would relax host matching rules to a broader network range.
+A lookup expansion is also available. It takes an email
+address as the key and an IP address as the database:
+
+ $lookup (username@domain} spf {ip.ip.ip.ip}}
+
+The lookup will return the same result strings as they can appear in
+$spf_result (pass,fail,softfail,neutral,none,err_perm,err_temp).
+Currently, only IPv4 addresses are supported.
+
+
+
SRS (Sender Rewriting Scheme) Support
--------------------------------------------------------------
DCC Support
--------------------------------------------------------------
+Distributed Checksum Clearinghouse; http://www.rhyolite.com/dcc/
*) Building exim
configure a dmarc_forensic_sender because the default sender address
construction might be inadequate.
- control = dmarc_forensic_enable
+ control = dmarc_enable_forensic
(AGAIN: You can choose not to send these forensic reports by simply
-not putting the dmarc_forensic_enable control line at any point in
+not putting the dmarc_enable_forensic control line at any point in
your exim config. If you don't tell it to send them, it will not
send them.)
deny dmarc_status = reject
!authenticated = *
- message = Message from $domain_used_domain failed sender's DMARC policy, REJECT
-
-
-
-Transport post-delivery actions
---------------------------------------------------------------
-
-An arbitrary per-transport string can be expanded upon various transport events
-and (for SMTP transports) a second string on deferrals caused by a host error.
-Additionally a main-section configuration option can be expanded on some
-per-message events.
-This feature may be used, for example, to write exim internal log information
-(not available otherwise) into a database.
-
-In order to use the feature, you must compile with
-
-EXPERIMENTAL_TPDA=yes
-
-in your Local/Makefile
-
-and define one or both of
-- the tpda_event_action option in the transport
-- the delivery_event_action
-to be expanded when the event fires.
-
-A new variable, $tpda_event, is set to the event type when the
-expansion is done. The current list of events is:
-
- msg:complete main per message
- msg:delivery transport per recipient
- msg:host:defer transport per attempt
- msg:fail:delivery main per recipient
- msg:fail:internal main per recipient
- tcp:connect transport per connection
- tcp:close transport per connection
- tls:cert transport per certificate in verification chain
- smtp:connect transport per connection
-
-The expansion is called for all event types, and should use the $tpda_event
-value to decide when to act. The variable data is a colon-separated
-list, describing an event tree.
-
-There is an auxilary variable, $tpda_data, for which the
-content is event_dependent:
-
- msg:delivery smtp confirmation mssage
- msg:host:defer error string
- tls:cert verification chain depth
- smtp:connect smtp banner
-
-The msg:host:defer event populates one extra variable, $tpda_defer_errno.
-
-The following variables are likely to be useful depending on the event type:
-
- router_name, transport_name
- local_part, domain
- host, host_address, host_port
- tls_out_peercert
- lookup_dnssec_authenticated, tls_out_dane
- sending_ip_address, sending_port
- message_exim_id
-
-
-An example might look like:
-
-tpda_event_action = ${if = {msg:delivery}{$tpda_event} \
-{${lookup pgsql {SELECT * FROM record_Delivery( \
- '${quote_pgsql:$sender_address_domain}',\
- '${quote_pgsql:${lc:$sender_address_local_part}}', \
- '${quote_pgsql:$domain}', \
- '${quote_pgsql:${lc:$local_part}}', \
- '${quote_pgsql:$host_address}', \
- '${quote_pgsql:${lc:$host}}', \
- '${quote_pgsql:$message_exim_id}')}} \
-} {}}
-
-The string is expanded for each of the supported events and any
-side-effects will happen. The result is then discarded.
-Note that for complex operations an ACL expansion can be used.
-
-
-The expansion of the tpda_event_action option should normally
-return an empty string. Should it return anything else the
-following will be forced:
-
- msg:delivery (ignored)
- msg:host:defer (ignored)
- msg:fail:delivery (ignored)
- tcp:connect do not connect
- tcp:close (ignored)
- tls:cert refuse verification
- smtp:connect close connection
-
-
-
-
-
-Redis Lookup
---------------------------------------------------------------
-
-Redis is open source advanced key-value data store. This document
-does not explain the fundamentals, you should read and understand how
-it works by visiting the website at http://www.redis.io/.
-
-Redis lookup support is added via the hiredis library. Visit:
-
- https://github.com/redis/hiredis
-
-to obtain a copy, or find it in your operating systems package repository.
-If building from source, this description assumes that headers will be in
-/usr/local/include, and that the libraries are in /usr/local/lib.
-
-1. In order to build exim with Redis lookup support add
-
-EXPERIMENTAL_REDIS=yes
-
-to your Local/Makefile. (Re-)build/install exim. exim -d should show
-Experimental_Redis in the line "Support for:".
-
-EXPERIMENTAL_REDIS=yes
-LDFLAGS += -lhiredis
-# CFLAGS += -I/usr/local/include
-# LDFLAGS += -L/usr/local/lib
-
-The first line sets the feature to include the correct code, and
-the second line says to link the hiredis libraries into the
-exim binary. The commented out lines should be uncommented if you
-built hiredis from source and installed in the default location.
-Adjust the paths if you installed them elsewhere, but you do not
-need to uncomment them if an rpm (or you) installed them in the
-package controlled locations (/usr/include and /usr/lib).
-
-
-2. Use the following global settings to configure Redis lookup support:
-
-Required:
-redis_servers This option provides a list of Redis servers
- and associated connection data, to be used in
- conjunction with redis lookups. The option is
- only available if Exim is configured with Redis
- support.
-
-For example:
-
-redis_servers = 127.0.0.1/10/ - using database 10 with no password
-redis_servers = 127.0.0.1//password - to make use of the default database of 0 with a password
-redis_servers = 127.0.0.1// - for default database of 0 with no password
-
-3. Once you have the Redis servers defined you can then make use of the
-experimental Redis lookup by specifying ${lookup redis{}} in a lookup query.
-
-4. Example usage:
-
-(Host List)
-hostlist relay_from_ips = <\n ${lookup redis{SMEMBERS relay_from_ips}}
-
-Where relay_from_ips is a Redis set which contains entries such as "192.168.0.0/24" "10.0.0.0/8" and so on.
-The result set is returned as
-192.168.0.0/24
-10.0.0.0/8
-..
-.
-
-(Domain list)
-domainlist virtual_domains = ${lookup redis {HGET $domain domain}}
-
-Where $domain is a hash which includes the key 'domain' and the value '$domain'.
-
-(Adding or updating an existing key)
-set acl_c_spammer = ${if eq{${lookup redis{SPAMMER_SET}}}{OK}}
-
-Where SPAMMER_SET is a macro and it is defined as
-
-"SET SPAMMER <some_value>"
-
-(Getting a value from Redis)
-
-set acl_c_spam_host = ${lookup redis{GET...}}
-
+ message = Message from $dmarc_used_domain failed sender's DMARC policy, REJECT
+
+
+
+DANE
+------------------------------------------------------------
+DNS-based Authentication of Named Entities, as applied
+to SMTP over TLS, provides assurance to a client that
+it is actually talking to the server it wants to rather
+than some attacker operating a Man In The Middle (MITM)
+operation. The latter can terminate the TLS connection
+you make, and make another one to the server (so both
+you and the server still think you have an encrypted
+connection) and, if one of the "well known" set of
+Certificate Authorities has been suborned - something
+which *has* been seen already (2014), a verifiable
+certificate (if you're using normal root CAs, eg. the
+Mozilla set, as your trust anchors).
+
+What DANE does is replace the CAs with the DNS as the
+trust anchor. The assurance is limited to a) the possibility
+that the DNS has been suborned, b) mistakes made by the
+admins of the target server. The attack surface presented
+by (a) is thought to be smaller than that of the set
+of root CAs.
+
+It also allows the server to declare (implicitly) that
+connections to it should use TLS. An MITM could simply
+fail to pass on a server's STARTTLS.
+
+DANE scales better than having to maintain (and
+side-channel communicate) copies of server certificates
+for every possible target server. It also scales
+(slightly) better than having to maintain on an SMTP
+client a copy of the standard CAs bundle. It also
+means not having to pay a CA for certificates.
+
+DANE requires a server operator to do three things:
+1) run DNSSEC. This provides assurance to clients
+that DNS lookups they do for the server have not
+been tampered with. The domain MX record applying
+to this server, its A record, its TLSA record and
+any associated CNAME records must all be covered by
+DNSSEC.
+2) add TLSA DNS records. These say what the server
+certificate for a TLS connection should be.
+3) offer a server certificate, or certificate chain,
+in TLS connections which is traceable to the one
+defined by (one of?) the TSLA records
+
+There are no changes to Exim specific to server-side
+operation of DANE.
+
+The TLSA record for the server may have "certificate
+usage" of DANE-TA(2) or DANE-EE(3). The latter specifies
+the End Entity directly, i.e. the certificate involved
+is that of the server (and should be the sole one transmitted
+during the TLS handshake); this is appropriate for a
+single system, using a self-signed certificate.
+ DANE-TA usage is effectively declaring a specific CA
+to be used; this might be a private CA or a public,
+well-known one. A private CA at simplest is just
+a self-signed certificate which is used to sign
+cerver certificates, but running one securely does
+require careful arrangement. If a private CA is used
+then either all clients must be primed with it, or
+(probably simpler) the server TLS handshake must transmit
+the entire certificate chain from CA to server-certificate.
+If a public CA is used then all clients must be primed with it
+(losing one advantage of DANE) - but the attack surface is
+reduced from all public CAs to that single CA.
+DANE-TA is commonly used for several services and/or
+servers, each having a TLSA query-domain CNAME record,
+all of which point to a single TLSA record.
+
+The TLSA record should have a Selector field of SPKI(1)
+and a Matching Type field of SHA2-512(2).
+
+At the time of writing, https://www.huque.com/bin/gen_tlsa
+is useful for quickly generating TLSA records; and commands like
+
+ openssl x509 -in -pubkey -noout <certificate.pem \
+ | openssl rsa -outform der -pubin 2>/dev/null \
+ | openssl sha512 \
+ | awk '{print $2}'
+
+are workable for 4th-field hashes.
+
+For use with the DANE-TA model, server certificates
+must have a correct name (SubjectName or SubjectAltName).
+
+The use of OCSP-stapling should be considered, allowing
+for fast revocation of certificates (which would otherwise
+be limited by the DNS TTL on the TLSA records). However,
+this is likely to only be usable with DANE-TA. NOTE: the
+default of requesting OCSP for all hosts is modified iff
+DANE is in use, to:
+
+ hosts_request_ocsp = ${if or { {= {0}{$tls_out_tlsa_usage}} \
+ {= {4}{$tls_out_tlsa_usage}} } \
+ {*}{}}
+
+The (new) variable $tls_out_tlsa_usage is a bitfield with
+numbered bits set for TLSA record usage codes.
+The zero above means DANE was not in use,
+the four means that only DANE-TA usage TLSA records were
+found. If the definition of hosts_request_ocsp includes the
+string "tls_out_tlsa_usage", they are re-expanded in time to
+control the OCSP request.
+
+This modification of hosts_request_ocsp is only done if
+it has the default value of "*". Admins who change it, and
+those who use hosts_require_ocsp, should consider the interaction
+with DANE in their OCSP settings.
+
+
+For client-side DANE there are two new smtp transport options,
+hosts_try_dane and hosts_require_dane.
+[ should they be domain-based rather than host-based? ]
+
+Hosts_require_dane will result in failure if the target host
+is not DNSSEC-secured.
+
+DANE will only be usable if the target host has DNSSEC-secured
+MX, A and TLSA records.
+
+A TLSA lookup will be done if either of the above options match
+and the host-lookup succeded using dnssec.
+If a TLSA lookup is done and succeeds, a DANE-verified TLS connection
+will be required for the host. If it does not, the host will not
+be used; there is no fallback to non-DANE or non-TLS.
+
+If DANE is requested and useable (see above) the following transport
+options are ignored:
+ hosts_require_tls
+ tls_verify_hosts
+ tls_try_verify_hosts
+ tls_verify_certificates
+ tls_crl
+ tls_verify_cert_hostnames
+
+If DANE is not usable, whether requested or not, and CA-anchored
+verification evaluation is wanted, the above variables should be set
+appropriately.
+
+Currently dnssec_request_domains must be active (need to think about that)
+and dnssec_require_domains is ignored.
+
+If verification was successful using DANE then the "CV" item
+in the delivery log line will show as "CV=dane".
+
+There is a new variable $tls_out_dane which will have "yes" if
+verification succeeded using DANE and "no" otherwise (only useful
+in combination with EXPERIMENTAL_EVENT), and a new variable
+$tls_out_tlsa_usage (detailed above).
+
+
+
+DSN extra information
+---------------------
+If compiled with EXPERIMENTAL_DSN_INFO extra information will be added
+to DSN fail messages ("bounces"), when available. The intent is to aid
+tracing of specific failing messages, when presented with a "bounce"
+complaint and needing to search logs.
+
+
+The remote MTA IP address, with port number if nonstandard.
+Example:
+ Remote-MTA: X-ip; [127.0.0.1]:587
+Rationale:
+ Several addresses may correspond to the (already available)
+ dns name for the remote MTA.
+
+The remote MTA connect-time greeting.
+Example:
+ X-Remote-MTA-smtp-greeting: X-str; 220 the.local.host.name ESMTP Exim x.yz Tue, 2 Mar 1999 09:44:33 +0000
+Rationale:
+ This string sometimes presents the remote MTA's idea of its
+ own name, and sometimes identifies the MTA software.
+
+The remote MTA response to HELO or EHLO.
+Example:
+ X-Remote-MTA-helo-response: X-str; 250-the.local.host.name Hello localhost [127.0.0.1]
+Limitations:
+ Only the first line of a multiline response is recorded.
+Rationale:
+ This string sometimes presents the remote MTA's view of
+ the peer IP connecting to it.
+
+The reporting MTA detailed diagnostic.
+Example:
+ X-Exim-Diagnostic: X-str; SMTP error from remote mail server after RCPT TO:<d3@myhost.test.ex>: 550 hard error
+Rationale:
+ This string somtimes give extra information over the
+ existing (already available) Diagnostic-Code field.
+
+
+Note that non-RFC-documented field names and data types are used.
-Proxy Protocol Support
---------------------------------------------------------------
-
-Exim now has Experimental "Proxy Protocol" support. It was built on
-specifications from:
-http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt
-Above URL revised May 2014 to change version 2 spec:
-http://git.1wt.eu/web?p=haproxy.git;a=commitdiff;h=afb768340c9d7e50d8e
-
-The purpose of this function is so that an application load balancer,
-such as HAProxy, can sit in front of several Exim servers and Exim
-will log the IP that is connecting to the proxy server instead of
-the IP of the proxy server when it connects to Exim. It resets the
-$sender_address_host and $sender_address_port to the IP:port of the
-connection to the proxy. It also re-queries the DNS information for
-this new IP address so that the original sender's hostname and IP
-get logged in the Exim logfile. There is no logging if a host passes or
-fails Proxy Protocol negotiation, but it can easily be determined and
-recorded in an ACL (example is below).
-
-1. To compile Exim with Proxy Protocol support, put this in
-Local/Makefile:
-
-EXPERIMENTAL_PROXY=yes
-
-2. Global configuration settings:
-
-proxy_required_hosts = HOSTLIST
-
-The proxy_required_hosts option will require any IP in that hostlist
-to use Proxy Protocol. The specification of Proxy Protocol is very
-strict, and if proxy negotiation fails, Exim will not allow any SMTP
-command other than QUIT. (See end of this section for an example.)
-The option is expanded when used, so it can be a hostlist as well as
-string of IP addresses. Since it is expanded, specifying an alternate
-separator is supported for ease of use with IPv6 addresses.
-
-To log the IP of the proxy in the incoming logline, add:
- log_selector = +proxy
-
-A default incoming logline (wrapped for appearance) will look like this:
-
- 2013-11-04 09:25:06 1VdNti-0001OY-1V <= me@example.net
- H=mail.example.net [1.2.3.4] P=esmtp S=433
-
-With the log selector enabled, an email that was proxied through a
-Proxy Protocol server at 192.168.1.2 will look like this:
-
- 2013-11-04 09:25:06 1VdNti-0001OY-1V <= me@example.net
- H=mail.example.net [1.2.3.4] P=esmtp PRX=192.168.1.2 S=433
-
-3. In the ACL's the following expansion variables are available.
-
-proxy_host_address The (internal) src IP of the proxy server
- making the connection to the Exim server.
-proxy_host_port The (internal) src port the proxy server is
- using to connect to the Exim server.
-proxy_target_address The dest (public) IP of the remote host to
- the proxy server.
-proxy_target_port The dest port the remote host is using to
- connect to the proxy server.
-proxy_session Boolean, yes/no, the connected host is required
- to use Proxy Protocol.
-
-There is no expansion for a failed proxy session, however you can detect
-it by checking if $proxy_session is true but $proxy_host is empty. As
-an example, in my connect ACL, I have:
-
- warn condition = ${if and{ {bool{$proxy_session}} \
- {eq{$proxy_host_address}{}} } }
- log_message = Failed required proxy protocol negotiation \
- from $sender_host_name [$sender_host_address]
-
- warn condition = ${if and{ {bool{$proxy_session}} \
- {!eq{$proxy_host_address}{}} } }
- # But don't log health probes from the proxy itself
- condition = ${if eq{$proxy_host_address}{$sender_host_address} \
- {false}{true}}
- log_message = Successfully proxied from $sender_host_name \
- [$sender_host_address] through proxy protocol \
- host $proxy_host_address
-
- # Possibly more clear
- warn logwrite = Remote Source Address: $sender_host_address:$sender_host_port
- logwrite = Proxy Target Address: $proxy_target_address:$proxy_target_port
- logwrite = Proxy Internal Address: $proxy_host_address:$proxy_host_port
- logwrite = Internal Server Address: $received_ip_address:$received_port
-
-
-4. Recommended ACL additions:
- - Since the real connections are all coming from your proxy, and the
- per host connection tracking is done before Proxy Protocol is
- evaluated, smtp_accept_max_per_host must be set high enough to
- handle all of the parallel volume you expect per inbound proxy.
- - With the smtp_accept_max_per_host set so high, you lose the ability
- to protect your server from massive numbers of inbound connections
- from one IP. In order to prevent your server from being DOS'd, you
- need to add a per connection ratelimit to your connect ACL. I
- suggest something like this:
-
- # Set max number of connections per host
- LIMIT = 5
- # Or do some kind of IP lookup in a flat file or database
- # LIMIT = ${lookup{$sender_host_address}iplsearch{/etc/exim/proxy_limits}}
-
- defer message = Too many connections from this IP right now
- ratelimit = LIMIT / 5s / per_conn / strict
-
-
-5. Runtime issues to be aware of:
- - The proxy has 3 seconds (hard-coded in the source code) to send the
- required Proxy Protocol header after it connects. If it does not,
- the response to any commands will be:
- "503 Command refused, required Proxy negotiation failed"
- - If the incoming connection is configured in Exim to be a Proxy
- Protocol host, but the proxy is not sending the header, the banner
- does not get sent until the timeout occurs. If the sending host
- sent any input (before the banner), this causes a standard Exim
- synchronization error (i.e. trying to pipeline before PIPELINING
- was advertised).
- - This is not advised, but is mentioned for completeness if you have
- a specific internal configuration that you want this: If the Exim
- server only has an internal IP address and no other machines in your
- organization will connect to it to try to send email, you may
- simply set the hostlist to "*", however, this will prevent local
- mail programs from working because that would require mail from
- localhost to use Proxy Protocol. Again, not advised!
-
-6. Example of a refused connection because the Proxy Protocol header was
-not sent from a host configured to use Proxy Protocol. In the example,
-the 3 second timeout occurred (when a Proxy Protocol banner should have
-been sent), the banner was displayed to the user, but all commands are
-rejected except for QUIT:
-
-# nc mail.example.net 25
-220-mail.example.net, ESMTP Exim 4.82+proxy, Mon, 04 Nov 2013 10:45:59
-220 -0800 RFC's enforced
-EHLO localhost
-503 Command refused, required Proxy negotiation failed
-QUIT
-221 mail.example.net closing connection
-
-
-DSN Support
---------------------------------------------------------------
-
-DSN Support tries to add RFC 3461 support to Exim. It adds support for
-*) the additional parameters for MAIL FROM and RCPT TO
-*) RFC complient MIME DSN messages for all of
- success, failure and delay notifications
-*) dsn_advertise_hosts main option to select which hosts are able
- to use the extension
-*) dsn_lasthop router switch to end DSN processing
-
-In case of failure reports this means that the last three parts, the message body
-intro, size info and final text, of the defined template are ignored since there is no
-logical place to put them in the MIME message.
-
-All the other changes are made without changing any defaults
-
-Building exim:
---------------
-
-Define
-EXPERIMENTAL_DSN=YES
-in your Local/Makefile.
-
-Configuration:
---------------
-All DSNs are sent in MIME format if you built exim with EXPERIMENTAL_DSN=YES
-No option needed to activate it, and no way to turn it off.
-
-Failure and delay DSNs are triggered as usual except a sender used NOTIFY=...
-to prevent them.
-
-Support for Success DSNs is added and activated by NOTIFY=SUCCESS by clients.
-
-Add
-dsn_advertise_hosts = *
-or a more restrictive host_list to announce DSN in EHLO answers
-
-Those hosts can then use NOTIFY,ENVID,RET,ORCPT options.
-
-If a message is relayed to a DSN aware host without changing the envelope
-recipient the options are passed along and no success DSN is generated.
-
-A redirect router will always trigger a success DSN if requested and the DSN
-options are not passed any further.
-
-A success DSN always contains the recipient address as submitted by the
-client as required by RFC. Rewritten addresses are never exposed.
-
-If you used DSN patch up to 1.3 before remove all "dsn_process" switches from
-your routers since you don't need them anymore. There is no way to "gag"
-success DSNs anymore. Announcing DSN means answering as requested.
-
-You can prevent Exim from passing DSN options along to other DSN aware hosts by defining
-dsn_lasthop
-in a router. Exim will then send the success DSN himself if requested as if
-the next hop does not support DSN.
-Adding it to a redirect router makes no difference.
-
-Certificate name checking
---------------------------------------------------------------
-The X509 certificates used for TLS are supposed be verified
-that they are owned by the expected host. The coding of TLS
-support to date has not made these checks.
-
-If built with EXPERIMENTAL_CERTNAMES defined, code is
-included to do so, and a new smtp transport option
-"tls_verify_cert_hostname" supported which takes a list of
-names for which the checks must be made. The host must
-also be in "tls_verify_hosts".
-
-Both Subject and Subject-Alternate-Name certificate fields
-are supported, as are wildcard certificates (limited to
-a single wildcard being the initial component of a 3-or-more
-component FQDN).