
* XXX: Should the subjectName be skipped when *any* altnames are present,
* or only when DNS altnames are present?
*/
-if(got_altname)
+if (!got_altname)
{
char *certid = parse_subject_name(cert);
- if(certid != 0 && *certid && (matched = match_name(certid, dane)) != 0)
- dane->mhost = certid; /* Already a copy */
+ if (certid != 0 && *certid && (matched = match_name(certid, dane)) != 0)
+ {
+ DEBUG(D_tls) debug_printf("Dane name_check: matched SN %s\n", certid);
+ dane->mhost = OPENSSL_strdup(certid);
+ }
+ if (certid)
+ OPENSSL_free(certid);
}
return matched;
}
static int
verify_chain(X509_STORE_CTX *ctx)
{
-dane_selector_list issuer_rrs;
-dane_selector_list leaf_rrs;
-int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
+int (*cb)(int, X509_STORE_CTX *) = X509_STORE_CTX_get_verify_cb(ctx);
+X509 *cert = X509_STORE_CTX_get0_cert(ctx);
+STACK_OF(X509) * chain = X509_STORE_CTX_get0_chain(ctx);
+int chain_length = sk_X509_num(chain);
int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
ssl_dane *dane = SSL_get_ex_data(ssl, dane_idx);
-X509 *cert = ctx->cert; /* XXX: accessor? */
+dane_selector_list issuer_rrs = dane->selectors[DANESSL_USAGE_PKIX_TA];
+dane_selector_list leaf_rrs = dane->selectors[DANESSL_USAGE_PKIX_EE];
int matched = 0;
-int chain_length = sk_X509_num(ctx->chain);
-DEBUG(D_tls) debug_printf("Dane verify-chain\n");
+DEBUG(D_tls) debug_printf("Dane verify_chain\n");
-issuer_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_ISSUER];
-leaf_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_LEAF];
-ctx->verify = dane->verify;
+/* Restore OpenSSL's internal_verify() as the signature check function */
+X509_STORE_CTX_set_verify(ctx, dane->verify);
-if((matched = name_check(dane, cert)) < 0)
+if ((matched = name_check(dane, cert)) < 0)
{
X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
return 0;
}
-if(!matched)
+if (!matched)
{
- ctx->error_depth = 0;
- ctx->current_cert = cert;
+ X509_STORE_CTX_set_error_depth(ctx, 0);
+ X509_STORE_CTX_set_current_cert(ctx, cert);
X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH);
- if(!cb(0, ctx))
+ if (!cb(0, ctx))
return 0;
}
matched = 0;
* matched a usage 2 trust anchor.
*
* XXX: internal_verify() doesn't callback with top certs that are not
- * self-issued. This should be fixed in a future OpenSSL.
+ * self-issued. This is fixed in OpenSSL 1.1.0.
*/
-if(dane->roots && sk_X509_num(dane->roots))
+if (dane->roots && sk_X509_num(dane->roots))
{
-#ifndef NO_CALLBACK_WORKAROUND
- X509 *top = sk_X509_value(ctx->chain, dane->depth);
+ X509 *top = sk_X509_value(chain, dane->depth);
- if(X509_check_issued(top, top) != X509_V_OK)
+ dane->mdpth = dane->depth;
+ dane->match = top;
+ X509_up_ref(top);
+
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
+ if (X509_check_issued(top, top) != X509_V_OK)
{
- ctx->error_depth = dane->depth;
- ctx->current_cert = top;
- if(!cb(1, ctx))
+ X509_STORE_CTX_set_error_depth(ctx, dane->depth);
+ X509_STORE_CTX_set_current_cert(ctx, top);
+ if (!cb(1, ctx))
return 0;
}
#endif
/* Pop synthetic trust-anchor ancestors off the chain! */
while (--chain_length > dane->depth)
- X509_free(sk_X509_pop(ctx->chain));
+ X509_free(sk_X509_pop(chain));
}
-else if(issuer_rrs || leaf_rrs)
+else
{
- int n = chain_length;
+ int n = 0;
+ X509 *xn = cert;
/*
* Check for an EE match, then a CA match at depths > 0, and
* finally, if the EE cert is self-issued, for a depth 0 CA match.
*/
- if(leaf_rrs)
- matched = match(leaf_rrs, cert, 0);
- while(!matched && issuer_rrs && --n >= 0)
- {
- X509 *xn = sk_X509_value(ctx->chain, n);
+ if (leaf_rrs)
+ matched = match(leaf_rrs, xn, 0);
+ if (matched) DEBUG(D_tls) debug_printf("Dane verify_chain: matched EE\n");
- if(n > 0 || X509_check_issued(xn, xn) == X509_V_OK)
- matched = match(issuer_rrs, xn, n);
- }
-
- if(matched < 0)
- {
- X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
- return 0;
- }
+ if (!matched && issuer_rrs)
+ for (n = chain_length-1; !matched && n >= 0; --n)
+ {
+ xn = sk_X509_value(chain, n);
+ if (n > 0 || X509_check_issued(xn, xn) == X509_V_OK)
+ matched = match(issuer_rrs, xn, n);
+ }
+ if (matched) DEBUG(D_tls) debug_printf("Dane verify_chain: matched %s\n",
+ n>0 ? "CA" : "selfisssued EE");
- if(!matched)
+ if (!matched)
{
- ctx->current_cert = cert;
- ctx->error_depth = 0;
+ X509_STORE_CTX_set_error_depth(ctx, 0);
+ X509_STORE_CTX_set_current_cert(ctx, cert);
X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED);
- if(!cb(0, ctx))
+ if (!cb(0, ctx))
return 0;
}
+ else
+ {
+ dane->mdpth = n;
+ dane->match = xn;
+ X509_up_ref(xn);
+ }
}
-return ctx->verify(ctx);
+/* Tail recurse into OpenSSL's internal_verify */
+return dane->verify(ctx);
+}
+
+static void
+dane_reset(ssl_dane *dane)
+{
+dane->depth = -1;
+if (dane->mhost)
+ {
+ OPENSSL_free(dane->mhost);
+ dane->mhost = 0;
+ }
+if (dane->roots)
+ {
+ sk_X509_pop_free(dane->roots, X509_free);
+ dane->roots = 0;
+ }
+if (dane->chain)
+ {
+ sk_X509_pop_free(dane->chain, X509_free);
+ dane->chain = 0;
+ }
+if (dane->match)
+ {
+ X509_free(dane->match);
+ dane->match = 0;
+ }
+dane->mdpth = -1;
}
static int
static int ssl_idx = -1;
SSL *ssl;
ssl_dane *dane;
-int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
+int (*cb)(int, X509_STORE_CTX *) = X509_STORE_CTX_get_verify_cb(ctx);
+X509 *cert = X509_STORE_CTX_get0_cert(ctx);
int matched;
-X509 *cert = ctx->cert; /* XXX: accessor? */
-DEBUG(D_tls) debug_printf("Dane verify-cert\n");
+DEBUG(D_tls) debug_printf("Dane verify_cert\n");
-if(ssl_idx < 0)
+if (ssl_idx < 0)
ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
-if(dane_idx < 0)
+if (dane_idx < 0)
{
- DANEerr(DANE_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
return -1;
}
ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
-if(!(dane = SSL_get_ex_data(ssl, dane_idx)) || !cert)
+if (!(dane = SSL_get_ex_data(ssl, dane_idx)) || !cert)
return X509_verify_cert(ctx);
-if(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF])
+/* Reset for verification of a new chain, perhaps a renegotiation. */
+dane_reset(dane);
+
+if (dane->selectors[DANESSL_USAGE_DANE_EE])
{
- if((matched = check_end_entity(ctx, dane, cert)) > 0)
+ if ((matched = check_end_entity(ctx, dane, cert)) > 0)
{
- ctx->error_depth = 0;
- ctx->current_cert = cert;
+ X509_STORE_CTX_set_error_depth(ctx, 0);
+ X509_STORE_CTX_set_current_cert(ctx, cert);
return cb(1, ctx);
}
- if(matched < 0)
+ if (matched < 0)
{
X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
return -1;
}
}
-if(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA])
- {
- if((matched = set_trust_anchor(ctx, dane, cert)) < 0)
- {
- X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
- return -1;
- }
- if(matched)
+ if (dane->selectors[DANESSL_USAGE_DANE_TA])
{
- /*
- * Check that setting the untrusted chain updates the expected
- * structure member at the expected offset.
- */
- X509_STORE_CTX_trusted_stack(ctx, dane->roots);
- X509_STORE_CTX_set_chain(ctx, dane->chain);
- OPENSSL_assert(ctx->untrusted == dane->chain);
+ if ((matched = set_trust_anchor(ctx, dane, cert)) < 0)
+ {
+ X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
+ return -1;
+ }
+ if (matched)
+ {
+ /*
+ * Check that setting the untrusted chain updates the expected
+ * structure member at the expected offset.
+ */
+ X509_STORE_CTX_trusted_stack(ctx, dane->roots);
+ X509_STORE_CTX_set_chain(ctx, dane->chain);
+ OPENSSL_assert(dane->chain == X509_STORE_CTX_get0_untrusted(ctx));
+ }
}
- }
-/*
- * Name checks and usage 0/1 constraint enforcement are delayed until
- * X509_verify_cert() builds the full chain and calls our verify_chain()
- * wrapper.
- */
-dane->verify = ctx->verify;
-ctx->verify = verify_chain;
+ /*
+ * Name checks and usage 0/1 constraint enforcement are delayed until
+ * X509_verify_cert() builds the full chain and calls our verify_chain()
+ * wrapper.
+ */
+ dane->verify = X509_STORE_CTX_get_verify(ctx);
+ X509_STORE_CTX_set_verify(ctx, verify_chain);
+
+ if (X509_verify_cert(ctx))
+ return 1;
-return X509_verify_cert(ctx);
+ /*
+ * If the chain is invalid, clear any matching cert or hostname, to
+ * protect callers that might erroneously rely on these alone without
+ * checking the validation status.
+ */
+ if (dane->match)
+ {
+ X509_free(dane->match);
+ dane->match = 0;
+ }
+ if (dane->mhost)
+ {
+ OPENSSL_free(dane->mhost);
+ dane->mhost = 0;
+ }
+ return 0;
}
static dane_list
void *value = (void *) OPENSSL_malloc(vsize);
dane_list l;
-if(!value)
+if (!value)
{
- DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
return 0;
}
-if(!(l = (dane_list) OPENSSL_malloc(sizeof(*l))))
+if (!(l = (dane_list) OPENSSL_malloc(sizeof(*l))))
{
OPENSSL_free(value);
- DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
return 0;
}
l->next = 0;
dane_list head;
dane_list next;
-for(head = (dane_list) list; head; head = next)
+for (head = (dane_list) list; head; head = next)
{
next = head->next;
if (f && head->value)
}
}
+static void
+ossl_free(void * p)
+{
+OPENSSL_free(p);
+}
+
static void
dane_mtype_free(void *p)
{
-list_free(((dane_mtype) p)->data, OPENSSL_freeFunc);
+list_free(((dane_mtype) p)->data, ossl_free);
OPENSSL_free(p);
}
DEBUG(D_tls) debug_printf("Dane lib-cleanup\n");
-if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
+if (dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
return;
(void) SSL_set_ex_data(ssl, dane_idx, 0);
-if(dane->hosts)
- list_free(dane->hosts, OPENSSL_freeFunc);
-if(dane->mhost)
- OPENSSL_free(dane->mhost);
-for(u = 0; u <= SSL_DANE_USAGE_LAST; ++u)
- if(dane->selectors[u])
+dane_reset(dane);
+if (dane->hosts)
+ list_free(dane->hosts, ossl_free);
+for (u = 0; u <= DANESSL_USAGE_LAST; ++u)
+ if (dane->selectors[u])
list_free(dane->selectors[u], dane_selector_free);
-if(dane->pkeys)
+if (dane->pkeys)
list_free(dane->pkeys, pkey_free);
-if(dane->certs)
+if (dane->certs)
list_free(dane->certs, cert_free);
-if(dane->roots)
- sk_X509_pop_free(dane->roots, X509_free);
-if(dane->chain)
- sk_X509_pop_free(dane->chain, X509_free);
OPENSSL_free(dane);
}
{
dane_host_list head = NULL;
-while(*src)
+while (*src)
{
dane_host_list elem = (dane_host_list) OPENSSL_malloc(sizeof(*elem));
- if(!elem)
+ if (elem == 0)
{
- list_free(head, OPENSSL_freeFunc);
+ list_free(head, ossl_free);
return 0;
}
elem->value = OPENSSL_strdup(*src++);
}
+int
+DANESSL_get_match_cert(SSL *ssl, X509 **match, const char **mhost, int *depth)
+{
+ssl_dane *dane;
+
+if (dane_idx < 0 || (dane = SSL_get_ex_data(ssl, dane_idx)) == 0)
+ {
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_INIT);
+ return -1;
+ }
+
+if (dane->match)
+ {
+ if (match)
+ *match = dane->match;
+ if (mhost)
+ *mhost = dane->mhost;
+ if (depth)
+ *depth = dane->mdpth;
+ }
+
+ return (dane->match != 0);
+}
+
+
+#ifdef never_called
+int
+DANESSL_verify_chain(SSL *ssl, STACK_OF(X509) *chain)
+{
+int ret;
+X509 *cert;
+X509_STORE_CTX * store_ctx;
+SSL_CTX *ssl_ctx = SSL_get_SSL_CTX(ssl);
+X509_STORE *store = SSL_CTX_get_cert_store(ssl_ctx);
+int store_ctx_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
+
+cert = sk_X509_value(chain, 0);
+if (!(store_ctx = X509_STORE_CTX_new()))
+ {
+ DANEerr(DANESSL_F_DANESSL_VERIFY_CHAIN, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+if (!X509_STORE_CTX_init(store_ctx, store, cert, chain))
+ {
+ X509_STORE_CTX_free(store_ctx);
+ return 0;
+ }
+X509_STORE_CTX_set_ex_data(store_ctx, store_ctx_idx, ssl);
+
+X509_STORE_CTX_set_default(store_ctx,
+ SSL_is_server(ssl) ? "ssl_client" : "ssl_server");
+X509_VERIFY_PARAM_set1(X509_STORE_CTX_get0_param(store_ctx),
+ SSL_get0_param(ssl));
+
+if (SSL_get_verify_callback(ssl))
+ X509_STORE_CTX_set_verify_cb(store_ctx, SSL_get_verify_callback(ssl));
+
+ret = verify_cert(store_ctx, NULL);
+
+SSL_set_verify_result(ssl, X509_STORE_CTX_get_error(store_ctx));
+X509_STORE_CTX_cleanup(store_ctx);
+
+return (ret);
+}
+#endif
+
+
/*
if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
{
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_DANE_INIT);
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_INIT);
return -1;
}
-if(usage > SSL_DANE_USAGE_LAST)
+if (usage > DANESSL_USAGE_LAST)
{
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_USAGE);
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_USAGE);
return 0;
}
-if(selector > SSL_DANE_SELECTOR_LAST)
+if (selector > DANESSL_SELECTOR_LAST)
{
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_SELECTOR);
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_SELECTOR);
return 0;
}
-if(mdname && !(md = EVP_get_digestbyname(mdname)))
+
+/* Support built-in standard one-digit mtypes */
+if (mdname && *mdname && mdname[1] == '\0')
+ switch (*mdname - '0')
+ {
+ case DANESSL_MATCHING_FULL: mdname = 0; break;
+ case DANESSL_MATCHING_2256: mdname = "sha256"; break;
+ case DANESSL_MATCHING_2512: mdname = "sha512"; break;
+ }
+if (mdname && *mdname && !(md = EVP_get_digestbyname(mdname)))
{
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DIGEST);
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_DIGEST);
return 0;
}
-if(!data)
+if (mdname && *mdname && dlen != EVP_MD_size(md))
{
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_NULL_DATA);
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_DATA_LENGTH);
return 0;
}
-if(mdname && dlen != EVP_MD_size(md))
+if (!data)
{
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DATA_LENGTH);
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_NULL_DATA);
return 0;
}
-if(!mdname)
+/*
+ * Full Certificate or Public Key when NULL or empty digest name
+ */
+if (!mdname || !*mdname)
{
X509 *x = 0;
EVP_PKEY *k = 0;
const unsigned char *p = data;
#define xklistinit(lvar, ltype, var, freeFunc) do { \
- (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \
- if (!(lvar)) { \
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, ERR_R_MALLOC_FAILURE); \
- freeFunc((var)); \
- return 0; \
- } \
- (lvar)->next = 0; \
- lvar->value = var; \
- } while (0)
+ (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \
+ if ((lvar) == 0) { \
+ DANEerr(DANESSL_F_ADD_TLSA, ERR_R_MALLOC_FAILURE); \
+ freeFunc((var)); \
+ return 0; \
+ } \
+ (lvar)->next = 0; \
+ lvar->value = var; \
+ } while (0)
#define xkfreeret(ret) do { \
- if (xlist) list_free(xlist, cert_free); \
- if (klist) list_free(klist, pkey_free); \
- return (ret); \
- } while (0)
+ if (xlist) list_free(xlist, cert_free); \
+ if (klist) list_free(klist, pkey_free); \
+ return (ret); \
+ } while (0)
- switch(selector)
+ switch (selector)
{
- case SSL_DANE_SELECTOR_CERT:
- if(!d2i_X509(&x, &p, dlen) || dlen != p - data)
+ case DANESSL_SELECTOR_CERT:
+ if (!d2i_X509(&x, &p, dlen) || dlen != p - data)
{
if (x)
- X509_free(x);
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT);
+ X509_free(x);
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_CERT);
return 0;
}
k = X509_get_pubkey(x);
EVP_PKEY_free(k);
- if(!k)
+ if (k == 0)
{
X509_free(x);
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT_PKEY);
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_CERT_PKEY);
return 0;
}
- if(usage == SSL_DANE_USAGE_TRUSTED_CA)
+ if (usage == DANESSL_USAGE_DANE_TA)
xklistinit(xlist, dane_cert_list, x, X509_free);
break;
- case SSL_DANE_SELECTOR_SPKI:
- if(!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data)
+ case DANESSL_SELECTOR_SPKI:
+ if (!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data)
{
- if(k)
+ if (k)
EVP_PKEY_free(k);
- DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_PKEY);
- return 0;
+ DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_PKEY);
+ return 0;
}
- if(usage == SSL_DANE_USAGE_TRUSTED_CA)
+ if (usage == DANESSL_USAGE_DANE_TA)
xklistinit(klist, dane_pkey_list, k, EVP_PKEY_free);
break;
}
}
/* Find insertion point and don't add duplicate elements. */
-for(s = dane->selectors[usage]; s; s = s->next)
- if(s->value->selector == selector)
- for(m = s->value->mtype; m; m = m->next)
- if(m->value->md == md)
- for(d = m->value->data; d; d = d->next)
- if( d->value->datalen == dlen
- && memcmp(d->value->data, data, dlen) == 0)
+for (s = dane->selectors[usage]; s; s = s->next)
+ if (s->value->selector == selector)
+ {
+ for (m = s->value->mtype; m; m = m->next)
+ if (m->value->md == md)
+ {
+ for (d = m->value->data; d; d = d->next)
+ if ( d->value->datalen == dlen
+ && memcmp(d->value->data, data, dlen) == 0)
xkfreeret(1);
+ break;
+ }
+ break;
+ }
-if(!(d = (dane_data_list) list_alloc(sizeof(*d->value) + dlen)))
+if ((d = (dane_data_list) list_alloc(sizeof(*d->value) + dlen)) == 0)
xkfreeret(0);
d->value->datalen = dlen;
memcpy(d->value->data, data, dlen);
-if(!m)
+if (!m)
{
- if(!(m = (dane_mtype_list) list_alloc(sizeof(*m->value))))
+ if ((m = (dane_mtype_list) list_alloc(sizeof(*m->value))) == 0)
{
- list_free(d, OPENSSL_freeFunc);
+ list_free(d, ossl_free);
xkfreeret(0);
}
m->value->data = 0;
- if((m->value->md = md) != 0)
+ if ((m->value->md = md) != 0)
m->value->mdlen = dlen;
- if(!s)
+ if (!s)
{
- if(!(s = (dane_selector_list) list_alloc(sizeof(*s->value))))
+ if ((s = (dane_selector_list) list_alloc(sizeof(*s->value))) == 0)
{
list_free(m, dane_mtype_free);
xkfreeret(0);
}
LINSERT(m->value->data, d);
-if(xlist)
+if (xlist)
LINSERT(dane->certs, xlist);
-else if(klist)
+else if (klist)
LINSERT(dane->pkeys, klist);
++dane->count;
return 1;
{
ssl_dane *dane;
int i;
-#ifdef OPENSSL_INTERNAL
-SSL_CTX *sctx = SSL_get_SSL_CTX(ssl);
-
-if(sctx->app_verify_callback != verify_cert)
+DEBUG(D_tls) debug_printf("Dane ssl_init\n");
+if (dane_idx < 0)
{
- DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_SCTX_INIT);
+ DANEerr(DANESSL_F_INIT, DANESSL_R_LIBRARY_INIT);
return -1;
}
-#else
-DEBUG(D_tls) debug_printf("Dane ssl-init\n");
-if(dane_idx < 0)
- {
- DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_LIBRARY_INIT);
- return -1;
- }
-#endif
-if(sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain))
- return 0;
+if (sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain))
+ return 0;
-if(!(dane = (ssl_dane *) OPENSSL_malloc(sizeof(ssl_dane))))
+if ((dane = (ssl_dane *) OPENSSL_malloc(sizeof(ssl_dane))) == 0)
{
- DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE);
return 0;
}
-if(!SSL_set_ex_data(ssl, dane_idx, dane))
+if (!SSL_set_ex_data(ssl, dane_idx, dane))
{
- DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE);
OPENSSL_free(dane);
return 0;
}
dane->pkeys = 0;
dane->certs = 0;
dane->chain = 0;
+dane->match = 0;
dane->roots = 0;
dane->depth = -1;
-dane->mhost = 0; /* Future SSL control interface */
-dane->multi = 0; /* Future SSL control interface */
+dane->mhost = 0; /* Future SSL control interface */
+dane->mdpth = 0; /* Future SSL control interface */
+dane->multi = 0; /* Future SSL control interface */
dane->count = 0;
+dane->hosts = 0;
-for(i = 0; i <= SSL_DANE_USAGE_LAST; ++i)
- dane->selectors[i] = 0;
+for (i = 0; i <= DANESSL_USAGE_LAST; ++i)
+ dane->selectors[i] = 0;
-if(hostnames && !(dane->hosts = host_list_init(hostnames)))
+if (hostnames && (dane->hosts = host_list_init(hostnames)) == 0)
{
- DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
+ DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE);
DANESSL_cleanup(ssl);
return 0;
}
DANESSL_CTX_init(SSL_CTX *ctx)
{
DEBUG(D_tls) debug_printf("Dane ctx-init\n");
-if(dane_idx >= 0)
+if (dane_idx >= 0)
{
SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0);
return 1;
}
-DANEerr(DANE_F_SSL_CTX_DANE_INIT, DANE_R_LIBRARY_INIT);
+DANEerr(DANESSL_F_CTX_INIT, DANESSL_R_LIBRARY_INIT);
return -1;
}
-static int
-init_once(volatile int *value, int (*init)(void), void (*postinit)(void))
-{
-int wlock = 0;
-
-CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
-if(*value < 0)
- {
- CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
- CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
- wlock = 1;
- if(*value < 0)
- {
- *value = init();
- if(postinit)
- postinit();
- }
- }
-if (wlock)
- CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
-else
- CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
-return *value;
-}
-
static void
dane_init(void)
{
* Store library id in zeroth function slot, used to locate the library
* name. This must be done before we load the error strings.
*/
+err_lib_dane = ERR_get_next_error_library();
+
#ifndef OPENSSL_NO_ERR
-dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0);
-ERR_load_strings(err_lib_dane, dane_str_functs);
-ERR_load_strings(err_lib_dane, dane_str_reasons);
+if (err_lib_dane > 0)
+ {
+ dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0);
+ ERR_load_strings(err_lib_dane, dane_str_functs);
+ ERR_load_strings(err_lib_dane, dane_str_reasons);
+ }
#endif
/*
* Register SHA-2 digests, if implemented and not already registered.
*/
#if defined(LN_sha256) && defined(NID_sha256) && !defined(OPENSSL_NO_SHA256)
-if(!EVP_get_digestbyname(LN_sha224)) EVP_add_digest(EVP_sha224());
-if(!EVP_get_digestbyname(LN_sha256)) EVP_add_digest(EVP_sha256());
+if (!EVP_get_digestbyname(LN_sha224)) EVP_add_digest(EVP_sha224());
+if (!EVP_get_digestbyname(LN_sha256)) EVP_add_digest(EVP_sha256());
#endif
#if defined(LN_sha512) && defined(NID_sha512) && !defined(OPENSSL_NO_SHA512)
-if(!EVP_get_digestbyname(LN_sha384)) EVP_add_digest(EVP_sha384());
-if(!EVP_get_digestbyname(LN_sha512)) EVP_add_digest(EVP_sha512());
+if (!EVP_get_digestbyname(LN_sha384)) EVP_add_digest(EVP_sha384());
+if (!EVP_get_digestbyname(LN_sha512)) EVP_add_digest(EVP_sha512());
#endif
/*
}
+#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
+static void
+run_once(volatile int * once, void (*init)(void))
+{
+int wlock = 0;
+
+CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
+if (!*once)
+ {
+ CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
+ CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
+ wlock = 1;
+ if (!*once)
+ {
+ *once = 1;
+ init();
+ }
+ }
+if (wlock)
+ CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
+else
+ CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
+}
+#endif
+
+
/*
int
DANESSL_library_init(void)
{
+static CRYPTO_ONCE once = CRYPTO_ONCE_STATIC_INIT;
+
DEBUG(D_tls) debug_printf("Dane lib-init\n");
-if(err_lib_dane < 0)
- init_once(&err_lib_dane, ERR_get_next_error_library, dane_init);
+(void) CRYPTO_THREAD_run_once(&once, dane_init);
#if defined(LN_sha256)
/* No DANE without SHA256 support */
-if(dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0)
+if (dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0)
return 1;
#endif
-
-DANEerr(DANE_F_SSL_DANE_LIBRARY_INIT, DANE_R_DANE_SUPPORT);
+DANEerr(DANESSL_F_LIBRARY_INIT, DANESSL_R_SUPPORT);
return 0;
}
-#endif /* OPENSSL_VERSION_NUMBER */
/* vi: aw ai sw=2
*/