-Certificate name checking
---------------------------------------------------------------
-The X509 certificates used for TLS are supposed be verified
-that they are owned by the expected host. The coding of TLS
-support to date has not made these checks.
-
-If built with EXPERIMENTAL_CERTNAMES defined, code is
-included to do so for server certificates, and a new smtp transport option
-"tls_verify_cert_hostnames" supported which takes a hostlist
-which must match the target host for the additional checks must be made.
-The option currently defaults to empty, but this may change in
-the future. "*" is probably a suitable value.
-Whether certificate verification is done at all, and the result of
-it failing, is stll under the control of "tls_verify_hosts" nad
-"tls_try_verify_hosts".
-
-The name being checked is that for the host, generally
-the result of an MX lookup.
-
-Both Subject and Subject-Alternate-Name certificate fields
-are supported, as are wildcard certificates (limited to
-a single wildcard being the initial component of a 3-or-more
-component FQDN).
-
-The equivalent check on the server for client certificates is not
-implemented. At least one major email provider is using a client
-certificate which fails this check. They do not retry either without
-the client certificate or in clear.
-
-It is possible to duplicate the effect of this checking by
-creative use of Events.
-
-
-
-
-DANE
-------------------------------------------------------------
-DNS-based Authentication of Named Entities, as applied
-to SMTP over TLS, provides assurance to a client that
-it is actually talking to the server it wants to rather
-than some attacker operating a Man In The Middle (MITM)
-operation. The latter can terminate the TLS connection
-you make, and make another one to the server (so both
-you and the server still think you have an encrypted
-connection) and, if one of the "well known" set of
-Certificate Authorities has been suborned - something
-which *has* been seen already (2014), a verifiable
-certificate (if you're using normal root CAs, eg. the
-Mozilla set, as your trust anchors).
-
-What DANE does is replace the CAs with the DNS as the
-trust anchor. The assurance is limited to a) the possibility
-that the DNS has been suborned, b) mistakes made by the
-admins of the target server. The attack surface presented
-by (a) is thought to be smaller than that of the set
-of root CAs.
-
-It also allows the server to declare (implicitly) that
-connections to it should use TLS. An MITM could simply
-fail to pass on a server's STARTTLS.
-
-DANE scales better than having to maintain (and
-side-channel communicate) copies of server certificates
-for every possible target server. It also scales
-(slightly) better than having to maintain on an SMTP
-client a copy of the standard CAs bundle. It also
-means not having to pay a CA for certificates.
-
-DANE requires a server operator to do three things:
-1) run DNSSEC. This provides assurance to clients
-that DNS lookups they do for the server have not
-been tampered with. The domain MX record applying
-to this server, its A record, its TLSA record and
-any associated CNAME records must all be covered by
-DNSSEC.
-2) add TLSA DNS records. These say what the server
-certificate for a TLS connection should be.
-3) offer a server certificate, or certificate chain,
-in TLS connections which is traceable to the one
-defined by (one of?) the TSLA records
-
-There are no changes to Exim specific to server-side
-operation of DANE.
-
-The TLSA record for the server may have "certificate
-usage" of DANE-TA(2) or DANE-EE(3). The latter specifies
-the End Entity directly, i.e. the certificate involved
-is that of the server (and should be the sole one transmitted
-during the TLS handshake); this is appropriate for a
-single system, using a self-signed certificate.
- DANE-TA usage is effectively declaring a specific CA
-to be used; this might be a private CA or a public,
-well-known one. A private CA at simplest is just
-a self-signed certificate which is used to sign
-cerver certificates, but running one securely does
-require careful arrangement. If a private CA is used
-then either all clients must be primed with it, or
-(probably simpler) the server TLS handshake must transmit
-the entire certificate chain from CA to server-certificate.
-If a public CA is used then all clients must be primed with it
-(losing one advantage of DANE) - but the attack surface is
-reduced from all public CAs to that single CA.
-DANE-TA is commonly used for several services and/or
-servers, each having a TLSA query-domain CNAME record,
-all of which point to a single TLSA record.
-
-The TLSA record should have a Selector field of SPKI(1)
-and a Matching Type field of SHA2-512(2).
-
-At the time of writing, https://www.huque.com/bin/gen_tlsa
-is useful for quickly generating TLSA records; and commands like
-
- openssl x509 -in -pubkey -noout <certificate.pem \
- | openssl rsa -outform der -pubin 2>/dev/null \
- | openssl sha512 \
- | awk '{print $2}'
-
-are workable for 4th-field hashes.
-
-For use with the DANE-TA model, server certificates
-must have a correct name (SubjectName or SubjectAltName).
-
-The use of OCSP-stapling should be considered, allowing
-for fast revocation of certificates (which would otherwise
-be limited by the DNS TTL on the TLSA records). However,
-this is likely to only be usable with DANE-TA. NOTE: the
-default of requesting OCSP for all hosts is modified iff
-DANE is in use, to:
-
- hosts_request_ocsp = ${if or { {= {0}{$tls_out_tlsa_usage}} \
- {= {4}{$tls_out_tlsa_usage}} } \
- {*}{}}
-
-The (new) variable $tls_out_tlsa_usage is a bitfield with
-numbered bits set for TLSA record usage codes.
-The zero above means DANE was not in use,
-the four means that only DANE-TA usage TLSA records were
-found. If the definition of hosts_request_ocsp includes the
-string "tls_out_tlsa_usage", they are re-expanded in time to
-control the OCSP request.
-
-This modification of hosts_request_ocsp is only done if
-it has the default value of "*". Admins who change it, and
-those who use hosts_require_ocsp, should consider the interaction
-with DANE in their OCSP settings.
-
-
-For client-side DANE there are two new smtp transport options,
-hosts_try_dane and hosts_require_dane. They do the obvious thing.
-[ should they be domain-based rather than host-based? ]
-
-DANE will only be usable if the target host has DNSSEC-secured
-MX, A and TLSA records.
-
-A TLSA lookup will be done if either of the above options match
-and the host-lookup succeded using dnssec.
-If a TLSA lookup is done and succeeds, a DANE-verified TLS connection
-will be required for the host.
-
-(TODO: specify when fallback happens vs. when the host is not used)
-
-If DANE is requested and useable (see above) the following transport
-options are ignored:
- hosts_require_tls
- tls_verify_hosts
- tls_try_verify_hosts
- tls_verify_certificates
- tls_crl
- tls_verify_cert_hostnames
-
-If DANE is not usable, whether requested or not, and CA-anchored
-verification evaluation is wanted, the above variables should be set
-appropriately.
-
-Currently dnssec_request_domains must be active (need to think about that)
-and dnssec_require_domains is ignored.
-
-If verification was successful using DANE then the "CV" item
-in the delivery log line will show as "CV=dane".
-
-There is a new variable $tls_out_dane which will have "yes" if
-verification succeeded using DANE and "no" otherwise (only useful
-in combination with EXPERIMENTAL_EVENT), and a new variable
-$tls_out_tlsa_usage (detailed above).