1 /* $Cambridge: exim/src/src/receive.c,v 1.31 2006/11/14 16:40:36 ph10 Exp $ */
3 /*************************************************
4 * Exim - an Internet mail transport agent *
5 *************************************************/
7 /* Copyright (c) University of Cambridge 1995 - 2006 */
8 /* See the file NOTICE for conditions of use and distribution. */
10 /* Code for receiving a message and setting up spool files. */
14 #ifdef EXPERIMENTAL_DOMAINKEYS
15 #define RECEIVE_GETC dk_receive_getc
16 #define RECEIVE_UNGETC dk_receive_ungetc
18 #define RECEIVE_GETC receive_getc
19 #define RECEIVE_UNGETC receive_ungetc
22 /*************************************************
23 * Local static variables *
24 *************************************************/
26 static FILE *data_file = NULL;
27 static int data_fd = -1;
28 static uschar spool_name[256];
32 /*************************************************
33 * Non-SMTP character reading functions *
34 *************************************************/
36 /* These are the default functions that are set up in the variables such as
37 receive_getc initially. They just call the standard functions, passing stdin as
38 the file. (When SMTP input is occurring, different functions are used by
39 changing the pointer variables.) */
50 return ungetc(c, stdin);
68 /*************************************************
69 * Check that a set sender is allowed *
70 *************************************************/
72 /* This function is called when a local caller sets an explicit sender address.
73 It checks whether this is permitted, which it is for trusted callers.
74 Otherwise, it must match the pattern(s) in untrusted_set_sender.
76 Arguments: the proposed sender address
77 Returns: TRUE for a trusted caller
78 TRUE if the address has been set, untrusted_set_sender has been
79 set, and the address matches something in the list
84 receive_check_set_sender(uschar *newsender)
87 if (trusted_caller) return TRUE;
88 if (newsender == NULL || untrusted_set_sender == NULL) return FALSE;
89 qnewsender = (Ustrchr(newsender, '@') != NULL)?
90 newsender : string_sprintf("%s@%s", newsender, qualify_domain_sender);
92 match_address_list(qnewsender, TRUE, TRUE, &untrusted_set_sender, NULL, -1,
99 /*************************************************
100 * Read space info for a partition *
101 *************************************************/
103 /* This function is called by receive_check_fs() below, and also by string
104 expansion for variables such as $spool_space. The field names for the statvfs
105 structure are macros, because not all OS have F_FAVAIL and it seems tidier to
106 have macros for F_BAVAIL and F_FILES as well. Some kinds of file system do not
107 have inodes, and they return -1 for the number available.
109 Later: It turns out that some file systems that do not have the concept of
110 inodes return 0 rather than -1. Such systems should also return 0 for the total
111 number of inodes, so we require that to be greater than zero before returning
115 isspool TRUE for spool partition, FALSE for log partition
116 inodeptr address of int to receive inode count; -1 if there isn't one
118 Returns: available on-root space, in kilobytes
119 -1 for log partition if there isn't one
121 All values are -1 if the STATFS functions are not available.
125 receive_statvfs(BOOL isspool, int *inodeptr)
128 struct STATVFS statbuf;
133 /* The spool directory must always exist. */
137 path = spool_directory;
141 /* Need to cut down the log file path to the directory, and to ignore any
142 appearance of "syslog" in it. */
146 int sep = ':'; /* Not variable - outside scripts use */
147 uschar *p = log_file_path;
150 /* An empty log_file_path means "use the default". This is the same as an
151 empty item in a list. */
153 if (*p == 0) p = US":";
154 while ((path = string_nextinlist(&p, &sep, buffer, sizeof(buffer))) != NULL)
156 if (Ustrcmp(path, "syslog") != 0) break;
159 if (path == NULL) /* No log files */
165 /* An empty string means use the default, which is in the spool directory.
166 But don't just use the spool directory, as it is possible that the log
167 subdirectory has been symbolically linked elsewhere. */
171 sprintf(CS buffer, CS"%s/log", CS spool_directory);
177 if ((cp = Ustrrchr(path, '/')) != NULL) *cp = 0;
181 /* We now have the patch; do the business */
183 memset(&statbuf, 0, sizeof(statbuf));
185 if (STATVFS(CS path, &statbuf) != 0)
187 log_write(0, LOG_MAIN|LOG_PANIC, "cannot accept message: failed to stat "
188 "%s directory %s: %s", name, spool_directory, strerror(errno));
189 smtp_closedown(US"spool or log directory problem");
190 exim_exit(EXIT_FAILURE);
193 *inodeptr = (statbuf.F_FILES > 0)? statbuf.F_FAVAIL : -1;
195 /* Disks are getting huge. Take care with computing the size in kilobytes. */
197 return (int)(((double)statbuf.F_BAVAIL * (double)statbuf.F_FRSIZE)/1024.0);
199 /* Unable to find partition sizes in this environment. */
210 /*************************************************
211 * Check space on spool and log partitions *
212 *************************************************/
214 /* This function is called before accepting a message; if any thresholds are
215 set, it checks them. If a message_size is supplied, it checks that there is
216 enough space for that size plus the threshold - i.e. that the message won't
217 reduce the space to the threshold. Not all OS have statvfs(); for those that
218 don't, this function always returns TRUE. For some OS the old function and
219 struct name statfs is used; that is handled by a macro, defined in exim.h.
222 msg_size the (estimated) size of an incoming message
224 Returns: FALSE if there isn't enough space, or if the information cannot
226 TRUE if no check was done or there is enough space
230 receive_check_fs(int msg_size)
234 if (check_spool_space > 0 || msg_size > 0 || check_spool_inodes > 0)
236 space = receive_statvfs(TRUE, &inodes);
239 debug_printf("spool directory space = %dK inodes = %d "
240 "check_space = %dK inodes = %d msg_size = %d\n",
241 space, inodes, check_spool_space, check_spool_inodes, msg_size);
243 if ((space >= 0 && space < check_spool_space) ||
244 (inodes >= 0 && inodes < check_spool_inodes))
246 log_write(0, LOG_MAIN, "spool directory space check failed: space=%d "
247 "inodes=%d", space, inodes);
252 if (check_log_space > 0 || check_log_inodes > 0)
254 space = receive_statvfs(FALSE, &inodes);
257 debug_printf("log directory space = %dK inodes = %d "
258 "check_space = %dK inodes = %d\n",
259 space, inodes, check_log_space, check_log_inodes);
261 if ((space >= 0 && space < check_log_space) ||
262 (inodes >= 0 && inodes < check_log_inodes))
264 log_write(0, LOG_MAIN, "log directory space check failed: space=%d "
265 "inodes=%d", space, inodes);
275 /*************************************************
276 * Bomb out while reading a message *
277 *************************************************/
279 /* The common case of wanting to bomb out is if a SIGTERM or SIGINT is
280 received, or if there is a timeout. A rarer case might be if the log files are
281 screwed up and Exim can't open them to record a message's arrival. Handling
282 that case is done by setting a flag to cause the log functions to call this
283 function if there is an ultimate disaster. That is why it is globally
286 Arguments: SMTP response to give if in an SMTP session
291 receive_bomb_out(uschar *msg)
293 /* If spool_name is set, it contains the name of the data file that is being
294 written. Unlink it before closing so that it cannot be picked up by a delivery
295 process. Ensure that any header file is also removed. */
297 if (spool_name[0] != 0)
300 spool_name[Ustrlen(spool_name) - 1] = 'H';
304 /* Now close the file if it is open, either as a fd or a stream. */
306 if (data_file != NULL) (void)fclose(data_file);
307 else if (data_fd >= 0) (void)close(data_fd);
309 /* Attempt to close down an SMTP connection tidily. */
313 if (!smtp_batched_input)
315 smtp_printf("421 %s %s - closing connection.\r\n", smtp_active_hostname,
320 /* Control does not return from moan_smtp_batch(). */
322 else moan_smtp_batch(NULL, "421 %s - message abandoned", msg);
325 /* Exit from the program (non-BSMTP cases) */
327 exim_exit(EXIT_FAILURE);
331 /*************************************************
332 * Data read timeout *
333 *************************************************/
335 /* Handler function for timeouts that occur while reading the data that
338 Argument: the signal number
343 data_timeout_handler(int sig)
347 sig = sig; /* Keep picky compilers happy */
351 msg = US"SMTP incoming data timeout";
352 log_write(L_lost_incoming_connection,
353 LOG_MAIN, "SMTP data timeout (message abandoned) on connection "
355 (sender_fullhost != NULL)? sender_fullhost : US"local process",
360 fprintf(stderr, "exim: timed out while reading - message abandoned\n");
361 log_write(L_lost_incoming_connection,
362 LOG_MAIN, "timed out while reading local message");
365 receive_bomb_out(msg); /* Does not return */
370 /*************************************************
371 * local_scan() timeout *
372 *************************************************/
374 /* Handler function for timeouts that occur while running a local_scan()
377 Argument: the signal number
382 local_scan_timeout_handler(int sig)
384 sig = sig; /* Keep picky compilers happy */
385 log_write(0, LOG_MAIN|LOG_REJECT, "local_scan() function timed out - "
386 "message temporarily rejected (size %d)", message_size);
387 receive_bomb_out(US"local verification problem"); /* Does not return */
392 /*************************************************
393 * local_scan() crashed *
394 *************************************************/
396 /* Handler function for signals that occur while running a local_scan()
399 Argument: the signal number
404 local_scan_crash_handler(int sig)
406 log_write(0, LOG_MAIN|LOG_REJECT, "local_scan() function crashed with "
407 "signal %d - message temporarily rejected (size %d)", sig, message_size);
408 receive_bomb_out(US"local verification problem"); /* Does not return */
412 /*************************************************
413 * SIGTERM or SIGINT received *
414 *************************************************/
416 /* Handler for SIGTERM or SIGINT signals that occur while reading the
417 data that comprises a message.
419 Argument: the signal number
424 data_sigterm_sigint_handler(int sig)
430 msg = US"Service not available - SIGTERM or SIGINT received";
431 log_write(0, LOG_MAIN, "%s closed after %s", smtp_get_connection_info(),
432 (sig == SIGTERM)? "SIGTERM" : "SIGINT");
436 if (filter_test == FTEST_NONE)
438 fprintf(stderr, "\nexim: %s received - message abandoned\n",
439 (sig == SIGTERM)? "SIGTERM" : "SIGINT");
440 log_write(0, LOG_MAIN, "%s received while reading local message",
441 (sig == SIGTERM)? "SIGTERM" : "SIGINT");
445 receive_bomb_out(msg); /* Does not return */
450 /*************************************************
451 * Add new recipient to list *
452 *************************************************/
454 /* This function builds a list of recipient addresses in argc/argv
458 recipient the next address to add to recipients_list
459 pno parent number for fixed aliases; -1 otherwise
465 receive_add_recipient(uschar *recipient, int pno)
467 if (recipients_count >= recipients_list_max)
469 recipient_item *oldlist = recipients_list;
470 int oldmax = recipients_list_max;
471 recipients_list_max = recipients_list_max? 2*recipients_list_max : 50;
472 recipients_list = store_get(recipients_list_max * sizeof(recipient_item));
474 memcpy(recipients_list, oldlist, oldmax * sizeof(recipient_item));
477 recipients_list[recipients_count].address = recipient;
478 recipients_list[recipients_count].pno = pno;
479 #ifdef EXPERIMENTAL_BRIGHTMAIL
480 recipients_list[recipients_count].bmi_optin = bmi_current_optin;
481 /* reset optin string pointer for next recipient */
482 bmi_current_optin = NULL;
484 recipients_list[recipients_count++].errors_to = NULL;
490 /*************************************************
491 * Remove a recipient from the list *
492 *************************************************/
494 /* This function is provided for local_scan() to use.
497 recipient address to remove
499 Returns: TRUE if it did remove something; FALSE otherwise
503 receive_remove_recipient(uschar *recipient)
506 DEBUG(D_receive) debug_printf("receive_remove_recipient(\"%s\") called\n",
508 for (count = 0; count < recipients_count; count++)
510 if (Ustrcmp(recipients_list[count].address, recipient) == 0)
512 if ((--recipients_count - count) > 0)
513 memmove(recipients_list + count, recipients_list + count + 1,
514 (recipients_count - count)*sizeof(recipient_item));
525 /*************************************************
526 * Read data portion of a non-SMTP message *
527 *************************************************/
529 /* This function is called to read the remainder of a message (following the
530 header) when the input is not from SMTP - we are receiving a local message on
531 a standard input stream. The message is always terminated by EOF, and is also
532 terminated by a dot on a line by itself if the flag dot_ends is TRUE. Split the
533 two cases for maximum efficiency.
535 Ensure that the body ends with a newline. This will naturally be the case when
536 the termination is "\n.\n" but may not be otherwise. The RFC defines messages
537 as "sequences of lines" - this of course strictly applies only to SMTP, but
538 deliveries into BSD-type mailbox files also require it. Exim used to have a
539 flag for doing this at delivery time, but as it was always set for all
540 transports, I decided to simplify things by putting the check here instead.
542 There is at least one MUA (dtmail) that sends CRLF via this interface, and
543 other programs are known to do this as well. Exim used to have a option for
544 dealing with this: in July 2003, after much discussion, the code has been
545 changed to default to treat any of LF, CRLF, and bare CR as line terminators.
547 However, for the case when a dot on a line by itself terminates a message, the
548 only recognized terminating sequences before and after the dot are LF and CRLF.
549 Otherwise, having read EOL . CR, you don't know whether to read another
552 Internally, in messages stored in Exim's spool files, LF is used as the line
553 terminator. Under the new regime, bare CRs will no longer appear in these
557 fout a FILE to which to write the message
559 Returns: One of the END_xxx values indicating why it stopped reading
563 read_message_data(FILE *fout)
568 /* Handle the case when only EOF terminates the message */
572 register int last_ch = '\n';
574 for (; (ch = (RECEIVE_GETC)()) != EOF; last_ch = ch)
576 if (ch == 0) body_zerocount++;
577 if (last_ch == '\r' && ch != '\n')
579 if (fputc('\n', fout) == EOF) return END_WERROR;
583 if (ch == '\r') continue;
585 if (fputc(ch, fout) == EOF) return END_WERROR;
586 if (ch == '\n') body_linecount++;
587 if (++message_size > thismessage_size_limit) return END_SIZE;
592 if (fputc('\n', fout) == EOF) return END_WERROR;
600 /* Handle the case when a dot on a line on its own, or EOF, terminates. */
604 while ((ch = (RECEIVE_GETC)()) != EOF)
606 if (ch == 0) body_zerocount++;
609 case 0: /* Normal state (previous char written) */
611 { body_linecount++; ch_state = 1; }
613 { ch_state = 2; continue; }
616 case 1: /* After written "\n" */
617 if (ch == '.') { ch_state = 3; continue; }
618 if (ch != '\n') ch_state = 0;
622 body_linecount++; /* After unwritten "\r" */
627 if (message_size++, fputc('\n', fout) == EOF) return END_WERROR;
628 if (ch == '\r') continue;
633 case 3: /* After "\n." (\n written, dot not) */
634 if (ch == '\n') return END_DOT;
635 if (ch == '\r') { ch_state = 4; continue; }
637 if (fputc('.', fout) == EOF) return END_WERROR;
641 case 4: /* After "\n.\r" (\n written, rest not) */
642 if (ch == '\n') return END_DOT;
645 if (fputs(".\n", fout) == EOF) return END_WERROR;
646 if (ch == '\r') { ch_state = 2; continue; }
651 if (fputc(ch, fout) == EOF) return END_WERROR;
652 if (++message_size > thismessage_size_limit) return END_SIZE;
655 /* Get here if EOF read. Unless we have just written "\n", we need to ensure
656 the message ends with a newline, and we must also write any characters that
657 were saved up while testing for an ending dot. */
661 static uschar *ends[] = { US"\n", NULL, US"\n", US".\n", US".\n" };
662 if (fputs(CS ends[ch_state], fout) == EOF) return END_WERROR;
663 message_size += Ustrlen(ends[ch_state]);
673 /*************************************************
674 * Read data portion of an SMTP message *
675 *************************************************/
677 /* This function is called to read the remainder of an SMTP message (after the
678 headers), or to skip over it when an error has occurred. In this case, the
679 output file is passed as NULL.
681 If any line begins with a dot, that character is skipped. The input should only
682 be successfully terminated by CR LF . CR LF unless it is local (non-network)
683 SMTP, in which case the CRs are optional, but...
685 FUDGE: It seems that sites on the net send out messages with just LF
686 terminators, despite the warnings in the RFCs, and other MTAs handle this. So
687 we make the CRs optional in all cases.
689 July 2003: Bare CRs cause trouble. We now treat them as line terminators as
690 well, so that there are no CRs in spooled messages. However, the message
691 terminating dot is not recognized between two bare CRs.
694 fout a FILE to which to write the message; NULL if skipping
696 Returns: One of the END_xxx values indicating why it stopped reading
700 read_message_data_smtp(FILE *fout)
705 while ((ch = (RECEIVE_GETC)()) != EOF)
707 if (ch == 0) body_zerocount++;
710 case 0: /* After LF or CRLF */
714 continue; /* Don't ever write . after LF */
718 /* Else fall through to handle as normal uschar. */
720 case 1: /* Normal state */
733 case 2: /* After (unwritten) CR */
742 if (fout != NULL && fputc('\n', fout) == EOF) return END_WERROR;
743 if (ch != '\r') ch_state = 1; else continue;
747 case 3: /* After [CR] LF . */
755 ch_state = 1; /* The dot itself is removed */
758 case 4: /* After [CR] LF . CR */
759 if (ch == '\n') return END_DOT;
762 if (fout != NULL && fputc('\n', fout) == EOF) return END_WERROR;
772 /* Add the character to the spool file, unless skipping; then loop for the
778 if (fputc(ch, fout) == EOF) return END_WERROR;
779 if (message_size > thismessage_size_limit) return END_SIZE;
783 /* Fall through here if EOF encountered. This indicates some kind of error,
784 since a correct message is terminated by [CR] LF . [CR] LF. */
792 /*************************************************
793 * Swallow SMTP message *
794 *************************************************/
796 /* This function is called when there has been some kind of error while reading
797 an SMTP message, and the remaining data may need to be swallowed. It is global
798 because it is called from smtp_closedown() to shut down an incoming call
801 Argument: a FILE from which to read the message
806 receive_swallow_smtp(void)
808 if (message_ended >= END_NOTENDED)
809 message_ended = read_message_data_smtp(NULL);
814 /*************************************************
815 * Handle lost SMTP connection *
816 *************************************************/
818 /* This function logs connection loss incidents and generates an appropriate
821 Argument: additional data for the message
822 Returns: the SMTP response
826 handle_lost_connection(uschar *s)
828 log_write(L_lost_incoming_connection | L_smtp_connection, LOG_MAIN,
829 "%s lost while reading message data%s", smtp_get_connection_info(), s);
830 return US"421 Lost incoming connection";
836 /*************************************************
837 * Handle a non-smtp reception error *
838 *************************************************/
840 /* This function is called for various errors during the reception of non-SMTP
841 messages. It either sends a message to the sender of the problem message, or it
842 writes to the standard error stream.
845 errcode code for moan_to_sender(), identifying the error
846 text1 first message text, passed to moan_to_sender()
847 text2 second message text, used only for stderrr
848 error_rc code to pass to exim_exit if no problem
849 f FILE containing body of message (may be stdin)
850 hptr pointer to instore headers or NULL
852 Returns: calls exim_exit(), which does not return
856 give_local_error(int errcode, uschar *text1, uschar *text2, int error_rc,
857 FILE *f, header_line *hptr)
859 if (error_handling == ERRORS_SENDER)
863 eblock.text1 = text1;
864 if (!moan_to_sender(errcode, &eblock, hptr, f, FALSE))
865 error_rc = EXIT_FAILURE;
867 else fprintf(stderr, "exim: %s%s\n", text2, text1); /* Sic */
874 /*************************************************
875 * Add header lines set up by ACL *
876 *************************************************/
878 /* This function is called to add the header lines that were set up by "warn"
879 statements in an ACL onto the list of headers in memory. It is done in two
880 stages like this, because when the ACL for RCPT is running, the other headers
881 have not yet been received. This function is called twice; once just before
882 running the DATA ACL, and once after. This is so that header lines added by
883 MAIL or RCPT are visible to the DATA ACL.
885 Originally these header lines were added at the end. Now there is support for
886 three different places: top, bottom, and after the Received: header(s). There
887 will always be at least one Received: header, even if it is marked deleted, and
888 even if something else has been put in front of it.
891 acl_name text to identify which ACL
897 add_acl_headers(uschar *acl_name)
899 header_line *h, *next;
900 header_line *last_received = NULL;
902 if (acl_added_headers == NULL) return;
903 DEBUG(D_receive|D_acl) debug_printf(">>Headers added by %s ACL:\n", acl_name);
905 for (h = acl_added_headers; h != NULL; h = next)
912 h->next = header_list;
914 DEBUG(D_receive|D_acl) debug_printf(" (at top)");
918 if (last_received == NULL)
920 last_received = header_list;
921 while (!header_testname(last_received, US"Received", 8, FALSE))
922 last_received = last_received->next;
923 while (last_received->next != NULL &&
924 header_testname(last_received->next, US"Received", 8, FALSE))
925 last_received = last_received->next;
927 h->next = last_received->next;
928 last_received->next = h;
929 DEBUG(D_receive|D_acl) debug_printf(" (after Received:)");
933 /* add header before any header which is NOT Received: or Resent- */
934 last_received = header_list;
935 while ( (last_received->next != NULL) &&
936 ( (header_testname(last_received->next, US"Received", 8, FALSE)) ||
937 (header_testname_incomplete(last_received->next, US"Resent-", 7, FALSE)) ) )
938 last_received = last_received->next;
939 /* last_received now points to the last Received: or Resent-* header
940 in an uninterrupted chain of those header types (seen from the beginning
941 of all headers. Our current header must follow it. */
942 h->next = last_received->next;
943 last_received->next = h;
944 DEBUG(D_receive|D_acl) debug_printf(" (before any non-Received: or Resent-*: header)");
949 header_last->next = h;
953 if (h->next == NULL) header_last = h;
955 /* Check for one of the known header types (From:, To:, etc.) though in
956 practice most added headers are going to be "other". Lower case
957 identification letters are never stored with the header; they are used
958 for existence tests when messages are received. So discard any lower case
961 h->type = header_checkname(h, FALSE);
962 if (h->type >= 'a') h->type = htype_other;
964 DEBUG(D_receive|D_acl) debug_printf(" %s", header_last->text);
967 acl_added_headers = NULL;
968 DEBUG(D_receive|D_acl) debug_printf(">>\n");
973 /*************************************************
974 * Add host information for log line *
975 *************************************************/
977 /* Called for acceptance and rejecting log lines. This adds information about
978 the calling host to a string that is being built dynamically.
982 sizeptr points to the size variable
983 ptrptr points to the pointer variable
985 Returns: the extended string
989 add_host_info_for_log(uschar *s, int *sizeptr, int *ptrptr)
991 if (sender_fullhost != NULL)
993 s = string_append(s, sizeptr, ptrptr, 2, US" H=", sender_fullhost);
994 if ((log_extra_selector & LX_incoming_interface) != 0 &&
995 interface_address != NULL)
997 uschar *ss = string_sprintf(" I=[%s]:%d", interface_address,
999 s = string_cat(s, sizeptr, ptrptr, ss, Ustrlen(ss));
1002 if (sender_ident != NULL)
1003 s = string_append(s, sizeptr, ptrptr, 2, US" U=", sender_ident);
1004 if (received_protocol != NULL)
1005 s = string_append(s, sizeptr, ptrptr, 2, US" P=", received_protocol);
1011 #ifdef WITH_CONTENT_SCAN
1013 /*************************************************
1014 * Run the MIME ACL on a message *
1015 *************************************************/
1017 /* This code is in a subroutine so that it can be used for both SMTP
1018 and non-SMTP messages. It is called with a non-NULL ACL pointer.
1021 acl The ACL to run (acl_smtp_mime or acl_not_smtp_mime)
1022 smtp_yield_ptr Set FALSE to kill messages after dropped connection
1023 smtp_reply_ptr Where SMTP reply is being built
1024 blackholed_by_ptr Where "blackholed by" message is being built
1026 Returns: TRUE to carry on; FALSE to abandon the message
1030 run_mime_acl(uschar *acl, BOOL *smtp_yield_ptr, uschar **smtp_reply_ptr,
1031 uschar **blackholed_by_ptr)
1034 uschar rfc822_file_path[2048];
1035 unsigned long mbox_size;
1036 header_line *my_headerlist;
1037 uschar *user_msg, *log_msg;
1038 int mime_part_count_buffer = -1;
1041 memset(CS rfc822_file_path,0,2048);
1043 /* check if it is a MIME message */
1044 my_headerlist = header_list;
1045 while (my_headerlist != NULL)
1047 /* skip deleted headers */
1048 if (my_headerlist->type == '*')
1050 my_headerlist = my_headerlist->next;
1053 if (strncmpic(my_headerlist->text, US"Content-Type:", 13) == 0)
1055 DEBUG(D_receive) debug_printf("Found Content-Type: header - executing acl_smtp_mime.\n");
1058 my_headerlist = my_headerlist->next;
1061 DEBUG(D_receive) debug_printf("No Content-Type: header - presumably not a MIME message.\n");
1065 /* make sure the eml mbox file is spooled up */
1066 mbox_file = spool_mbox(&mbox_size);
1067 if (mbox_file == NULL) {
1068 /* error while spooling */
1069 log_write(0, LOG_MAIN|LOG_PANIC,
1070 "acl_smtp_mime: error while creating mbox spool file, message temporarily rejected.");
1071 Uunlink(spool_name);
1073 smtp_respond(US"451", 3, TRUE, US"temporary local problem");
1074 message_id[0] = 0; /* Indicate no message accepted */
1075 *smtp_reply_ptr = US""; /* Indicate reply already sent */
1076 return FALSE; /* Indicate skip to end of receive function */
1082 mime_part_count = -1;
1083 rc = mime_acl_check(acl, mbox_file, NULL, &user_msg, &log_msg);
1084 (void)fclose(mbox_file);
1086 if (Ustrlen(rfc822_file_path) > 0)
1088 mime_part_count = mime_part_count_buffer;
1090 if (unlink(CS rfc822_file_path) == -1)
1092 log_write(0, LOG_PANIC,
1093 "acl_smtp_mime: can't unlink RFC822 spool file, skipping.");
1098 /* check if we must check any message/rfc822 attachments */
1101 uschar temp_path[1024];
1103 struct dirent *entry;
1106 (void)string_format(temp_path, 1024, "%s/scan/%s", spool_directory,
1109 tempdir = opendir(CS temp_path);
1113 entry = readdir(tempdir);
1114 if (entry == NULL) break;
1115 if (strncmpic(US entry->d_name,US"__rfc822_",9) == 0)
1117 (void)string_format(rfc822_file_path, 2048,"%s/scan/%s/%s", spool_directory, message_id, entry->d_name);
1118 debug_printf("RFC822 attachment detected: running MIME ACL for '%s'\n", rfc822_file_path);
1126 mbox_file = Ufopen(rfc822_file_path,"rb");
1127 if (mbox_file == NULL)
1129 log_write(0, LOG_PANIC,
1130 "acl_smtp_mime: can't open RFC822 spool file, skipping.");
1131 unlink(CS rfc822_file_path);
1134 /* set RFC822 expansion variable */
1136 mime_part_count_buffer = mime_part_count;
1137 goto MIME_ACL_CHECK;
1142 add_acl_headers(US"MIME");
1145 recipients_count = 0;
1146 *blackholed_by_ptr = US"MIME ACL";
1150 Uunlink(spool_name);
1152 if (smtp_handle_acl_fail(ACL_WHERE_MIME, rc, user_msg, log_msg) != 0)
1153 *smtp_yield_ptr = FALSE; /* No more messsages after dropped connection */
1154 *smtp_reply_ptr = US""; /* Indicate reply already sent */
1155 message_id[0] = 0; /* Indicate no message accepted */
1156 return FALSE; /* Cause skip to end of receive function */
1162 #endif /* WITH_CONTENT_SCAN */
1165 /*************************************************
1167 *************************************************/
1169 /* Receive a message on the given input, and put it into a pair of spool files.
1170 Either a non-null list of recipients, or the extract flag will be true, or
1171 both. The flag sender_local is true for locally generated messages. The flag
1172 submission_mode is true if an ACL has obeyed "control = submission". The flag
1173 suppress_local_fixups is true if an ACL has obeyed "control =
1174 suppress_local_fixups". The flag smtp_input is true if the message is to be
1175 handled using SMTP conventions about termination and lines starting with dots.
1176 For non-SMTP messages, dot_ends is true for dot-terminated messages.
1178 If a message was successfully read, message_id[0] will be non-zero.
1180 The general actions of this function are:
1182 . Read the headers of the message (if any) into a chain of store
1185 . If there is a "sender:" header and the message is locally originated,
1186 throw it away, unless the caller is trusted, or unless
1187 active_local_sender_retain is set - which can only happen if
1188 active_local_from_check is false.
1190 . If recipients are to be extracted from the message, build the
1191 recipients list from the headers, removing any that were on the
1192 original recipients list (unless extract_addresses_remove_arguments is
1193 false), and at the same time, remove any bcc header that may be present.
1195 . Get the spool file for the data, sort out its unique name, open
1196 and lock it (but don't give it the name yet).
1198 . Generate a "Message-Id" header if the message doesn't have one, for
1199 locally-originated messages.
1201 . Generate a "Received" header.
1203 . Ensure the recipients list is fully qualified and rewritten if necessary.
1205 . If there are any rewriting rules, apply them to the sender address
1206 and also to the headers.
1208 . If there is no from: header, generate one, for locally-generated messages
1209 and messages in "submission mode" only.
1211 . If the sender is local, check that from: is correct, and if not, generate
1212 a Sender: header, unless message comes from a trusted caller, or this
1213 feature is disabled by active_local_from_check being false.
1215 . If there is no "date" header, generate one, for locally-originated
1216 or submission mode messages only.
1218 . Copy the rest of the input, or up to a terminating "." if in SMTP or
1219 dot_ends mode, to the data file. Leave it open, to hold the lock.
1221 . Write the envelope and the headers to a new file.
1223 . Set the name for the header file; close it.
1225 . Set the name for the data file; close it.
1227 Because this function can potentially be called many times in a single
1228 SMTP connection, all store should be got by store_get(), so that it will be
1229 automatically retrieved after the message is accepted.
1231 FUDGE: It seems that sites on the net send out messages with just LF
1232 terminators, despite the warnings in the RFCs, and other MTAs handle this. So
1233 we make the CRs optional in all cases.
1235 July 2003: Bare CRs in messages, especially in header lines, cause trouble. A
1236 new regime is now in place in which bare CRs in header lines are turned into LF
1237 followed by a space, so as not to terminate the header line.
1239 February 2004: A bare LF in a header line in a message whose first line was
1240 terminated by CRLF is treated in the same way as a bare CR.
1243 extract_recip TRUE if recipients are to be extracted from the message's
1246 Returns: TRUE there are more messages to be read (SMTP input)
1247 FALSE there are no more messages to be read (non-SMTP input
1248 or SMTP connection collapsed, or other failure)
1250 When reading a message for filter testing, the returned value indicates
1251 whether the headers (which is all that is read) were terminated by '.' or
1255 receive_msg(BOOL extract_recip)
1259 int process_info_len = Ustrlen(process_info);
1260 int error_rc = (error_handling == ERRORS_SENDER)?
1261 errors_sender_rc : EXIT_FAILURE;
1262 int header_size = 256;
1263 int start, end, domain, size, sptr;
1267 register int ptr = 0;
1269 BOOL contains_resent_headers = FALSE;
1270 BOOL extracted_ignored = FALSE;
1271 BOOL first_line_ended_crlf = TRUE_UNSET;
1272 BOOL smtp_yield = TRUE;
1275 BOOL resents_exist = FALSE;
1276 uschar *resent_prefix = US"";
1277 uschar *blackholed_by = NULL;
1278 uschar *blackhole_log_msg = US"";
1281 error_block *bad_addresses = NULL;
1283 uschar *frozen_by = NULL;
1284 uschar *queued_by = NULL;
1287 struct stat statbuf;
1289 /* Final message to give to SMTP caller, and messages from ACLs */
1291 uschar *smtp_reply = NULL;
1292 uschar *user_msg, *log_msg;
1294 /* Working header pointers */
1296 header_line *h, *next;
1298 /* Flags for noting the existence of certain headers (only one left) */
1300 BOOL date_header_exists = FALSE;
1302 /* Pointers to receive the addresses of headers whose contents we need. */
1304 header_line *from_header = NULL;
1305 header_line *subject_header = NULL;
1306 header_line *msgid_header = NULL;
1307 header_line *received_header;
1309 /* Variables for use when building the Received: header. */
1315 /* Release any open files that might have been cached while preparing to
1316 accept the message - e.g. by verifying addresses - because reading a message
1317 might take a fair bit of real time. */
1321 /* Initialize the chain of headers by setting up a place-holder for Received:
1322 header. Temporarily mark it as "old", i.e. not to be used. We keep header_last
1323 pointing to the end of the chain to make adding headers simple. */
1325 received_header = header_list = header_last = store_get(sizeof(header_line));
1326 header_list->next = NULL;
1327 header_list->type = htype_old;
1328 header_list->text = NULL;
1329 header_list->slen = 0;
1331 /* Control block for the next header to be read. */
1333 next = store_get(sizeof(header_line));
1334 next->text = store_get(header_size);
1336 /* Initialize message id to be null (indicating no message read), and the
1337 header names list to be the normal list. Indicate there is no data file open
1338 yet, initialize the size and warning count, and deal with no size limit. */
1346 received_count = 1; /* For the one we will add */
1348 if (thismessage_size_limit <= 0) thismessage_size_limit = INT_MAX;
1350 /* While reading the message, the following counts are computed. */
1352 message_linecount = body_linecount = body_zerocount = 0;
1354 #ifdef EXPERIMENTAL_DOMAINKEYS
1355 /* Call into DK to set up the context. Check if DK is to be run are carried out
1356 inside dk_exim_verify_init(). */
1357 dk_exim_verify_init();
1360 /* Remember the time of reception. Exim uses time+pid for uniqueness of message
1361 ids, and fractions of a second are required. See the comments that precede the
1362 message id creation below. */
1364 (void)gettimeofday(&message_id_tv, NULL);
1366 /* For other uses of the received time we can operate with granularity of one
1367 second, and for that we use the global variable received_time. This is for
1368 things like ultimate message timeouts. */
1370 received_time = message_id_tv.tv_sec;
1372 /* If SMTP input, set the special handler for timeouts. The alarm() calls
1373 happen in the smtp_getc() function when it refills its buffer. */
1375 if (smtp_input) os_non_restarting_signal(SIGALRM, data_timeout_handler);
1377 /* If not SMTP input, timeout happens only if configured, and we just set a
1378 single timeout for the whole message. */
1380 else if (receive_timeout > 0)
1382 os_non_restarting_signal(SIGALRM, data_timeout_handler);
1383 alarm(receive_timeout);
1386 /* SIGTERM and SIGINT are caught always. */
1388 signal(SIGTERM, data_sigterm_sigint_handler);
1389 signal(SIGINT, data_sigterm_sigint_handler);
1391 /* Header lines in messages are not supposed to be very long, though when
1392 unfolded, to: and cc: headers can take up a lot of store. We must also cope
1393 with the possibility of junk being thrown at us. Start by getting 256 bytes for
1394 storing the header, and extend this as necessary using string_cat().
1396 To cope with total lunacies, impose an upper limit on the length of the header
1397 section of the message, as otherwise the store will fill up. We must also cope
1398 with the possibility of binary zeros in the data. Hence we cannot use fgets().
1399 Folded header lines are joined into one string, leaving the '\n' characters
1400 inside them, so that writing them out reproduces the input.
1402 Loop for each character of each header; the next structure for chaining the
1403 header is set up already, with ptr the offset of the next character in
1408 int ch = (RECEIVE_GETC)();
1410 /* If we hit EOF on a SMTP connection, it's an error, since incoming
1411 SMTP must have a correct "." terminator. */
1413 if (ch == EOF && smtp_input /* && !smtp_batched_input */)
1415 smtp_reply = handle_lost_connection(US" (header)");
1417 goto TIDYUP; /* Skip to end of function */
1420 /* See if we are at the current header's size limit - there must be at least
1421 four bytes left. This allows for the new character plus a zero, plus two for
1422 extra insertions when we are playing games with dots and carriage returns. If
1423 we are at the limit, extend the text buffer. This could have been done
1424 automatically using string_cat() but because this is a tightish loop storing
1425 only one character at a time, we choose to do it inline. Normally
1426 store_extend() will be able to extend the block; only at the end of a big
1427 store block will a copy be needed. To handle the case of very long headers
1428 (and sometimes lunatic messages can have ones that are 100s of K long) we
1429 call store_release() for strings that have been copied - if the string is at
1430 the start of a block (and therefore the only thing in it, because we aren't
1431 doing any other gets), the block gets freed. We can only do this because we
1432 know there are no other calls to store_get() going on. */
1434 if (ptr >= header_size - 4)
1436 int oldsize = header_size;
1437 /* header_size += 256; */
1439 if (!store_extend(next->text, oldsize, header_size))
1441 uschar *newtext = store_get(header_size);
1442 memcpy(newtext, next->text, ptr);
1443 store_release(next->text);
1444 next->text = newtext;
1448 /* Cope with receiving a binary zero. There is dispute about whether
1449 these should be allowed in RFC 822 messages. The middle view is that they
1450 should not be allowed in headers, at least. Exim takes this attitude at
1451 the moment. We can't just stomp on them here, because we don't know that
1452 this line is a header yet. Set a flag to cause scanning later. */
1454 if (ch == 0) had_zero++;
1456 /* Test for termination. Lines in remote SMTP are terminated by CRLF, while
1457 those from data files use just LF. Treat LF in local SMTP input as a
1458 terminator too. Treat EOF as a line terminator always. */
1460 if (ch == EOF) goto EOL;
1462 /* FUDGE: There are sites out there that don't send CRs before their LFs, and
1463 other MTAs accept this. We are therefore forced into this "liberalisation"
1464 too, so we accept LF as a line terminator whatever the source of the message.
1465 However, if the first line of the message ended with a CRLF, we treat a bare
1466 LF specially by inserting a white space after it to ensure that the header
1467 line is not terminated. */
1471 if (first_line_ended_crlf == TRUE_UNSET) first_line_ended_crlf = FALSE;
1472 else if (first_line_ended_crlf) RECEIVE_UNGETC(' ');
1476 /* This is not the end of the line. If this is SMTP input and this is
1477 the first character in the line and it is a "." character, ignore it.
1478 This implements the dot-doubling rule, though header lines starting with
1479 dots aren't exactly common. They are legal in RFC 822, though. If the
1480 following is CRLF or LF, this is the line that that terminates the
1481 entire message. We set message_ended to indicate this has happened (to
1482 prevent further reading), and break out of the loop, having freed the
1483 empty header, and set next = NULL to indicate no data line. */
1485 if (ptr == 0 && ch == '.' && (smtp_input || dot_ends))
1487 ch = (RECEIVE_GETC)();
1490 ch = (RECEIVE_GETC)();
1494 ch = '\r'; /* Revert to CR */
1499 message_ended = END_DOT;
1502 break; /* End character-reading loop */
1505 /* For non-SMTP input, the dot at the start of the line was really a data
1506 character. What is now in ch is the following character. We guaranteed
1507 enough space for this above. */
1511 next->text[ptr++] = '.';
1516 /* If CR is immediately followed by LF, end the line, ignoring the CR, and
1517 remember this case if this is the first line ending. */
1521 ch = (RECEIVE_GETC)();
1524 if (first_line_ended_crlf == TRUE_UNSET) first_line_ended_crlf = TRUE;
1528 /* Otherwise, put back the character after CR, and turn the bare CR
1531 ch = (RECEIVE_UNGETC)(ch);
1532 next->text[ptr++] = '\n';
1537 /* We have a data character for the header line. */
1539 next->text[ptr++] = ch; /* Add to buffer */
1540 message_size++; /* Total message size so far */
1542 /* Handle failure due to a humungously long header section. The >= allows
1543 for the terminating \n. Add what we have so far onto the headers list so
1544 that it gets reflected in any error message, and back up the just-read
1547 if (message_size >= header_maxsize)
1549 next->text[ptr] = 0;
1551 next->type = htype_other;
1553 header_last->next = next;
1556 log_write(0, LOG_MAIN, "ridiculously long message header received from "
1557 "%s (more than %d characters): message abandoned",
1558 sender_host_unknown? sender_ident : sender_fullhost, header_maxsize);
1562 smtp_reply = US"552 Message header is ridiculously long";
1563 receive_swallow_smtp();
1564 goto TIDYUP; /* Skip to end of function */
1569 give_local_error(ERRMESS_VLONGHEADER,
1570 string_sprintf("message header longer than %d characters received: "
1571 "message not accepted", header_maxsize), US"", error_rc, stdin,
1573 /* Does not return */
1577 continue; /* With next input character */
1579 /* End of header line reached */
1583 /* Keep track of lines for BSMTP errors and overall message_linecount. */
1585 receive_linecount++;
1586 message_linecount++;
1588 /* Now put in the terminating newline. There is always space for
1589 at least two more characters. */
1591 next->text[ptr++] = '\n';
1594 /* A blank line signals the end of the headers; release the unwanted
1595 space and set next to NULL to indicate this. */
1604 /* There is data in the line; see if the next input character is a
1605 whitespace character. If it is, we have a continuation of this header line.
1606 There is always space for at least one character at this point. */
1610 int nextch = (RECEIVE_GETC)();
1611 if (nextch == ' ' || nextch == '\t')
1613 next->text[ptr++] = nextch;
1615 continue; /* Iterate the loop */
1617 else if (nextch != EOF) (RECEIVE_UNGETC)(nextch); /* For next time */
1618 else ch = EOF; /* Cause main loop to exit at end */
1621 /* We have got to the real line end. Terminate the string and release store
1622 beyond it. If it turns out to be a real header, internal binary zeros will
1623 be squashed later. */
1625 next->text[ptr] = 0;
1627 store_reset(next->text + ptr + 1);
1629 /* Check the running total size against the overall message size limit. We
1630 don't expect to fail here, but if the overall limit is set less than MESSAGE_
1631 MAXSIZE and a big header is sent, we want to catch it. Just stop reading
1632 headers - the code to read the body will then also hit the buffer. */
1634 if (message_size > thismessage_size_limit) break;
1636 /* A line that is not syntactically correct for a header also marks
1637 the end of the headers. In this case, we leave next containing the
1638 first data line. This might actually be several lines because of the
1639 continuation logic applied above, but that doesn't matter.
1641 It turns out that smail, and presumably sendmail, accept leading lines
1644 From ph10 Fri Jan 5 12:35 GMT 1996
1646 in messages. The "mail" command on Solaris 2 sends such lines. I cannot
1647 find any documentation of this, but for compatibility it had better be
1648 accepted. Exim restricts it to the case of non-smtp messages, and
1649 treats it as an alternative to the -f command line option. Thus it is
1650 ignored except for trusted users or filter testing. Otherwise it is taken
1651 as the sender address, unless -f was used (sendmail compatibility).
1653 It further turns out that some UUCPs generate the From_line in a different
1656 From ph10 Fri, 7 Jan 97 14:00:00 GMT
1658 The regex for matching these things is now capable of recognizing both
1659 formats (including 2- and 4-digit years in the latter). In fact, the regex
1660 is now configurable, as is the expansion string to fish out the sender.
1662 Even further on it has been discovered that some broken clients send
1663 these lines in SMTP messages. There is now an option to ignore them from
1664 specified hosts or networks. Sigh. */
1666 if (header_last == header_list &&
1669 (sender_host_address != NULL &&
1670 verify_check_host(&ignore_fromline_hosts) == OK)
1672 (sender_host_address == NULL && ignore_fromline_local)
1674 regex_match_and_setup(regex_From, next->text, 0, -1))
1676 if (!sender_address_forced)
1678 uschar *uucp_sender = expand_string(uucp_from_sender);
1679 if (uucp_sender == NULL)
1681 log_write(0, LOG_MAIN|LOG_PANIC,
1682 "expansion of \"%s\" failed after matching "
1683 "\"From \" line: %s", uucp_from_sender, expand_string_message);
1687 int start, end, domain;
1689 uschar *newsender = parse_extract_address(uucp_sender, &errmess,
1690 &start, &end, &domain, TRUE);
1691 if (newsender != NULL)
1693 if (domain == 0 && newsender[0] != 0)
1694 newsender = rewrite_address_qualify(newsender, FALSE);
1696 if (filter_test != FTEST_NONE || receive_check_set_sender(newsender))
1698 sender_address = newsender;
1700 if (trusted_caller || filter_test != FTEST_NONE)
1702 authenticated_sender = NULL;
1703 originator_name = US"";
1704 sender_local = FALSE;
1707 if (filter_test != FTEST_NONE)
1708 printf("Sender taken from \"From \" line\n");
1715 /* Not a leading "From " line. Check to see if it is a valid header line.
1716 Header names may contain any non-control characters except space and colon,
1721 uschar *p = next->text;
1723 /* If not a valid header line, break from the header reading loop, leaving
1724 next != NULL, indicating that it holds the first line of the body. */
1726 if (isspace(*p)) break;
1727 while (mac_isgraph(*p) && *p != ':') p++;
1728 while (isspace(*p)) p++;
1731 body_zerocount = had_zero;
1735 /* We have a valid header line. If there were any binary zeroes in
1736 the line, stomp on them here. */
1739 for (p = next->text; p < next->text + ptr; p++) if (*p == 0) *p = '?';
1741 /* It is perfectly legal to have an empty continuation line
1742 at the end of a header, but it is confusing to humans
1743 looking at such messages, since it looks like a blank line.
1744 Reduce confusion by removing redundant white space at the
1745 end. We know that there is at least one printing character
1746 (the ':' tested for above) so there is no danger of running
1749 p = next->text + ptr - 2;
1752 while (*p == ' ' || *p == '\t') p--;
1753 if (*p != '\n') break;
1754 ptr = (p--) - next->text + 1;
1755 message_size -= next->slen - ptr;
1756 next->text[ptr] = 0;
1760 /* Add the header to the chain */
1762 next->type = htype_other;
1764 header_last->next = next;
1767 /* Check the limit for individual line lengths. This comes after adding to
1768 the chain so that the failing line is reflected if a bounce is generated
1769 (for a local message). */
1771 if (header_line_maxsize > 0 && next->slen > header_line_maxsize)
1773 log_write(0, LOG_MAIN, "overlong message header line received from "
1774 "%s (more than %d characters): message abandoned",
1775 sender_host_unknown? sender_ident : sender_fullhost,
1776 header_line_maxsize);
1780 smtp_reply = US"552 A message header line is too long";
1781 receive_swallow_smtp();
1782 goto TIDYUP; /* Skip to end of function */
1787 give_local_error(ERRMESS_VLONGHDRLINE,
1788 string_sprintf("message header line longer than %d characters "
1789 "received: message not accepted", header_line_maxsize), US"",
1790 error_rc, stdin, header_list->next);
1791 /* Does not return */
1795 /* Note if any resent- fields exist. */
1797 if (!resents_exist && strncmpic(next->text, US"resent-", 7) == 0)
1799 resents_exist = TRUE;
1800 resent_prefix = US"Resent-";
1804 /* The line has been handled. If we have hit EOF, break out of the loop,
1805 indicating no pending data line. */
1807 if (ch == EOF) { next = NULL; break; }
1809 /* Set up for the next header */
1812 next = store_get(sizeof(header_line));
1813 next->text = store_get(header_size);
1816 } /* Continue, starting to read the next header */
1818 /* At this point, we have read all the headers into a data structure in main
1819 store. The first header is still the dummy placeholder for the Received: header
1820 we are going to generate a bit later on. If next != NULL, it contains the first
1821 data line - which terminated the headers before reaching a blank line (not the
1826 debug_printf(">>Headers received:\n");
1827 for (h = header_list->next; h != NULL; h = h->next)
1828 debug_printf("%s", h->text);
1832 /* End of file on any SMTP connection is an error. If an incoming SMTP call
1833 is dropped immediately after valid headers, the next thing we will see is EOF.
1834 We must test for this specially, as further down the reading of the data is
1835 skipped if already at EOF. */
1837 if (smtp_input && (receive_feof)())
1839 smtp_reply = handle_lost_connection(US" (after header)");
1841 goto TIDYUP; /* Skip to end of function */
1844 /* If this is a filter test run and no headers were read, output a warning
1845 in case there is a mistake in the test message. */
1847 if (filter_test != FTEST_NONE && header_list->next == NULL)
1848 printf("Warning: no message headers read\n");
1851 /* Scan the headers to identify them. Some are merely marked for later
1852 processing; some are dealt with here. */
1854 for (h = header_list->next; h != NULL; h = h->next)
1856 BOOL is_resent = strncmpic(h->text, US"resent-", 7) == 0;
1857 if (is_resent) contains_resent_headers = TRUE;
1859 switch (header_checkname(h, is_resent))
1862 h->type = htype_bcc; /* Both Bcc: and Resent-Bcc: */
1866 h->type = htype_cc; /* Both Cc: and Resent-Cc: */
1869 /* Record whether a Date: or Resent-Date: header exists, as appropriate. */
1872 date_header_exists = !resents_exist || is_resent;
1875 /* Same comments as about Return-Path: below. */
1877 case htype_delivery_date:
1878 if (delivery_date_remove) h->type = htype_old;
1881 /* Same comments as about Return-Path: below. */
1883 case htype_envelope_to:
1884 if (envelope_to_remove) h->type = htype_old;
1887 /* Mark all "From:" headers so they get rewritten. Save the one that is to
1888 be used for Sender: checking. For Sendmail compatibility, if the "From:"
1889 header consists of just the login id of the user who called Exim, rewrite
1890 it with the gecos field first. Apply this rule to Resent-From: if there
1891 are resent- fields. */
1894 h->type = htype_from;
1895 if (!resents_exist || is_resent)
1900 uschar *s = Ustrchr(h->text, ':') + 1;
1901 while (isspace(*s)) s++;
1902 if (strncmpic(s, originator_login, h->slen - (s - h->text) - 1) == 0)
1904 uschar *name = is_resent? US"Resent-From" : US"From";
1905 header_add(htype_from, "%s: %s <%s@%s>\n", name, originator_name,
1906 originator_login, qualify_domain_sender);
1907 from_header = header_last;
1908 h->type = htype_old;
1909 DEBUG(D_receive|D_rewrite)
1910 debug_printf("rewrote \"%s:\" header using gecos\n", name);
1916 /* Identify the Message-id: header for generating "in-reply-to" in the
1917 autoreply transport. For incoming logging, save any resent- value. In both
1918 cases, take just the first of any multiples. */
1921 if (msgid_header == NULL && (!resents_exist || is_resent))
1928 /* Flag all Received: headers */
1930 case htype_received:
1931 h->type = htype_received;
1935 /* "Reply-to:" is just noted (there is no resent-reply-to field) */
1937 case htype_reply_to:
1938 h->type = htype_reply_to;
1941 /* The Return-path: header is supposed to be added to messages when
1942 they leave the SMTP system. We shouldn't receive messages that already
1943 contain Return-path. However, since Exim generates Return-path: on
1944 local delivery, resent messages may well contain it. We therefore
1945 provide an option (which defaults on) to remove any Return-path: headers
1946 on input. Removal actually means flagging as "old", which prevents the
1947 header being transmitted with the message. */
1949 case htype_return_path:
1950 if (return_path_remove) h->type = htype_old;
1952 /* If we are testing a mail filter file, use the value of the
1953 Return-Path: header to set up the return_path variable, which is not
1954 otherwise set. However, remove any <> that surround the address
1955 because the variable doesn't have these. */
1957 if (filter_test != FTEST_NONE)
1959 uschar *start = h->text + 12;
1960 uschar *end = start + Ustrlen(start);
1961 while (isspace(*start)) start++;
1962 while (end > start && isspace(end[-1])) end--;
1963 if (*start == '<' && end[-1] == '>')
1968 return_path = string_copyn(start, end - start);
1969 printf("Return-path taken from \"Return-path:\" header line\n");
1973 /* If there is a "Sender:" header and the message is locally originated,
1974 and from an untrusted caller and suppress_local_fixups is not set, or if we
1975 are in submission mode for a remote message, mark it "old" so that it will
1976 not be transmitted with the message, unless active_local_sender_retain is
1977 set. (This can only be true if active_local_from_check is false.) If there
1978 are any resent- headers in the message, apply this rule to Resent-Sender:
1979 instead of Sender:. Messages with multiple resent- header sets cannot be
1980 tidily handled. (For this reason, at least one MUA - Pine - turns old
1981 resent- headers into X-resent- headers when resending, leaving just one
1985 h->type = ((!active_local_sender_retain &&
1987 (sender_local && !trusted_caller && !suppress_local_fixups)
1991 (!resents_exist||is_resent))?
1992 htype_old : htype_sender;
1995 /* Remember the Subject: header for logging. There is no Resent-Subject */
2001 /* "To:" gets flagged, and the existence of a recipient header is noted,
2002 whether it's resent- or not. */
2007 to_or_cc_header_exists = TRUE;
2013 /* Extract recipients from the headers if that is required (the -t option).
2014 Note that this is documented as being done *before* any address rewriting takes
2015 place. There are two possibilities:
2017 (1) According to sendmail documentation for Solaris, IRIX, and HP-UX, any
2018 recipients already listed are to be REMOVED from the message. Smail 3 works
2019 like this. We need to build a non-recipients tree for that list, because in
2020 subsequent processing this data is held in a tree and that's what the
2021 spool_write_header() function expects. Make sure that non-recipient addresses
2022 are fully qualified and rewritten if necessary.
2024 (2) According to other sendmail documentation, -t ADDS extracted recipients to
2025 those in the command line arguments (and it is rumoured some other MTAs do
2026 this). Therefore, there is an option to make Exim behave this way.
2028 *** Notes on "Resent-" header lines ***
2030 The presence of resent-headers in the message makes -t horribly ambiguous.
2031 Experiments with sendmail showed that it uses recipients for all resent-
2032 headers, totally ignoring the concept of "sets of resent- headers" as described
2033 in RFC 2822 section 3.6.6. Sendmail also amalgamates them into a single set
2034 with all the addresses in one instance of each header.
2036 This seems to me not to be at all sensible. Before release 4.20, Exim 4 gave an
2037 error for -t if there were resent- headers in the message. However, after a
2038 discussion on the mailing list, I've learned that there are MUAs that use
2039 resent- headers with -t, and also that the stuff about sets of resent- headers
2040 and their ordering in RFC 2822 is generally ignored. An MUA that submits a
2041 message with -t and resent- header lines makes sure that only *its* resent-
2042 headers are present; previous ones are often renamed as X-resent- for example.
2044 Consequently, Exim has been changed so that, if any resent- header lines are
2045 present, the recipients are taken from all of the appropriate resent- lines,
2046 and not from the ordinary To:, Cc:, etc. */
2051 error_block **bnext = &bad_addresses;
2053 if (extract_addresses_remove_arguments)
2055 while (recipients_count-- > 0)
2057 uschar *s = rewrite_address(recipients_list[recipients_count].address,
2058 TRUE, TRUE, global_rewrite_rules, rewrite_existflags);
2059 tree_add_nonrecipient(s);
2061 recipients_list = NULL;
2062 recipients_count = recipients_list_max = 0;
2065 /* Now scan the headers */
2067 for (h = header_list->next; h != NULL; h = h->next)
2069 if ((h->type == htype_to || h->type == htype_cc || h->type == htype_bcc) &&
2070 (!contains_resent_headers || strncmpic(h->text, US"resent-", 7) == 0))
2072 uschar *s = Ustrchr(h->text, ':') + 1;
2073 while (isspace(*s)) s++;
2075 parse_allow_group = TRUE; /* Allow address group syntax */
2079 uschar *ss = parse_find_address_end(s, FALSE);
2080 uschar *recipient, *errmess, *p, *pp;
2081 int start, end, domain;
2083 /* Check on maximum */
2085 if (recipients_max > 0 && ++rcount > recipients_max)
2087 give_local_error(ERRMESS_TOOMANYRECIP, US"too many recipients",
2088 US"message rejected: ", error_rc, stdin, NULL);
2089 /* Does not return */
2092 /* Make a copy of the address, and remove any internal newlines. These
2093 may be present as a result of continuations of the header line. The
2094 white space that follows the newline must not be removed - it is part
2097 pp = recipient = store_get(ss - s + 1);
2098 for (p = s; p < ss; p++) if (*p != '\n') *pp++ = *p;
2100 recipient = parse_extract_address(recipient, &errmess, &start, &end,
2103 /* Keep a list of all the bad addresses so we can send a single
2104 error message at the end. However, an empty address is not an error;
2105 just ignore it. This can come from an empty group list like
2107 To: Recipients of list:;
2109 If there are no recipients at all, an error will occur later. */
2111 if (recipient == NULL && Ustrcmp(errmess, "empty address") != 0)
2113 int len = Ustrlen(s);
2114 error_block *b = store_get(sizeof(error_block));
2115 while (len > 0 && isspace(s[len-1])) len--;
2117 b->text1 = string_printing(string_copyn(s, len));
2123 /* If the recipient is already in the nonrecipients tree, it must
2124 have appeared on the command line with the option extract_addresses_
2125 remove_arguments set. Do not add it to the recipients, and keep a note
2126 that this has happened, in order to give a better error if there are
2127 no recipients left. */
2129 else if (recipient != NULL)
2131 if (tree_search(tree_nonrecipients, recipient) == NULL)
2132 receive_add_recipient(recipient, -1);
2134 extracted_ignored = TRUE;
2137 /* Move on past this address */
2139 s = ss + (*ss? 1:0);
2140 while (isspace(*s)) s++;
2141 } /* Next address */
2143 parse_allow_group = FALSE; /* Reset group syntax flags */
2144 parse_found_group = FALSE;
2146 /* If this was the bcc: header, mark it "old", which means it
2147 will be kept on the spool, but not transmitted as part of the
2150 if (h->type == htype_bcc) h->type = htype_old;
2151 } /* For appropriate header line */
2152 } /* For each header line */
2156 /* Now build the unique message id. This has changed several times over the
2157 lifetime of Exim. This description was rewritten for Exim 4.14 (February 2003).
2158 Retaining all the history in the comment has become too unwieldy - read
2159 previous release sources if you want it.
2161 The message ID has 3 parts: tttttt-pppppp-ss. Each part is a number in base 62.
2162 The first part is the current time, in seconds. The second part is the current
2163 pid. Both are large enough to hold 32-bit numbers in base 62. The third part
2164 can hold a number in the range 0-3843. It used to be a computed sequence
2165 number, but is now the fractional component of the current time in units of
2166 1/2000 of a second (i.e. a value in the range 0-1999). After a message has been
2167 received, Exim ensures that the timer has ticked at the appropriate level
2168 before proceeding, to avoid duplication if the pid happened to be re-used
2169 within the same time period. It seems likely that most messages will take at
2170 least half a millisecond to be received, so no delay will normally be
2171 necessary. At least for some time...
2173 There is a modification when localhost_number is set. Formerly this was allowed
2174 to be as large as 255. Now it is restricted to the range 0-16, and the final
2175 component of the message id becomes (localhost_number * 200) + fractional time
2176 in units of 1/200 of a second (i.e. a value in the range 0-3399).
2178 Some not-really-Unix operating systems use case-insensitive file names (Darwin,
2179 Cygwin). For these, we have to use base 36 instead of base 62. Luckily, this
2180 still allows the tttttt field to hold a large enough number to last for some
2181 more decades, and the final two-digit field can hold numbers up to 1295, which
2182 is enough for milliseconds (instead of 1/2000 of a second).
2184 However, the pppppp field cannot hold a 32-bit pid, but it can hold a 31-bit
2185 pid, so it is probably safe because pids have to be positive. The
2186 localhost_number is restricted to 0-10 for these hosts, and when it is set, the
2187 final field becomes (localhost_number * 100) + fractional time in centiseconds.
2189 Note that string_base62() returns its data in a static storage block, so it
2190 must be copied before calling string_base62() again. It always returns exactly
2193 There doesn't seem to be anything in the RFC which requires a message id to
2194 start with a letter, but Smail was changed to ensure this. The external form of
2195 the message id (as supplied by string expansion) therefore starts with an
2196 additional leading 'E'. The spool file names do not include this leading
2197 letter and it is not used internally.
2199 NOTE: If ever the format of message ids is changed, the regular expression for
2200 checking that a string is in this format must be updated in a corresponding
2201 way. It appears in the initializing code in exim.c. The macro MESSAGE_ID_LENGTH
2202 must also be changed to reflect the correct string length. Then, of course,
2203 other programs that rely on the message id format will need updating too. */
2205 Ustrncpy(message_id, string_base62((long int)(message_id_tv.tv_sec)), 6);
2206 message_id[6] = '-';
2207 Ustrncpy(message_id + 7, string_base62((long int)getpid()), 6);
2209 /* Deal with the case where the host number is set. The value of the number was
2210 checked when it was read, to ensure it isn't too big. The timing granularity is
2211 left in id_resolution so that an appropriate wait can be done after receiving
2212 the message, if necessary (we hope it won't be). */
2214 if (host_number_string != NULL)
2216 id_resolution = (BASE_62 == 62)? 5000 : 10000;
2217 sprintf(CS(message_id + MESSAGE_ID_LENGTH - 3), "-%2s",
2218 string_base62((long int)(
2219 host_number * (1000000/id_resolution) +
2220 message_id_tv.tv_usec/id_resolution)) + 4);
2223 /* Host number not set: final field is just the fractional time at an
2224 appropriate resolution. */
2228 id_resolution = (BASE_62 == 62)? 500 : 1000;
2229 sprintf(CS(message_id + MESSAGE_ID_LENGTH - 3), "-%2s",
2230 string_base62((long int)(message_id_tv.tv_usec/id_resolution)) + 4);
2233 /* Add the current message id onto the current process info string if
2236 (void)string_format(process_info + process_info_len,
2237 PROCESS_INFO_SIZE - process_info_len, " id=%s", message_id);
2239 /* If we are using multiple input directories, set up the one for this message
2240 to be the least significant base-62 digit of the time of arrival. Otherwise
2241 ensure that it is an empty string. */
2243 message_subdir[0] = split_spool_directory? message_id[5] : 0;
2245 /* Now that we have the message-id, if there is no message-id: header, generate
2246 one, but only for local (without suppress_local_fixups) or submission mode
2247 messages. This can be user-configured if required, but we had better flatten
2248 any illegal characters therein. */
2250 if (msgid_header == NULL &&
2251 ((sender_host_address == NULL && !suppress_local_fixups)
2252 || submission_mode))
2255 uschar *id_text = US"";
2256 uschar *id_domain = primary_hostname;
2258 /* Permit only letters, digits, dots, and hyphens in the domain */
2260 if (message_id_domain != NULL)
2262 uschar *new_id_domain = expand_string(message_id_domain);
2263 if (new_id_domain == NULL)
2265 if (!expand_string_forcedfail)
2266 log_write(0, LOG_MAIN|LOG_PANIC,
2267 "expansion of \"%s\" (message_id_header_domain) "
2268 "failed: %s", message_id_domain, expand_string_message);
2270 else if (*new_id_domain != 0)
2272 id_domain = new_id_domain;
2273 for (p = id_domain; *p != 0; p++)
2274 if (!isalnum(*p) && *p != '.') *p = '-'; /* No need to test '-' ! */
2278 /* Permit all characters except controls and RFC 2822 specials in the
2279 additional text part. */
2281 if (message_id_text != NULL)
2283 uschar *new_id_text = expand_string(message_id_text);
2284 if (new_id_text == NULL)
2286 if (!expand_string_forcedfail)
2287 log_write(0, LOG_MAIN|LOG_PANIC,
2288 "expansion of \"%s\" (message_id_header_text) "
2289 "failed: %s", message_id_text, expand_string_message);
2291 else if (*new_id_text != 0)
2293 id_text = new_id_text;
2294 for (p = id_text; *p != 0; p++)
2295 if (mac_iscntrl_or_special(*p)) *p = '-';
2299 /* Add the header line */
2301 header_add(htype_id, "%sMessage-Id: <%s%s%s@%s>\n", resent_prefix,
2302 message_id_external, (*id_text == 0)? "" : ".", id_text, id_domain);
2305 /* If we are to log recipients, keep a copy of the raw ones before any possible
2306 rewriting. Must copy the count, because later ACLs and the local_scan()
2307 function may mess with the real recipients. */
2309 if ((log_extra_selector & LX_received_recipients) != 0)
2311 raw_recipients = store_get(recipients_count * sizeof(uschar *));
2312 for (i = 0; i < recipients_count; i++)
2313 raw_recipients[i] = string_copy(recipients_list[i].address);
2314 raw_recipients_count = recipients_count;
2317 /* Ensure the recipients list is fully qualified and rewritten. Unqualified
2318 recipients will get here only if the conditions were right (allow_unqualified_
2319 recipient is TRUE). */
2321 for (i = 0; i < recipients_count; i++)
2322 recipients_list[i].address =
2323 rewrite_address(recipients_list[i].address, TRUE, TRUE,
2324 global_rewrite_rules, rewrite_existflags);
2326 /* If there is no From: header, generate one for local (without
2327 suppress_local_fixups) or submission_mode messages. If there is no sender
2328 address, but the sender is local or this is a local delivery error, use the
2329 originator login. This shouldn't happen for genuine bounces, but might happen
2330 for autoreplies. The addition of From: must be done *before* checking for the
2331 possible addition of a Sender: header, because untrusted_set_sender allows an
2332 untrusted user to set anything in the envelope (which might then get info
2333 From:) but we still want to ensure a valid Sender: if it is required. */
2335 if (from_header == NULL &&
2336 ((sender_host_address == NULL && !suppress_local_fixups)
2337 || submission_mode))
2339 uschar *oname = US"";
2341 /* Use the originator_name if this is a locally submitted message and the
2342 caller is not trusted. For trusted callers, use it only if -F was used to
2343 force its value or if we have a non-SMTP message for which -f was not used
2344 to set the sender. */
2346 if (sender_host_address == NULL)
2348 if (!trusted_caller || sender_name_forced ||
2349 (!smtp_input && !sender_address_forced))
2350 oname = originator_name;
2353 /* For non-locally submitted messages, the only time we use the originator
2354 name is when it was forced by the /name= option on control=submission. */
2358 if (submission_name != NULL) oname = submission_name;
2361 /* Envelope sender is empty */
2363 if (sender_address[0] == 0)
2365 uschar *fromstart, *fromend;
2367 fromstart = string_sprintf("%sFrom: %s%s", resent_prefix,
2368 oname, (oname[0] == 0)? "" : " <");
2369 fromend = (oname[0] == 0)? US"" : US">";
2371 if (sender_local || local_error_message)
2373 header_add(htype_from, "%s%s@%s%s\n", fromstart,
2374 local_part_quote(originator_login), qualify_domain_sender,
2377 else if (submission_mode && authenticated_id != NULL)
2379 if (submission_domain == NULL)
2381 header_add(htype_from, "%s%s@%s%s\n", fromstart,
2382 local_part_quote(authenticated_id), qualify_domain_sender,
2385 else if (submission_domain[0] == 0) /* empty => whole address set */
2387 header_add(htype_from, "%s%s%s\n", fromstart, authenticated_id,
2392 header_add(htype_from, "%s%s@%s%s\n", fromstart,
2393 local_part_quote(authenticated_id), submission_domain,
2396 from_header = header_last; /* To get it checked for Sender: */
2400 /* There is a non-null envelope sender. Build the header using the original
2401 sender address, before any rewriting that might have been done while
2406 header_add(htype_from, "%sFrom: %s%s%s%s\n", resent_prefix,
2408 (oname[0] == 0)? "" : " <",
2409 (sender_address_unrewritten == NULL)?
2410 sender_address : sender_address_unrewritten,
2411 (oname[0] == 0)? "" : ">");
2413 from_header = header_last; /* To get it checked for Sender: */
2418 /* If the sender is local (without suppress_local_fixups), or if we are in
2419 submission mode and there is an authenticated_id, check that an existing From:
2420 is correct, and if not, generate a Sender: header, unless disabled. Any
2421 previously-existing Sender: header was removed above. Note that sender_local,
2422 as well as being TRUE if the caller of exim is not trusted, is also true if a
2423 trusted caller did not supply a -f argument for non-smtp input. To allow
2424 trusted callers to forge From: without supplying -f, we have to test explicitly
2425 here. If the From: header contains more than one address, then the call to
2426 parse_extract_address fails, and a Sender: header is inserted, as required. */
2428 if (from_header != NULL &&
2429 (active_local_from_check &&
2430 ((sender_local && !trusted_caller && !suppress_local_fixups) ||
2431 (submission_mode && authenticated_id != NULL))
2434 BOOL make_sender = TRUE;
2435 int start, end, domain;
2437 uschar *from_address =
2438 parse_extract_address(Ustrchr(from_header->text, ':') + 1, &errmess,
2439 &start, &end, &domain, FALSE);
2440 uschar *generated_sender_address;
2442 if (submission_mode)
2444 if (submission_domain == NULL)
2446 generated_sender_address = string_sprintf("%s@%s",
2447 local_part_quote(authenticated_id), qualify_domain_sender);
2449 else if (submission_domain[0] == 0) /* empty => full address */
2451 generated_sender_address = string_sprintf("%s",
2456 generated_sender_address = string_sprintf("%s@%s",
2457 local_part_quote(authenticated_id), submission_domain);
2461 generated_sender_address = string_sprintf("%s@%s",
2462 local_part_quote(originator_login), qualify_domain_sender);
2464 /* Remove permitted prefixes and suffixes from the local part of the From:
2465 address before doing the comparison with the generated sender. */
2467 if (from_address != NULL)
2470 uschar *at = (domain == 0)? NULL : from_address + domain - 1;
2472 if (at != NULL) *at = 0;
2473 from_address += route_check_prefix(from_address, local_from_prefix);
2474 slen = route_check_suffix(from_address, local_from_suffix);
2477 memmove(from_address+slen, from_address, Ustrlen(from_address)-slen);
2478 from_address += slen;
2480 if (at != NULL) *at = '@';
2482 if (strcmpic(generated_sender_address, from_address) == 0 ||
2483 (domain == 0 && strcmpic(from_address, originator_login) == 0))
2484 make_sender = FALSE;
2487 /* We have to cause the Sender header to be rewritten if there are
2488 appropriate rewriting rules. */
2492 if (submission_mode && submission_name == NULL)
2493 header_add(htype_sender, "%sSender: %s\n", resent_prefix,
2494 generated_sender_address);
2496 header_add(htype_sender, "%sSender: %s <%s>\n",
2498 submission_mode? submission_name : originator_name,
2499 generated_sender_address);
2502 /* Ensure that a non-null envelope sender address corresponds to the
2503 submission mode sender address. */
2505 if (submission_mode && sender_address[0] != 0)
2507 if (sender_address_unrewritten == NULL)
2508 sender_address_unrewritten = sender_address;
2509 sender_address = generated_sender_address;
2510 log_write(L_address_rewrite, LOG_MAIN,
2511 "\"%s\" from env-from rewritten as \"%s\" by submission mode",
2512 sender_address_unrewritten, generated_sender_address);
2517 /* If there are any rewriting rules, apply them to the sender address, unless
2518 it has already been rewritten as part of verification for SMTP input. */
2520 if (global_rewrite_rules != NULL && sender_address_unrewritten == NULL &&
2521 sender_address[0] != 0)
2523 sender_address = rewrite_address(sender_address, FALSE, TRUE,
2524 global_rewrite_rules, rewrite_existflags);
2525 DEBUG(D_receive|D_rewrite)
2526 debug_printf("rewritten sender = %s\n", sender_address);
2530 /* The headers must be run through rewrite_header(), because it ensures that
2531 addresses are fully qualified, as well as applying any rewriting rules that may
2534 Qualification of header addresses in a message from a remote host happens only
2535 if the host is in sender_unqualified_hosts or recipient_unqualified hosts, as
2536 appropriate. For local messages, qualification always happens, unless -bnq is
2537 used to explicitly suppress it. No rewriting is done for an unqualified address
2538 that is left untouched.
2540 We start at the second header, skipping our own Received:. This rewriting is
2541 documented as happening *after* recipient addresses are taken from the headers
2542 by the -t command line option. An added Sender: gets rewritten here. */
2544 for (h = header_list->next; h != NULL; h = h->next)
2546 header_line *newh = rewrite_header(h, NULL, NULL, global_rewrite_rules,
2547 rewrite_existflags, TRUE);
2548 if (newh != NULL) h = newh;
2552 /* An RFC 822 (sic) message is not legal unless it has at least one of "to",
2553 "cc", or "bcc". Note that although the minimal examples in RFC 822 show just
2554 "to" or "bcc", the full syntax spec allows "cc" as well. If any resent- header
2555 exists, this applies to the set of resent- headers rather than the normal set.
2557 The requirement for a recipient header has been removed in RFC 2822. At this
2558 point in the code, earlier versions of Exim added a To: header for locally
2559 submitted messages, and an empty Bcc: header for others. In the light of the
2560 changes in RFC 2822, this was dropped in November 2003. */
2563 /* If there is no date header, generate one if the message originates locally
2564 (i.e. not over TCP/IP) and suppress_local_fixups is not set, or if the
2565 submission mode flag is set. Messages without Date: are not valid, but it seems
2566 to be more confusing if Exim adds one to all remotely-originated messages. */
2568 if (!date_header_exists &&
2569 ((sender_host_address == NULL && !suppress_local_fixups)
2570 || submission_mode))
2571 header_add(htype_other, "%sDate: %s\n", resent_prefix, tod_stamp(tod_full));
2573 search_tidyup(); /* Free any cached resources */
2575 /* Show the complete set of headers if debugging. Note that the first one (the
2576 new Received:) has not yet been set. */
2580 debug_printf(">>Headers after rewriting and local additions:\n");
2581 for (h = header_list->next; h != NULL; h = h->next)
2582 debug_printf("%c %s", h->type, h->text);
2586 /* The headers are now complete in store. If we are running in filter
2587 testing mode, that is all this function does. Return TRUE if the message
2588 ended with a dot. */
2590 if (filter_test != FTEST_NONE)
2592 process_info[process_info_len] = 0;
2593 return message_ended == END_DOT;
2596 /* Open a new spool file for the data portion of the message. We need
2597 to access it both via a file descriptor and a stream. Try to make the
2598 directory if it isn't there. Note re use of sprintf: spool_directory
2599 is checked on input to be < 200 characters long. */
2601 sprintf(CS spool_name, "%s/input/%s/%s-D", spool_directory, message_subdir,
2603 data_fd = Uopen(spool_name, O_RDWR|O_CREAT|O_EXCL, SPOOL_MODE);
2606 if (errno == ENOENT)
2609 sprintf(CS temp, "input/%s", message_subdir);
2610 if (message_subdir[0] == 0) temp[5] = 0;
2611 (void)directory_make(spool_directory, temp, INPUT_DIRECTORY_MODE, TRUE);
2612 data_fd = Uopen(spool_name, O_RDWR|O_CREAT|O_EXCL, SPOOL_MODE);
2615 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Failed to create spool file %s: %s",
2616 spool_name, strerror(errno));
2619 /* Make sure the file's group is the Exim gid, and double-check the mode
2620 because the group setting doesn't always get set automatically. */
2622 (void)fchown(data_fd, exim_uid, exim_gid);
2623 (void)fchmod(data_fd, SPOOL_MODE);
2625 /* We now have data file open. Build a stream for it and lock it. We lock only
2626 the first line of the file (containing the message ID) because otherwise there
2627 are problems when Exim is run under Cygwin (I'm told). See comments in
2628 spool_in.c, where the same locking is done. */
2630 data_file = fdopen(data_fd, "w+");
2631 lock_data.l_type = F_WRLCK;
2632 lock_data.l_whence = SEEK_SET;
2633 lock_data.l_start = 0;
2634 lock_data.l_len = SPOOL_DATA_START_OFFSET;
2636 if (fcntl(data_fd, F_SETLK, &lock_data) < 0)
2637 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Cannot lock %s (%d): %s", spool_name,
2638 errno, strerror(errno));
2640 /* We have an open, locked data file. Write the message id to it to make it
2641 self-identifying. Then read the remainder of the input of this message and
2642 write it to the data file. If the variable next != NULL, it contains the first
2643 data line (which was read as a header but then turned out not to have the right
2644 format); write it (remembering that it might contain binary zeros). The result
2645 of fwrite() isn't inspected; instead we call ferror() below. */
2647 fprintf(data_file, "%s-D\n", message_id);
2650 uschar *s = next->text;
2651 int len = next->slen;
2652 (void)fwrite(s, 1, len, data_file);
2653 body_linecount++; /* Assumes only 1 line */
2656 /* Note that we might already be at end of file, or the logical end of file
2657 (indicated by '.'), or might have encountered an error while writing the
2658 message id or "next" line. */
2660 if (!ferror(data_file) && !(receive_feof)() && message_ended != END_DOT)
2664 message_ended = read_message_data_smtp(data_file);
2665 receive_linecount++; /* The terminating "." line */
2667 else message_ended = read_message_data(data_file);
2669 receive_linecount += body_linecount; /* For BSMTP errors mainly */
2670 message_linecount += body_linecount;
2672 /* Handle premature termination of SMTP */
2674 if (smtp_input && message_ended == END_EOF)
2676 Uunlink(spool_name); /* Lose data file when closed */
2677 message_id[0] = 0; /* Indicate no message accepted */
2678 smtp_reply = handle_lost_connection(US"");
2680 goto TIDYUP; /* Skip to end of function */
2683 /* Handle message that is too big. Don't use host_or_ident() in the log
2684 message; we want to see the ident value even for non-remote messages. */
2686 if (message_ended == END_SIZE)
2688 Uunlink(spool_name); /* Lose the data file when closed */
2689 if (smtp_input) receive_swallow_smtp(); /* Swallow incoming SMTP */
2691 log_write(L_size_reject, LOG_MAIN|LOG_REJECT, "rejected from <%s>%s%s%s%s: "
2692 "message too big: read=%d max=%d",
2694 (sender_fullhost == NULL)? "" : " H=",
2695 (sender_fullhost == NULL)? US"" : sender_fullhost,
2696 (sender_ident == NULL)? "" : " U=",
2697 (sender_ident == NULL)? US"" : sender_ident,
2699 thismessage_size_limit);
2703 smtp_reply = US"552 Message size exceeds maximum permitted";
2704 message_id[0] = 0; /* Indicate no message accepted */
2705 goto TIDYUP; /* Skip to end of function */
2709 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
2710 give_local_error(ERRMESS_TOOBIG,
2711 string_sprintf("message too big (max=%d)", thismessage_size_limit),
2712 US"message rejected: ", error_rc, data_file, header_list);
2713 /* Does not return */
2718 /* Restore the standard SIGALRM handler for any subsequent processing. (For
2719 example, there may be some expansion in an ACL that uses a timer.) */
2721 os_non_restarting_signal(SIGALRM, sigalrm_handler);
2723 /* The message body has now been read into the data file. Call fflush() to
2724 empty the buffers in C, and then call fsync() to get the data written out onto
2725 the disk, as fflush() doesn't do this (or at least, it isn't documented as
2726 having to do this). If there was an I/O error on either input or output,
2727 attempt to send an error message, and unlink the spool file. For non-SMTP input
2728 we can then give up. Note that for SMTP input we must swallow the remainder of
2729 the input in cases of output errors, since the far end doesn't expect to see
2730 anything until the terminating dot line is sent. */
2732 if (fflush(data_file) == EOF || ferror(data_file) ||
2733 fsync(fileno(data_file)) < 0 || (receive_ferror)())
2735 uschar *msg_errno = US strerror(errno);
2736 BOOL input_error = (receive_ferror)() != 0;
2737 uschar *msg = string_sprintf("%s error (%s) while receiving message from %s",
2738 input_error? "Input read" : "Spool write",
2740 (sender_fullhost != NULL)? sender_fullhost : sender_ident);
2742 log_write(0, LOG_MAIN, "Message abandoned: %s", msg);
2743 Uunlink(spool_name); /* Lose the data file */
2748 smtp_reply = US"451 Error while reading input data";
2751 smtp_reply = US"451 Error while writing spool file";
2752 receive_swallow_smtp();
2754 message_id[0] = 0; /* Indicate no message accepted */
2755 goto TIDYUP; /* Skip to end of function */
2760 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
2761 give_local_error(ERRMESS_IOERR, msg, US"", error_rc, data_file,
2763 /* Does not return */
2768 /* No I/O errors were encountered while writing the data file. */
2770 DEBUG(D_receive) debug_printf("Data file written for message %s\n", message_id);
2773 /* If there were any bad addresses extracted by -t, or there were no recipients
2774 left after -t, send a message to the sender of this message, or write it to
2775 stderr if the error handling option is set that way. Note that there may
2776 legitimately be no recipients for an SMTP message if they have all been removed
2779 We need to rewind the data file in order to read it. In the case of no
2780 recipients or stderr error writing, throw the data file away afterwards, and
2781 exit. (This can't be SMTP, which always ensures there's at least one
2782 syntactically good recipient address.) */
2784 if (extract_recip && (bad_addresses != NULL || recipients_count == 0))
2788 if (recipients_count == 0) debug_printf("*** No recipients\n");
2789 if (bad_addresses != NULL)
2791 error_block *eblock = bad_addresses;
2792 debug_printf("*** Bad address(es)\n");
2793 while (eblock != NULL)
2795 debug_printf(" %s: %s\n", eblock->text1, eblock->text2);
2796 eblock = eblock->next;
2801 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
2803 /* If configured to send errors to the sender, but this fails, force
2804 a failure error code. We use a special one for no recipients so that it
2805 can be detected by the autoreply transport. Otherwise error_rc is set to
2806 errors_sender_rc, which is EXIT_FAILURE unless -oee was given, in which case
2807 it is EXIT_SUCCESS. */
2809 if (error_handling == ERRORS_SENDER)
2811 if (!moan_to_sender(
2812 (bad_addresses == NULL)?
2813 (extracted_ignored? ERRMESS_IGADDRESS : ERRMESS_NOADDRESS) :
2814 (recipients_list == NULL)? ERRMESS_BADNOADDRESS : ERRMESS_BADADDRESS,
2815 bad_addresses, header_list, data_file, FALSE))
2816 error_rc = (bad_addresses == NULL)? EXIT_NORECIPIENTS : EXIT_FAILURE;
2820 if (bad_addresses == NULL)
2822 if (extracted_ignored)
2823 fprintf(stderr, "exim: all -t recipients overridden by command line\n");
2825 fprintf(stderr, "exim: no recipients in message\n");
2829 fprintf(stderr, "exim: invalid address%s",
2830 (bad_addresses->next == NULL)? ":" : "es:\n");
2831 while (bad_addresses != NULL)
2833 fprintf(stderr, " %s: %s\n", bad_addresses->text1,
2834 bad_addresses->text2);
2835 bad_addresses = bad_addresses->next;
2840 if (recipients_count == 0 || error_handling == ERRORS_STDERR)
2842 Uunlink(spool_name);
2843 (void)fclose(data_file);
2844 exim_exit(error_rc);
2848 /* Data file successfully written. Generate text for the Received: header by
2849 expanding the configured string, and adding a timestamp. By leaving this
2850 operation till now, we ensure that the timestamp is the time that message
2851 reception was completed. However, this is deliberately done before calling the
2852 data ACL and local_scan().
2854 This Received: header may therefore be inspected by the data ACL and by code in
2855 the local_scan() function. When they have run, we update the timestamp to be
2856 the final time of reception.
2858 If there is just one recipient, set up its value in the $received_for variable
2859 for use when we generate the Received: header.
2861 Note: the checking for too many Received: headers is handled by the delivery
2864 timestamp = expand_string(US"${tod_full}");
2865 if (recipients_count == 1) received_for = recipients_list[0].address;
2866 received = expand_string(received_header_text);
2867 received_for = NULL;
2869 if (received == NULL)
2871 Uunlink(spool_name); /* Lose the data file */
2872 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Expansion of \"%s\" "
2873 "(received_header_text) failed: %s", string_printing(received_header_text),
2874 expand_string_message);
2877 /* The first element on the header chain is reserved for the Received header,
2878 so all we have to do is fill in the text pointer, and set the type. However, if
2879 the result of the expansion is an empty string, we leave the header marked as
2880 "old" so as to refrain from adding a Received header. */
2882 if (received[0] == 0)
2884 received_header->text = string_sprintf("Received: ; %s\n", timestamp);
2885 received_header->type = htype_old;
2889 received_header->text = string_sprintf("%s; %s\n", received, timestamp);
2890 received_header->type = htype_received;
2893 received_header->slen = Ustrlen(received_header->text);
2895 DEBUG(D_receive) debug_printf(">>Generated Received: header line\n%c %s",
2896 received_header->type, received_header->text);
2898 /* Set the value of message_body_size for the DATA ACL and for local_scan() */
2900 message_body_size = (fstat(data_fd, &statbuf) == 0)?
2901 statbuf.st_size - SPOOL_DATA_START_OFFSET : -1;
2903 /* If an ACL from any RCPT commands set up any warning headers to add, do so
2904 now, before running the DATA ACL. */
2906 add_acl_headers(US"MAIL or RCPT");
2908 /* If an ACL is specified for checking things at this stage of reception of a
2909 message, run it, unless all the recipients were removed by "discard" in earlier
2910 ACLs. That is the only case in which recipients_count can be zero at this
2911 stage. Set deliver_datafile to point to the data file so that $message_body and
2912 $message_body_end can be extracted if needed. Allow $recipients in expansions.
2915 deliver_datafile = data_fd;
2918 if (recipients_count == 0)
2920 blackholed_by = recipients_discarded? US"MAIL ACL" : US"RCPT ACL";
2924 enable_dollar_recipients = TRUE;
2926 /* Handle interactive SMTP messages */
2928 if (smtp_input && !smtp_batched_input)
2931 #ifdef EXPERIMENTAL_DOMAINKEYS
2932 dk_exim_verify_finish();
2935 #ifdef WITH_CONTENT_SCAN
2936 if (acl_smtp_mime != NULL &&
2937 !run_mime_acl(acl_smtp_mime, &smtp_yield, &smtp_reply, &blackholed_by))
2939 #endif /* WITH_CONTENT_SCAN */
2941 /* Check the recipients count again, as the MIME ACL might have changed
2944 if (acl_smtp_data != NULL && recipients_count > 0)
2946 rc = acl_check(ACL_WHERE_DATA, NULL, acl_smtp_data, &user_msg, &log_msg);
2947 add_acl_headers(US"DATA");
2950 recipients_count = 0;
2951 blackholed_by = US"DATA ACL";
2952 if (log_msg != NULL)
2953 blackhole_log_msg = string_sprintf(": %s", log_msg);
2957 Uunlink(spool_name);
2958 #ifdef WITH_CONTENT_SCAN
2961 if (smtp_handle_acl_fail(ACL_WHERE_DATA, rc, user_msg, log_msg) != 0)
2962 smtp_yield = FALSE; /* No more messsages after dropped connection */
2963 smtp_reply = US""; /* Indicate reply already sent */
2964 message_id[0] = 0; /* Indicate no message accepted */
2965 goto TIDYUP; /* Skip to end of function */
2970 /* Handle non-SMTP and batch SMTP (i.e. non-interactive) messages. Note that
2971 we cannot take different actions for permanent and temporary rejections. */
2976 #ifdef WITH_CONTENT_SCAN
2977 if (acl_not_smtp_mime != NULL &&
2978 !run_mime_acl(acl_not_smtp_mime, &smtp_yield, &smtp_reply,
2981 #endif /* WITH_CONTENT_SCAN */
2983 if (acl_not_smtp != NULL)
2985 uschar *user_msg, *log_msg;
2986 rc = acl_check(ACL_WHERE_NOTSMTP, NULL, acl_not_smtp, &user_msg, &log_msg);
2989 recipients_count = 0;
2990 blackholed_by = US"non-SMTP ACL";
2991 if (log_msg != NULL)
2992 blackhole_log_msg = string_sprintf(": %s", log_msg);
2996 Uunlink(spool_name);
2997 #ifdef WITH_CONTENT_SCAN
3000 /* The ACL can specify where rejections are to be logged, possibly
3001 nowhere. The default is main and reject logs. */
3003 if (log_reject_target != 0)
3004 log_write(0, log_reject_target, "F=<%s> rejected by non-SMTP ACL: %s",
3005 sender_address, log_msg);
3007 if (user_msg == NULL) user_msg = US"local configuration problem";
3008 if (smtp_batched_input)
3010 moan_smtp_batch(NULL, "%d %s", 550, user_msg);
3011 /* Does not return */
3015 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3016 give_local_error(ERRMESS_LOCAL_ACL, user_msg,
3017 US"message rejected by non-SMTP ACL: ", error_rc, data_file,
3019 /* Does not return */
3022 add_acl_headers(US"non-SMTP");
3026 /* The applicable ACLs have been run */
3028 if (deliver_freeze) frozen_by = US"ACL"; /* for later logging */
3029 if (queue_only_policy) queued_by = US"ACL";
3031 enable_dollar_recipients = FALSE;
3034 #ifdef WITH_CONTENT_SCAN
3038 /* The final check on the message is to run the scan_local() function. The
3039 version supplied with Exim always accepts, but this is a hook for sysadmins to
3040 supply their own checking code. The local_scan() function is run even when all
3041 the recipients have been discarded. */
3043 lseek(data_fd, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3045 /* Arrange to catch crashes in local_scan(), so that the -D file gets
3046 deleted, and the incident gets logged. */
3048 os_non_restarting_signal(SIGSEGV, local_scan_crash_handler);
3049 os_non_restarting_signal(SIGFPE, local_scan_crash_handler);
3050 os_non_restarting_signal(SIGILL, local_scan_crash_handler);
3051 os_non_restarting_signal(SIGBUS, local_scan_crash_handler);
3053 DEBUG(D_receive) debug_printf("calling local_scan(); timeout=%d\n",
3054 local_scan_timeout);
3055 local_scan_data = NULL;
3057 os_non_restarting_signal(SIGALRM, local_scan_timeout_handler);
3058 if (local_scan_timeout > 0) alarm(local_scan_timeout);
3059 rc = local_scan(data_fd, &local_scan_data);
3061 os_non_restarting_signal(SIGALRM, sigalrm_handler);
3063 store_pool = POOL_MAIN; /* In case changed */
3064 DEBUG(D_receive) debug_printf("local_scan() returned %d %s\n", rc,
3067 os_non_restarting_signal(SIGSEGV, SIG_DFL);
3068 os_non_restarting_signal(SIGFPE, SIG_DFL);
3069 os_non_restarting_signal(SIGILL, SIG_DFL);
3070 os_non_restarting_signal(SIGBUS, SIG_DFL);
3072 /* The length check is paranoia against some runaway code, and also because
3073 (for a success return) lines in the spool file are read into big_buffer. */
3075 if (local_scan_data != NULL)
3077 int len = Ustrlen(local_scan_data);
3078 if (len > LOCAL_SCAN_MAX_RETURN) len = LOCAL_SCAN_MAX_RETURN;
3079 local_scan_data = string_copyn(local_scan_data, len);
3082 if (rc == LOCAL_SCAN_ACCEPT_FREEZE)
3084 if (!deliver_freeze) /* ACL might have already frozen */
3086 deliver_freeze = TRUE;
3087 deliver_frozen_at = time(NULL);
3088 frozen_by = US"local_scan()";
3090 rc = LOCAL_SCAN_ACCEPT;
3092 else if (rc == LOCAL_SCAN_ACCEPT_QUEUE)
3094 if (!queue_only_policy) /* ACL might have already queued */
3096 queue_only_policy = TRUE;
3097 queued_by = US"local_scan()";
3099 rc = LOCAL_SCAN_ACCEPT;
3102 /* Message accepted: remove newlines in local_scan_data because otherwise
3103 the spool file gets corrupted. Ensure that all recipients are qualified. */
3105 if (rc == LOCAL_SCAN_ACCEPT)
3107 if (local_scan_data != NULL)
3110 for (s = local_scan_data; *s != 0; s++) if (*s == '\n') *s = ' ';
3112 for (i = 0; i < recipients_count; i++)
3114 recipient_item *r = recipients_list + i;
3115 r->address = rewrite_address_qualify(r->address, TRUE);
3116 if (r->errors_to != NULL)
3117 r->errors_to = rewrite_address_qualify(r->errors_to, TRUE);
3119 if (recipients_count == 0 && blackholed_by == NULL)
3120 blackholed_by = US"local_scan";
3123 /* Message rejected: newlines permitted in local_scan_data to generate
3124 multiline SMTP responses. */
3128 uschar *istemp = US"";
3134 errmsg = local_scan_data;
3136 Uunlink(spool_name); /* Cancel this message */
3140 log_write(0, LOG_MAIN, "invalid return %d from local_scan(). Temporary "
3141 "rejection given", rc);
3144 case LOCAL_SCAN_REJECT_NOLOGHDR:
3145 log_extra_selector &= ~LX_rejected_header;
3148 case LOCAL_SCAN_REJECT:
3149 smtp_code = US"550";
3150 if (errmsg == NULL) errmsg = US"Administrative prohibition";
3153 case LOCAL_SCAN_TEMPREJECT_NOLOGHDR:
3154 log_extra_selector &= ~LX_rejected_header;
3157 case LOCAL_SCAN_TEMPREJECT:
3159 smtp_code = US"451";
3160 if (errmsg == NULL) errmsg = US"Temporary local problem";
3161 istemp = US"temporarily ";
3165 s = string_append(s, &size, &sptr, 2, US"F=",
3166 (sender_address[0] == 0)? US"<>" : sender_address);
3167 s = add_host_info_for_log(s, &size, &sptr);
3170 log_write(0, LOG_MAIN|LOG_REJECT, "%s %srejected by local_scan(): %.256s",
3171 s, istemp, string_printing(errmsg));
3175 if (!smtp_batched_input)
3177 smtp_respond(smtp_code, 3, TRUE, errmsg);
3178 message_id[0] = 0; /* Indicate no message accepted */
3179 smtp_reply = US""; /* Indicate reply already sent */
3180 goto TIDYUP; /* Skip to end of function */
3184 moan_smtp_batch(NULL, "%s %s", smtp_code, errmsg);
3185 /* Does not return */
3190 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3191 give_local_error(ERRMESS_LOCAL_SCAN, errmsg,
3192 US"message rejected by local scan code: ", error_rc, data_file,
3194 /* Does not return */
3198 /* Reset signal handlers to ignore signals that previously would have caused
3199 the message to be abandoned. */
3201 signal(SIGTERM, SIG_IGN);
3202 signal(SIGINT, SIG_IGN);
3204 /* Ensure the first time flag is set in the newly-received message. */
3206 deliver_firsttime = TRUE;
3208 #ifdef EXPERIMENTAL_BRIGHTMAIL
3210 /* rewind data file */
3211 lseek(data_fd, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3212 bmi_verdicts = bmi_process_message(header_list, data_fd);
3216 /* Update the timstamp in our Received: header to account for any time taken by
3217 an ACL or by local_scan(). The new time is the time that all reception
3218 processing is complete. */
3220 timestamp = expand_string(US"${tod_full}");
3221 tslen = Ustrlen(timestamp);
3223 memcpy(received_header->text + received_header->slen - tslen - 1,
3226 /* In MUA wrapper mode, ignore queueing actions set by ACL or local_scan() */
3230 deliver_freeze = FALSE;
3231 queue_only_policy = FALSE;
3234 /* Keep the data file open until we have written the header file, in order to
3235 hold onto the lock. In a -bh run, or if the message is to be blackholed, we
3236 don't write the header file, and we unlink the data file. If writing the header
3237 file fails, we have failed to accept this message. */
3239 if (host_checking || blackholed_by != NULL)
3242 Uunlink(spool_name);
3243 msg_size = 0; /* Compute size for log line */
3244 for (h = header_list; h != NULL; h = h->next)
3245 if (h->type != '*') msg_size += h->slen;
3248 /* Write the -H file */
3252 if ((msg_size = spool_write_header(message_id, SW_RECEIVING, &errmsg)) < 0)
3254 log_write(0, LOG_MAIN, "Message abandoned: %s", errmsg);
3255 Uunlink(spool_name); /* Lose the data file */
3259 smtp_reply = US"451 Error in writing spool file";
3260 message_id[0] = 0; /* Indicate no message accepted */
3265 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3266 give_local_error(ERRMESS_IOERR, errmsg, US"", error_rc, data_file,
3268 /* Does not return */
3274 /* The message has now been successfully received. */
3276 receive_messagecount++;
3278 /* In SMTP sessions we may receive several in one connection. After each one,
3279 we wait for the clock to tick at the level of message-id granularity. This is
3280 so that the combination of time+pid is unique, even on systems where the pid
3281 can be re-used within our time interval. We can't shorten the interval without
3282 re-designing the message-id. See comments above where the message id is
3283 created. This is Something For The Future. */
3285 message_id_tv.tv_usec = (message_id_tv.tv_usec/id_resolution) * id_resolution;
3286 exim_wait_tick(&message_id_tv, id_resolution);
3288 /* Add data size to written header size. We do not count the initial file name
3289 that is in the file, but we do add one extra for the notional blank line that
3290 precedes the data. This total differs from message_size in that it include the
3291 added Received: header and any other headers that got created locally. */
3294 fstat(data_fd, &statbuf);
3296 msg_size += statbuf.st_size - SPOOL_DATA_START_OFFSET + 1;
3298 /* Generate a "message received" log entry. We do this by building up a dynamic
3299 string as required. Since we commonly want to add two items at a time, use a
3300 macro to simplify the coding. We log the arrival of a new message while the
3301 file is still locked, just in case the machine is *really* fast, and delivers
3302 it first! Include any message id that is in the message - since the syntax of a
3303 message id is actually an addr-spec, we can use the parse routine to canonicize
3308 s = store_get(size);
3310 s = string_append(s, &size, &sptr, 2, US"<= ",
3311 (sender_address[0] == 0)? US"<>" : sender_address);
3312 if (message_reference != NULL)
3313 s = string_append(s, &size, &sptr, 2, US" R=", message_reference);
3315 s = add_host_info_for_log(s, &size, &sptr);
3318 if ((log_extra_selector & LX_tls_cipher) != 0 && tls_cipher != NULL)
3319 s = string_append(s, &size, &sptr, 2, US" X=", tls_cipher);
3320 if ((log_extra_selector & LX_tls_certificate_verified) != 0 &&
3322 s = string_append(s, &size, &sptr, 2, US" CV=",
3323 tls_certificate_verified? "yes":"no");
3324 if ((log_extra_selector & LX_tls_peerdn) != 0 && tls_peerdn != NULL)
3325 s = string_append(s, &size, &sptr, 3, US" DN=\"", tls_peerdn, US"\"");
3328 if (sender_host_authenticated != NULL)
3330 s = string_append(s, &size, &sptr, 2, US" A=", sender_host_authenticated);
3331 if (authenticated_id != NULL)
3332 s = string_append(s, &size, &sptr, 2, US":", authenticated_id);
3335 sprintf(CS big_buffer, "%d", msg_size);
3336 s = string_append(s, &size, &sptr, 2, US" S=", big_buffer);
3338 /* If an addr-spec in a message-id contains a quoted string, it can contain
3339 any characters except " \ and CR and so in particular it can contain NL!
3340 Therefore, make sure we use a printing-characters only version for the log.
3341 Also, allow for domain literals in the message id. */
3343 if (msgid_header != NULL)
3346 BOOL save_allow_domain_literals = allow_domain_literals;
3347 allow_domain_literals = TRUE;
3348 old_id = parse_extract_address(Ustrchr(msgid_header->text, ':') + 1,
3349 &errmsg, &start, &end, &domain, FALSE);
3350 allow_domain_literals = save_allow_domain_literals;
3352 s = string_append(s, &size, &sptr, 2, US" id=", string_printing(old_id));
3355 /* If subject logging is turned on, create suitable printing-character
3356 text. By expanding $h_subject: we make use of the MIME decoding. */
3358 if ((log_extra_selector & LX_subject) != 0 && subject_header != NULL)
3361 uschar *p = big_buffer;
3362 uschar *ss = expand_string(US"$h_subject:");
3364 /* Backslash-quote any double quotes or backslashes so as to make a
3365 a C-like string, and turn any non-printers into escape sequences. */
3368 if (*ss != 0) for (i = 0; i < 100 && ss[i] != 0; i++)
3370 if (ss[i] == '\"' || ss[i] == '\\') *p++ = '\\';
3375 s = string_append(s, &size, &sptr, 2, US" T=", string_printing(big_buffer));
3378 /* Terminate the string: string_cat() and string_append() leave room, but do
3379 not put the zero in. */
3383 /* While writing to the log, set a flag to cause a call to receive_bomb_out()
3384 if the log cannot be opened. */
3386 receive_call_bombout = TRUE;
3387 log_write(0, LOG_MAIN |
3388 (((log_extra_selector & LX_received_recipients) != 0)? LOG_RECIPIENTS : 0) |
3389 (((log_extra_selector & LX_received_sender) != 0)? LOG_SENDER : 0),
3391 receive_call_bombout = FALSE;
3393 /* Log any control actions taken by an ACL or local_scan(). */
3395 if (deliver_freeze) log_write(0, LOG_MAIN, "frozen by %s", frozen_by);
3396 if (queue_only_policy) log_write(L_delay_delivery, LOG_MAIN,
3397 "no immediate delivery: queued by %s", queued_by);
3399 /* Create a message log file if message logs are being used and this message is
3400 not blackholed. Write the reception stuff to it. We used to leave message log
3401 creation until the first delivery, but this has proved confusing for somep
3404 if (message_logs && blackholed_by == NULL)
3408 sprintf(CS spool_name, "%s/msglog/%s/%s", spool_directory, message_subdir,
3410 fd = Uopen(spool_name, O_WRONLY|O_APPEND|O_CREAT, SPOOL_MODE);
3412 if (fd < 0 && errno == ENOENT)
3415 sprintf(CS temp, "msglog/%s", message_subdir);
3416 if (message_subdir[0] == 0) temp[6] = 0;
3417 (void)directory_make(spool_directory, temp, MSGLOG_DIRECTORY_MODE, TRUE);
3418 fd = Uopen(spool_name, O_WRONLY|O_APPEND|O_CREAT, SPOOL_MODE);
3423 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't open message log %s: %s",
3424 spool_name, strerror(errno));
3429 FILE *message_log = fdopen(fd, "a");
3430 if (message_log == NULL)
3432 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't fdopen message log %s: %s",
3433 spool_name, strerror(errno));
3438 uschar *now = tod_stamp(tod_log);
3439 fprintf(message_log, "%s Received from %s\n", now, s+3);
3440 if (deliver_freeze) fprintf(message_log, "%s frozen by %s\n", now,
3442 if (queue_only_policy) fprintf(message_log,
3443 "%s no immediate delivery: queued by %s\n", now, queued_by);
3444 (void)fclose(message_log);
3449 store_reset(s); /* The store for the main log message can be reused */
3451 /* If the message is frozen, and freeze_tell is set, do the telling. */
3453 if (deliver_freeze && freeze_tell != NULL && freeze_tell[0] != 0)
3455 moan_tell_someone(freeze_tell, NULL, US"Message frozen on arrival",
3456 "Message %s was frozen on arrival by %s.\nThe sender is <%s>.\n",
3457 message_id, frozen_by, sender_address);
3461 /* Either a message has been successfully received and written to the two spool
3462 files, or an error in writing the spool has occurred for an SMTP message, or
3463 an SMTP message has been rejected because of a bad sender. (For a non-SMTP
3464 message we will have already given up because there's no point in carrying on!)
3465 In either event, we must now close (and thereby unlock) the data file. In the
3466 successful case, this leaves the message on the spool, ready for delivery. In
3467 the error case, the spool file will be deleted. Then tidy up store, interact
3468 with an SMTP call if necessary, and return.
3470 A fflush() was done earlier in the expectation that any write errors on the
3471 data file will be flushed(!) out thereby. Nevertheless, it is theoretically
3472 possible for fclose() to fail - but what to do? What has happened to the lock
3476 process_info[process_info_len] = 0; /* Remove message id */
3477 if (data_file != NULL) (void)fclose(data_file); /* Frees the lock */
3479 /* Now reset signal handlers to their defaults */
3481 signal(SIGTERM, SIG_DFL);
3482 signal(SIGINT, SIG_DFL);
3484 /* Tell an SMTP caller the state of play, and arrange to return the SMTP return
3485 value, which defaults TRUE - meaning there may be more incoming messages from
3486 this connection. For non-SMTP callers (where there is only ever one message),
3487 the default is FALSE. */
3493 /* Handle interactive SMTP callers. After several kinds of error, smtp_reply
3494 is set to the response. However, after an ACL error or local_scan() error,
3495 the response has already been sent, and smtp_reply is an empty string to
3498 if (!smtp_batched_input)
3500 if (smtp_reply == NULL)
3502 if (fake_response != OK)
3503 smtp_respond((fake_response == DEFER)? US"450" : US"550", 3, TRUE,
3504 fake_response_text);
3506 /* An OK response is required; use "message" text if present. */
3508 else if (user_msg != NULL)
3510 uschar *code = US"250";
3512 smtp_message_code(&code, &len, &user_msg, NULL);
3513 smtp_respond(code, len, TRUE, user_msg);
3516 /* Default OK response */
3519 smtp_printf("250 OK id=%s\r\n", message_id);
3522 "\n**** SMTP testing: that is not a real message id!\n\n");
3525 /* smtp_reply was previously set */
3527 else if (smtp_reply[0] != 0)
3529 if (fake_response != OK && (smtp_reply[0] == '2'))
3530 smtp_respond((fake_response == DEFER)? US"450" : US"550", 3, TRUE,
3531 fake_response_text);
3533 smtp_printf("%.1024s\r\n", smtp_reply);
3537 /* For batched SMTP, generate an error message on failure, and do
3538 nothing on success. The function moan_smtp_batch() does not return -
3539 it exits from the program with a non-zero return code. */
3541 else if (smtp_reply != NULL) moan_smtp_batch(NULL, "%s", smtp_reply);
3545 /* If blackholing, we can immediately log this message's sad fate. The data
3546 file has already been unlinked, and the header file was never written to disk.
3547 We must now indicate that nothing was received, to prevent a delivery from
3550 if (blackholed_by != NULL)
3552 uschar *detail = (local_scan_data != NULL)?
3553 string_printing(local_scan_data) :
3554 string_sprintf("(%s discarded recipients)", blackholed_by);
3555 log_write(0, LOG_MAIN, "=> blackhole %s%s", detail, blackhole_log_msg);
3556 log_write(0, LOG_MAIN, "Completed");
3560 /* Reset headers so that logging of rejects for a subsequent message doesn't
3561 include them. It is also important to set header_last = NULL before exiting
3562 from this function, as this prevents certain rewrites that might happen during
3563 subsequent verifying (of another incoming message) from trying to add headers
3564 when they shouldn't. */
3566 header_list = header_last = NULL;
3568 return yield; /* TRUE if more messages (SMTP only) */
3571 /* End of receive.c */