1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2017 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* Code for receiving a message and setting up spool files. */
12 #ifdef EXPERIMENTAL_DCC
16 #ifdef EXPERIMENTAL_DMARC
18 #endif /* EXPERIMENTAL_DMARC */
20 /*************************************************
21 * Local static variables *
22 *************************************************/
24 static FILE *data_file = NULL;
25 static int data_fd = -1;
26 static uschar *spool_name = US"";
28 enum CH_STATE {LF_SEEN, MID_LINE, CR_SEEN};
31 /*************************************************
32 * Non-SMTP character reading functions *
33 *************************************************/
35 /* These are the default functions that are set up in the variables such as
36 receive_getc initially. They just call the standard functions, passing stdin as
37 the file. (When SMTP input is occurring, different functions are used by
38 changing the pointer variables.) */
41 stdin_getc(unsigned lim)
49 return ungetc(c, stdin);
67 /*************************************************
68 * Check that a set sender is allowed *
69 *************************************************/
71 /* This function is called when a local caller sets an explicit sender address.
72 It checks whether this is permitted, which it is for trusted callers.
73 Otherwise, it must match the pattern(s) in untrusted_set_sender.
75 Arguments: the proposed sender address
76 Returns: TRUE for a trusted caller
77 TRUE if the address has been set, untrusted_set_sender has been
78 set, and the address matches something in the list
83 receive_check_set_sender(uschar *newsender)
86 if (trusted_caller) return TRUE;
87 if (!newsender || !untrusted_set_sender) return FALSE;
88 qnewsender = Ustrchr(newsender, '@')
89 ? newsender : string_sprintf("%s@%s", newsender, qualify_domain_sender);
90 return match_address_list_basic(qnewsender, CUSS &untrusted_set_sender, 0) == OK;
96 /*************************************************
97 * Read space info for a partition *
98 *************************************************/
100 /* This function is called by receive_check_fs() below, and also by string
101 expansion for variables such as $spool_space. The field names for the statvfs
102 structure are macros, because not all OS have F_FAVAIL and it seems tidier to
103 have macros for F_BAVAIL and F_FILES as well. Some kinds of file system do not
104 have inodes, and they return -1 for the number available.
106 Later: It turns out that some file systems that do not have the concept of
107 inodes return 0 rather than -1. Such systems should also return 0 for the total
108 number of inodes, so we require that to be greater than zero before returning
112 isspool TRUE for spool partition, FALSE for log partition
113 inodeptr address of int to receive inode count; -1 if there isn't one
115 Returns: available on-root space, in kilobytes
116 -1 for log partition if there isn't one
118 All values are -1 if the STATFS functions are not available.
122 receive_statvfs(BOOL isspool, int *inodeptr)
125 struct STATVFS statbuf;
131 /* The spool directory must always exist. */
135 path = spool_directory;
139 /* Need to cut down the log file path to the directory, and to ignore any
140 appearance of "syslog" in it. */
144 int sep = ':'; /* Not variable - outside scripts use */
145 const uschar *p = log_file_path;
148 /* An empty log_file_path means "use the default". This is the same as an
149 empty item in a list. */
151 if (*p == 0) p = US":";
152 while ((path = string_nextinlist(&p, &sep, buffer, sizeof(buffer))))
153 if (Ustrcmp(path, "syslog") != 0)
156 if (path == NULL) /* No log files */
162 /* An empty string means use the default, which is in the spool directory.
163 But don't just use the spool directory, as it is possible that the log
164 subdirectory has been symbolically linked elsewhere. */
168 sprintf(CS buffer, CS"%s/log", CS spool_directory);
174 if ((cp = Ustrrchr(path, '/')) != NULL) *cp = 0;
178 /* We now have the path; do the business */
180 memset(&statbuf, 0, sizeof(statbuf));
182 if (STATVFS(CS path, &statbuf) != 0)
183 if (stat(CS path, &dummy) == -1 && errno == ENOENT)
184 { /* Can happen on first run after installation */
190 log_write(0, LOG_MAIN|LOG_PANIC, "cannot accept message: failed to stat "
191 "%s directory %s: %s", name, path, strerror(errno));
192 smtp_closedown(US"spool or log directory problem");
193 exim_exit(EXIT_FAILURE, NULL);
196 *inodeptr = (statbuf.F_FILES > 0)? statbuf.F_FAVAIL : -1;
198 /* Disks are getting huge. Take care with computing the size in kilobytes. */
200 return (int)(((double)statbuf.F_BAVAIL * (double)statbuf.F_FRSIZE)/1024.0);
203 /* Unable to find partition sizes in this environment. */
213 /*************************************************
214 * Check space on spool and log partitions *
215 *************************************************/
217 /* This function is called before accepting a message; if any thresholds are
218 set, it checks them. If a message_size is supplied, it checks that there is
219 enough space for that size plus the threshold - i.e. that the message won't
220 reduce the space to the threshold. Not all OS have statvfs(); for those that
221 don't, this function always returns TRUE. For some OS the old function and
222 struct name statfs is used; that is handled by a macro, defined in exim.h.
225 msg_size the (estimated) size of an incoming message
227 Returns: FALSE if there isn't enough space, or if the information cannot
229 TRUE if no check was done or there is enough space
233 receive_check_fs(int msg_size)
237 if (check_spool_space > 0 || msg_size > 0 || check_spool_inodes > 0)
239 space = receive_statvfs(TRUE, &inodes);
242 debug_printf("spool directory space = %dK inodes = %d "
243 "check_space = %dK inodes = %d msg_size = %d\n",
244 space, inodes, check_spool_space, check_spool_inodes, msg_size);
246 if ((space >= 0 && space < check_spool_space) ||
247 (inodes >= 0 && inodes < check_spool_inodes))
249 log_write(0, LOG_MAIN, "spool directory space check failed: space=%d "
250 "inodes=%d", space, inodes);
255 if (check_log_space > 0 || check_log_inodes > 0)
257 space = receive_statvfs(FALSE, &inodes);
260 debug_printf("log directory space = %dK inodes = %d "
261 "check_space = %dK inodes = %d\n",
262 space, inodes, check_log_space, check_log_inodes);
264 if ((space >= 0 && space < check_log_space) ||
265 (inodes >= 0 && inodes < check_log_inodes))
267 log_write(0, LOG_MAIN, "log directory space check failed: space=%d "
268 "inodes=%d", space, inodes);
278 /*************************************************
279 * Bomb out while reading a message *
280 *************************************************/
282 /* The common case of wanting to bomb out is if a SIGTERM or SIGINT is
283 received, or if there is a timeout. A rarer case might be if the log files are
284 screwed up and Exim can't open them to record a message's arrival. Handling
285 that case is done by setting a flag to cause the log functions to call this
286 function if there is an ultimate disaster. That is why it is globally
290 reason text reason to pass to the not-quit ACL
291 msg default SMTP response to give if in an SMTP session
296 receive_bomb_out(uschar *reason, uschar *msg)
298 static BOOL already_bombing_out;
299 /* The smtp_notquit_exit() below can call ACLs which can trigger recursive
300 timeouts, if someone has something slow in their quit ACL. Since the only
301 things we should be doing are to close down cleanly ASAP, on the second
302 pass we also close down stuff that might be opened again, before bypassing
303 the ACL call and exiting. */
305 /* If spool_name is set, it contains the name of the data file that is being
306 written. Unlink it before closing so that it cannot be picked up by a delivery
307 process. Ensure that any header file is also removed. */
309 if (spool_name[0] != '\0')
312 spool_name[Ustrlen(spool_name) - 1] = 'H';
314 spool_name[0] = '\0';
317 /* Now close the file if it is open, either as a fd or a stream. */
319 if (data_file != NULL)
321 (void)fclose(data_file);
323 } else if (data_fd >= 0) {
324 (void)close(data_fd);
328 /* Attempt to close down an SMTP connection tidily. For non-batched SMTP, call
329 smtp_notquit_exit(), which runs the NOTQUIT ACL, if present, and handles the
332 if (!already_bombing_out)
334 already_bombing_out = TRUE;
337 if (smtp_batched_input)
338 moan_smtp_batch(NULL, "421 %s - message abandoned", msg); /* No return */
339 smtp_notquit_exit(reason, US"421", US"%s %s - closing connection.",
340 smtp_active_hostname, msg);
344 /* Exit from the program (non-BSMTP cases) */
346 exim_exit(EXIT_FAILURE, NULL);
350 /*************************************************
351 * Data read timeout *
352 *************************************************/
354 /* Handler function for timeouts that occur while reading the data that
357 Argument: the signal number
362 data_timeout_handler(int sig)
366 sig = sig; /* Keep picky compilers happy */
370 msg = US"SMTP incoming data timeout";
371 log_write(L_lost_incoming_connection,
372 LOG_MAIN, "SMTP data timeout (message abandoned) on connection "
374 (sender_fullhost != NULL)? sender_fullhost : US"local process",
379 fprintf(stderr, "exim: timed out while reading - message abandoned\n");
380 log_write(L_lost_incoming_connection,
381 LOG_MAIN, "timed out while reading local message");
384 receive_bomb_out(US"data-timeout", msg); /* Does not return */
389 /*************************************************
390 * local_scan() timeout *
391 *************************************************/
393 /* Handler function for timeouts that occur while running a local_scan()
396 Argument: the signal number
401 local_scan_timeout_handler(int sig)
403 sig = sig; /* Keep picky compilers happy */
404 log_write(0, LOG_MAIN|LOG_REJECT, "local_scan() function timed out - "
405 "message temporarily rejected (size %d)", message_size);
406 /* Does not return */
407 receive_bomb_out(US"local-scan-timeout", US"local verification problem");
412 /*************************************************
413 * local_scan() crashed *
414 *************************************************/
416 /* Handler function for signals that occur while running a local_scan()
419 Argument: the signal number
424 local_scan_crash_handler(int sig)
426 log_write(0, LOG_MAIN|LOG_REJECT, "local_scan() function crashed with "
427 "signal %d - message temporarily rejected (size %d)", sig, message_size);
428 /* Does not return */
429 receive_bomb_out(US"local-scan-error", US"local verification problem");
433 /*************************************************
434 * SIGTERM or SIGINT received *
435 *************************************************/
437 /* Handler for SIGTERM or SIGINT signals that occur while reading the
438 data that comprises a message.
440 Argument: the signal number
445 data_sigterm_sigint_handler(int sig)
451 msg = US"Service not available - SIGTERM or SIGINT received";
452 log_write(0, LOG_MAIN, "%s closed after %s", smtp_get_connection_info(),
453 (sig == SIGTERM)? "SIGTERM" : "SIGINT");
457 if (filter_test == FTEST_NONE)
459 fprintf(stderr, "\nexim: %s received - message abandoned\n",
460 (sig == SIGTERM)? "SIGTERM" : "SIGINT");
461 log_write(0, LOG_MAIN, "%s received while reading local message",
462 (sig == SIGTERM)? "SIGTERM" : "SIGINT");
466 receive_bomb_out(US"signal-exit", msg); /* Does not return */
471 /*************************************************
472 * Add new recipient to list *
473 *************************************************/
475 /* This function builds a list of recipient addresses in argc/argv
479 recipient the next address to add to recipients_list
480 pno parent number for fixed aliases; -1 otherwise
486 receive_add_recipient(uschar *recipient, int pno)
488 if (recipients_count >= recipients_list_max)
490 recipient_item *oldlist = recipients_list;
491 int oldmax = recipients_list_max;
492 recipients_list_max = recipients_list_max? 2*recipients_list_max : 50;
493 recipients_list = store_get(recipients_list_max * sizeof(recipient_item));
495 memcpy(recipients_list, oldlist, oldmax * sizeof(recipient_item));
498 recipients_list[recipients_count].address = recipient;
499 recipients_list[recipients_count].pno = pno;
500 #ifdef EXPERIMENTAL_BRIGHTMAIL
501 recipients_list[recipients_count].bmi_optin = bmi_current_optin;
502 /* reset optin string pointer for next recipient */
503 bmi_current_optin = NULL;
505 recipients_list[recipients_count].orcpt = NULL;
506 recipients_list[recipients_count].dsn_flags = 0;
507 recipients_list[recipients_count++].errors_to = NULL;
513 /*************************************************
514 * Send user response message *
515 *************************************************/
517 /* This function is passed a default response code and a user message. It calls
518 smtp_message_code() to check and possibly modify the response code, and then
519 calls smtp_respond() to transmit the response. I put this into a function
520 just to avoid a lot of repetition.
523 code the response code
524 user_msg the user message
531 smtp_user_msg(uschar *code, uschar *user_msg)
534 smtp_message_code(&code, &len, &user_msg, NULL, TRUE);
535 smtp_respond(code, len, TRUE, user_msg);
543 /*************************************************
544 * Remove a recipient from the list *
545 *************************************************/
547 /* This function is provided for local_scan() to use.
550 recipient address to remove
552 Returns: TRUE if it did remove something; FALSE otherwise
556 receive_remove_recipient(uschar *recipient)
559 DEBUG(D_receive) debug_printf("receive_remove_recipient(\"%s\") called\n",
561 for (count = 0; count < recipients_count; count++)
563 if (Ustrcmp(recipients_list[count].address, recipient) == 0)
565 if ((--recipients_count - count) > 0)
566 memmove(recipients_list + count, recipients_list + count + 1,
567 (recipients_count - count)*sizeof(recipient_item));
578 /*************************************************
579 * Read data portion of a non-SMTP message *
580 *************************************************/
582 /* This function is called to read the remainder of a message (following the
583 header) when the input is not from SMTP - we are receiving a local message on
584 a standard input stream. The message is always terminated by EOF, and is also
585 terminated by a dot on a line by itself if the flag dot_ends is TRUE. Split the
586 two cases for maximum efficiency.
588 Ensure that the body ends with a newline. This will naturally be the case when
589 the termination is "\n.\n" but may not be otherwise. The RFC defines messages
590 as "sequences of lines" - this of course strictly applies only to SMTP, but
591 deliveries into BSD-type mailbox files also require it. Exim used to have a
592 flag for doing this at delivery time, but as it was always set for all
593 transports, I decided to simplify things by putting the check here instead.
595 There is at least one MUA (dtmail) that sends CRLF via this interface, and
596 other programs are known to do this as well. Exim used to have a option for
597 dealing with this: in July 2003, after much discussion, the code has been
598 changed to default to treat any of LF, CRLF, and bare CR as line terminators.
600 However, for the case when a dot on a line by itself terminates a message, the
601 only recognized terminating sequences before and after the dot are LF and CRLF.
602 Otherwise, having read EOL . CR, you don't know whether to read another
605 Internally, in messages stored in Exim's spool files, LF is used as the line
606 terminator. Under the new regime, bare CRs will no longer appear in these
610 fout a FILE to which to write the message
612 Returns: One of the END_xxx values indicating why it stopped reading
616 read_message_data(FILE *fout)
620 register int linelength = 0;
622 /* Handle the case when only EOF terminates the message */
626 register int last_ch = '\n';
628 for (; (ch = (receive_getc)(GETC_BUFFER_UNLIMITED)) != EOF; last_ch = ch)
630 if (ch == 0) body_zerocount++;
631 if (last_ch == '\r' && ch != '\n')
633 if (linelength > max_received_linelength)
634 max_received_linelength = linelength;
636 if (fputc('\n', fout) == EOF) return END_WERROR;
640 if (ch == '\r') continue;
642 if (fputc(ch, fout) == EOF) return END_WERROR;
645 if (linelength > max_received_linelength)
646 max_received_linelength = linelength;
651 if (++message_size > thismessage_size_limit) return END_SIZE;
656 if (linelength > max_received_linelength)
657 max_received_linelength = linelength;
658 if (fputc('\n', fout) == EOF) return END_WERROR;
666 /* Handle the case when a dot on a line on its own, or EOF, terminates. */
670 while ((ch = (receive_getc)(GETC_BUFFER_UNLIMITED)) != EOF)
672 if (ch == 0) body_zerocount++;
675 case 0: /* Normal state (previous char written) */
679 if (linelength > max_received_linelength)
680 max_received_linelength = linelength;
685 { ch_state = 2; continue; }
688 case 1: /* After written "\n" */
689 if (ch == '.') { ch_state = 3; continue; }
690 if (ch == '\r') { ch_state = 2; continue; }
691 if (ch == '\n') { body_linecount++; linelength = -1; }
696 body_linecount++; /* After unwritten "\r" */
697 if (linelength > max_received_linelength)
698 max_received_linelength = linelength;
706 if (message_size++, fputc('\n', fout) == EOF) return END_WERROR;
707 if (ch == '\r') continue;
713 case 3: /* After "\n." (\n written, dot not) */
714 if (ch == '\n') return END_DOT;
715 if (ch == '\r') { ch_state = 4; continue; }
718 if (fputc('.', fout) == EOF) return END_WERROR;
722 case 4: /* After "\n.\r" (\n written, rest not) */
723 if (ch == '\n') return END_DOT;
726 if (fputs(".\n", fout) == EOF) return END_WERROR;
727 if (ch == '\r') { ch_state = 2; continue; }
733 if (fputc(ch, fout) == EOF) return END_WERROR;
734 if (++message_size > thismessage_size_limit) return END_SIZE;
737 /* Get here if EOF read. Unless we have just written "\n", we need to ensure
738 the message ends with a newline, and we must also write any characters that
739 were saved up while testing for an ending dot. */
743 static uschar *ends[] = { US"\n", NULL, US"\n", US".\n", US".\n" };
744 if (fputs(CS ends[ch_state], fout) == EOF) return END_WERROR;
745 message_size += Ustrlen(ends[ch_state]);
755 /*************************************************
756 * Read data portion of an SMTP message *
757 *************************************************/
759 /* This function is called to read the remainder of an SMTP message (after the
760 headers), or to skip over it when an error has occurred. In this case, the
761 output file is passed as NULL.
763 If any line begins with a dot, that character is skipped. The input should only
764 be successfully terminated by CR LF . CR LF unless it is local (non-network)
765 SMTP, in which case the CRs are optional, but...
767 FUDGE: It seems that sites on the net send out messages with just LF
768 terminators, despite the warnings in the RFCs, and other MTAs handle this. So
769 we make the CRs optional in all cases.
771 July 2003: Bare CRs cause trouble. We now treat them as line terminators as
772 well, so that there are no CRs in spooled messages. However, the message
773 terminating dot is not recognized between two bare CRs.
776 fout a FILE to which to write the message; NULL if skipping
778 Returns: One of the END_xxx values indicating why it stopped reading
782 read_message_data_smtp(FILE *fout)
788 while ((ch = (receive_getc)(GETC_BUFFER_UNLIMITED)) != EOF)
790 if (ch == 0) body_zerocount++;
793 case 0: /* After LF or CRLF */
797 continue; /* Don't ever write . after LF */
801 /* Else fall through to handle as normal uschar. */
803 case 1: /* Normal state */
808 if (linelength > max_received_linelength)
809 max_received_linelength = linelength;
819 case 2: /* After (unwritten) CR */
821 if (linelength > max_received_linelength)
822 max_received_linelength = linelength;
831 if (fout != NULL && fputc('\n', fout) == EOF) return END_WERROR;
832 cutthrough_data_put_nl();
833 if (ch != '\r') ch_state = 1; else continue;
837 case 3: /* After [CR] LF . */
845 /* The dot was removed at state 3. For a doubled dot, here, reinstate
846 it to cutthrough. The current ch, dot or not, is passed both to cutthrough
847 and to file below. */
851 cutthrough_data_puts(&c, 1);
856 case 4: /* After [CR] LF . CR */
857 if (ch == '\n') return END_DOT;
860 if (fout != NULL && fputc('\n', fout) == EOF) return END_WERROR;
861 cutthrough_data_put_nl();
871 /* Add the character to the spool file, unless skipping; then loop for the
878 if (fputc(ch, fout) == EOF) return END_WERROR;
879 if (message_size > thismessage_size_limit) return END_SIZE;
882 cutthrough_data_put_nl();
886 cutthrough_data_puts(&c, 1);
890 /* Fall through here if EOF encountered. This indicates some kind of error,
891 since a correct message is terminated by [CR] LF . [CR] LF. */
899 /* Variant of the above read_message_data_smtp() specialised for RFC 3030
900 CHUNKING. Accept input lines separated by either CRLF or CR or LF and write
901 LF-delimited spoolfile. Until we have wireformat spoolfiles, we need the
902 body_linecount accounting for proper re-expansion for the wire, so use
903 a cut-down version of the state-machine above; we don't need to do leading-dot
904 detection and unstuffing.
907 fout a FILE to which to write the message; NULL if skipping;
908 must be open for both writing and reading.
910 Returns: One of the END_xxx values indicating why it stopped reading
914 read_message_bdat_smtp(FILE *fout)
916 int linelength = 0, ch;
917 enum CH_STATE ch_state = LF_SEEN;
922 switch ((ch = bdat_getc(GETC_BUFFER_UNLIMITED)))
924 case EOF: return END_EOF;
925 case ERR: return END_PROTOCOL;
927 /* Nothing to get from the sender anymore. We check the last
928 character written to the spool.
930 RFC 3030 states, that BDAT chunks are normal text, terminated by CRLF.
931 If we would be strict, we would refuse such broken messages.
932 But we are liberal, so we fix it. It would be easy just to append
933 the "\n" to the spool.
935 But there are some more things (line counting, message size calculation and such),
936 that would need to be duplicated here. So we simply do some ungetc
941 if (fseek(fout, -1, SEEK_CUR) < 0) return END_PROTOCOL;
942 if (fgetc(fout) == '\n') return END_DOT;
945 if (linelength == -1) /* \r already seen (see below) */
947 DEBUG(D_receive) debug_printf("Add missing LF\n");
951 DEBUG(D_receive) debug_printf("Add missing CRLF\n");
952 bdat_ungetc('\r'); /* not even \r was seen */
956 case '\0': body_zerocount++; break;
960 case LF_SEEN: /* After LF or CRLF */
962 /* fall through to handle as normal uschar. */
964 case MID_LINE: /* Mid-line state */
969 if (linelength > max_received_linelength)
970 max_received_linelength = linelength;
976 if (fix_nl) bdat_ungetc('\n');
977 continue; /* don't write CR */
981 case CR_SEEN: /* After (unwritten) CR */
983 if (linelength > max_received_linelength)
984 max_received_linelength = linelength;
991 if (fout && fputc('\n', fout) == EOF) return END_WERROR;
992 cutthrough_data_put_nl();
993 if (ch == '\r') continue; /* don't write CR */
999 /* Add the character to the spool file, unless skipping */
1005 if (fputc(ch, fout) == EOF) return END_WERROR;
1006 if (message_size > thismessage_size_limit) return END_SIZE;
1009 cutthrough_data_put_nl();
1013 cutthrough_data_puts(&c, 1);
1020 read_message_bdat_smtp_wire(FILE *fout)
1024 /* Remember that this message uses wireformat. */
1026 DEBUG(D_receive) debug_printf("CHUNKING: %s\n",
1027 fout ? "writing spoolfile in wire format" : "flushing input");
1028 spool_file_wireformat = TRUE;
1032 if (chunking_data_left > 0)
1034 unsigned len = MAX(chunking_data_left, thismessage_size_limit - message_size + 1);
1035 uschar * buf = bdat_getbuf(&len);
1037 message_size += len;
1038 if (fout && fwrite(buf, len, 1, fout) != 1) return END_WERROR;
1040 else switch (ch = bdat_getc(GETC_BUFFER_UNLIMITED))
1042 case EOF: return END_EOF;
1043 case EOD: return END_DOT;
1044 case ERR: return END_PROTOCOL;
1050 max_received_linelength
1054 if (fout && fputc(ch, fout) == EOF) return END_WERROR;
1057 if (message_size > thismessage_size_limit) return END_SIZE;
1065 /*************************************************
1066 * Swallow SMTP message *
1067 *************************************************/
1069 /* This function is called when there has been some kind of error while reading
1070 an SMTP message, and the remaining data may need to be swallowed. It is global
1071 because it is called from smtp_closedown() to shut down an incoming call
1074 Argument: a FILE from which to read the message
1079 receive_swallow_smtp(void)
1081 if (message_ended >= END_NOTENDED)
1082 message_ended = chunking_state <= CHUNKING_OFFERED
1083 ? read_message_data_smtp(NULL)
1084 : read_message_bdat_smtp_wire(NULL);
1089 /*************************************************
1090 * Handle lost SMTP connection *
1091 *************************************************/
1093 /* This function logs connection loss incidents and generates an appropriate
1096 Argument: additional data for the message
1097 Returns: the SMTP response
1101 handle_lost_connection(uschar *s)
1103 log_write(L_lost_incoming_connection | L_smtp_connection, LOG_MAIN,
1104 "%s lost while reading message data%s", smtp_get_connection_info(), s);
1105 smtp_notquit_exit(US"connection-lost", NULL, NULL);
1106 return US"421 Lost incoming connection";
1112 /*************************************************
1113 * Handle a non-smtp reception error *
1114 *************************************************/
1116 /* This function is called for various errors during the reception of non-SMTP
1117 messages. It either sends a message to the sender of the problem message, or it
1118 writes to the standard error stream.
1121 errcode code for moan_to_sender(), identifying the error
1122 text1 first message text, passed to moan_to_sender()
1123 text2 second message text, used only for stderrr
1124 error_rc code to pass to exim_exit if no problem
1125 f FILE containing body of message (may be stdin)
1126 hptr pointer to instore headers or NULL
1128 Returns: calls exim_exit(), which does not return
1132 give_local_error(int errcode, uschar *text1, uschar *text2, int error_rc,
1133 FILE *f, header_line *hptr)
1135 if (error_handling == ERRORS_SENDER)
1139 eblock.text1 = text1;
1140 eblock.text2 = US"";
1141 if (!moan_to_sender(errcode, &eblock, hptr, f, FALSE))
1142 error_rc = EXIT_FAILURE;
1145 fprintf(stderr, "exim: %s%s\n", text2, text1); /* Sic */
1147 exim_exit(error_rc, US"");
1152 /*************************************************
1153 * Add header lines set up by ACL *
1154 *************************************************/
1156 /* This function is called to add the header lines that were set up by
1157 statements in an ACL to the list of headers in memory. It is done in two stages
1158 like this, because when the ACL for RCPT is running, the other headers have not
1159 yet been received. This function is called twice; once just before running the
1160 DATA ACL, and once after. This is so that header lines added by MAIL or RCPT
1161 are visible to the DATA ACL.
1163 Originally these header lines were added at the end. Now there is support for
1164 three different places: top, bottom, and after the Received: header(s). There
1165 will always be at least one Received: header, even if it is marked deleted, and
1166 even if something else has been put in front of it.
1169 acl_name text to identify which ACL
1175 add_acl_headers(int where, uschar *acl_name)
1177 header_line *h, *next;
1178 header_line *last_received = NULL;
1182 case ACL_WHERE_DKIM:
1183 case ACL_WHERE_MIME:
1184 case ACL_WHERE_DATA:
1185 if ( cutthrough.fd >= 0 && cutthrough.delivery
1186 && (acl_removed_headers || acl_added_headers))
1188 log_write(0, LOG_MAIN|LOG_PANIC, "Header modification in data ACLs"
1189 " will not take effect on cutthrough deliveries");
1194 if (acl_removed_headers)
1196 DEBUG(D_receive|D_acl) debug_printf_indent(">>Headers removed by %s ACL:\n", acl_name);
1198 for (h = header_list; h; h = h->next) if (h->type != htype_old)
1200 const uschar * list = acl_removed_headers;
1201 int sep = ':'; /* This is specified as a colon-separated list */
1205 while ((s = string_nextinlist(&list, &sep, buffer, sizeof(buffer))))
1206 if (header_testname(h, s, Ustrlen(s), FALSE))
1208 h->type = htype_old;
1209 DEBUG(D_receive|D_acl) debug_printf_indent(" %s", h->text);
1212 acl_removed_headers = NULL;
1213 DEBUG(D_receive|D_acl) debug_printf_indent(">>\n");
1216 if (!acl_added_headers) return;
1217 DEBUG(D_receive|D_acl) debug_printf_indent(">>Headers added by %s ACL:\n", acl_name);
1219 for (h = acl_added_headers; h; h = next)
1226 h->next = header_list;
1228 DEBUG(D_receive|D_acl) debug_printf_indent(" (at top)");
1232 if (last_received == NULL)
1234 last_received = header_list;
1235 while (!header_testname(last_received, US"Received", 8, FALSE))
1236 last_received = last_received->next;
1237 while (last_received->next != NULL &&
1238 header_testname(last_received->next, US"Received", 8, FALSE))
1239 last_received = last_received->next;
1241 h->next = last_received->next;
1242 last_received->next = h;
1243 DEBUG(D_receive|D_acl) debug_printf_indent(" (after Received:)");
1247 /* add header before any header which is NOT Received: or Resent- */
1248 last_received = header_list;
1249 while ( (last_received->next != NULL) &&
1250 ( (header_testname(last_received->next, US"Received", 8, FALSE)) ||
1251 (header_testname_incomplete(last_received->next, US"Resent-", 7, FALSE)) ) )
1252 last_received = last_received->next;
1253 /* last_received now points to the last Received: or Resent-* header
1254 in an uninterrupted chain of those header types (seen from the beginning
1255 of all headers. Our current header must follow it. */
1256 h->next = last_received->next;
1257 last_received->next = h;
1258 DEBUG(D_receive|D_acl) debug_printf_indent(" (before any non-Received: or Resent-*: header)");
1263 header_last->next = h;
1267 if (h->next == NULL) header_last = h;
1269 /* Check for one of the known header types (From:, To:, etc.) though in
1270 practice most added headers are going to be "other". Lower case
1271 identification letters are never stored with the header; they are used
1272 for existence tests when messages are received. So discard any lower case
1275 h->type = header_checkname(h, FALSE);
1276 if (h->type >= 'a') h->type = htype_other;
1278 DEBUG(D_receive|D_acl) debug_printf_indent(" %s", header_last->text);
1281 acl_added_headers = NULL;
1282 DEBUG(D_receive|D_acl) debug_printf_indent(">>\n");
1287 /*************************************************
1288 * Add host information for log line *
1289 *************************************************/
1291 /* Called for acceptance and rejecting log lines. This adds information about
1292 the calling host to a string that is being built dynamically.
1295 s the dynamic string
1297 Returns: the extended string
1301 add_host_info_for_log(gstring * g)
1303 if (sender_fullhost)
1305 if (LOGGING(dnssec) && sender_host_dnssec) /*XXX sender_helo_dnssec? */
1306 g = string_catn(g, US" DS", 3);
1307 g = string_append(g, 2, US" H=", sender_fullhost);
1308 if (LOGGING(incoming_interface) && interface_address != NULL)
1311 string_sprintf(" I=[%s]:%d", interface_address, interface_port));
1314 if (tcp_in_fastopen && !tcp_in_fastopen_logged)
1316 g = string_catn(g, US" TFO", 4);
1317 tcp_in_fastopen_logged = TRUE;
1320 g = string_append(g, 2, US" U=", sender_ident);
1321 if (received_protocol)
1322 g = string_append(g, 2, US" P=", received_protocol);
1328 #ifdef WITH_CONTENT_SCAN
1330 /*************************************************
1331 * Run the MIME ACL on a message *
1332 *************************************************/
1334 /* This code is in a subroutine so that it can be used for both SMTP
1335 and non-SMTP messages. It is called with a non-NULL ACL pointer.
1338 acl The ACL to run (acl_smtp_mime or acl_not_smtp_mime)
1339 smtp_yield_ptr Set FALSE to kill messages after dropped connection
1340 smtp_reply_ptr Where SMTP reply is being built
1341 blackholed_by_ptr Where "blackholed by" message is being built
1343 Returns: TRUE to carry on; FALSE to abandon the message
1347 run_mime_acl(uschar *acl, BOOL *smtp_yield_ptr, uschar **smtp_reply_ptr,
1348 uschar **blackholed_by_ptr)
1351 uschar * rfc822_file_path = NULL;
1352 unsigned long mbox_size;
1353 header_line *my_headerlist;
1354 uschar *user_msg, *log_msg;
1355 int mime_part_count_buffer = -1;
1356 uschar * mbox_filename;
1359 /* check if it is a MIME message */
1361 for (my_headerlist = header_list; my_headerlist; my_headerlist = my_headerlist->next)
1362 if ( my_headerlist->type != '*' /* skip deleted headers */
1363 && strncmpic(my_headerlist->text, US"Content-Type:", 13) == 0
1366 DEBUG(D_receive) debug_printf("Found Content-Type: header - executing acl_smtp_mime.\n");
1370 DEBUG(D_receive) debug_printf("No Content-Type: header - presumably not a MIME message.\n");
1375 /* make sure the eml mbox file is spooled up */
1376 if (!(mbox_file = spool_mbox(&mbox_size, NULL, &mbox_filename)))
1377 { /* error while spooling */
1378 log_write(0, LOG_MAIN|LOG_PANIC,
1379 "acl_smtp_mime: error while creating mbox spool file, message temporarily rejected.");
1380 Uunlink(spool_name);
1382 #ifdef EXPERIMENTAL_DCC
1385 smtp_respond(US"451", 3, TRUE, US"temporary local problem");
1386 message_id[0] = 0; /* Indicate no message accepted */
1387 *smtp_reply_ptr = US""; /* Indicate reply already sent */
1388 return FALSE; /* Indicate skip to end of receive function */
1394 mime_part_count = -1;
1395 rc = mime_acl_check(acl, mbox_file, NULL, &user_msg, &log_msg);
1396 (void)fclose(mbox_file);
1398 if (rfc822_file_path)
1400 mime_part_count = mime_part_count_buffer;
1402 if (unlink(CS rfc822_file_path) == -1)
1404 log_write(0, LOG_PANIC,
1405 "acl_smtp_mime: can't unlink RFC822 spool file, skipping.");
1408 rfc822_file_path = NULL;
1411 /* check if we must check any message/rfc822 attachments */
1414 uschar * scandir = string_copyn(mbox_filename,
1415 Ustrrchr(mbox_filename, '/') - mbox_filename);
1416 struct dirent * entry;
1419 for (tempdir = opendir(CS scandir); entry = readdir(tempdir); )
1420 if (strncmpic(US entry->d_name, US"__rfc822_", 9) == 0)
1422 rfc822_file_path = string_sprintf("%s/%s", scandir, entry->d_name);
1424 debug_printf("RFC822 attachment detected: running MIME ACL for '%s'\n",
1430 if (rfc822_file_path)
1432 if ((mbox_file = Ufopen(rfc822_file_path, "rb")))
1434 /* set RFC822 expansion variable */
1436 mime_part_count_buffer = mime_part_count;
1437 goto MIME_ACL_CHECK;
1439 log_write(0, LOG_PANIC,
1440 "acl_smtp_mime: can't open RFC822 spool file, skipping.");
1441 unlink(CS rfc822_file_path);
1446 add_acl_headers(ACL_WHERE_MIME, US"MIME");
1449 recipients_count = 0;
1450 *blackholed_by_ptr = US"MIME ACL";
1454 Uunlink(spool_name);
1456 #ifdef EXPERIMENTAL_DCC
1461 if (smtp_handle_acl_fail(ACL_WHERE_MIME, rc, user_msg, log_msg) != 0)
1462 *smtp_yield_ptr = FALSE; /* No more messages after dropped connection */
1463 *smtp_reply_ptr = US""; /* Indicate reply already sent */
1465 message_id[0] = 0; /* Indicate no message accepted */
1466 return FALSE; /* Cause skip to end of receive function */
1472 #endif /* WITH_CONTENT_SCAN */
1477 received_header_gen(void)
1481 header_line *received_header= header_list;
1483 timestamp = expand_string(US"${tod_full}");
1484 if (recipients_count == 1) received_for = recipients_list[0].address;
1485 received = expand_string(received_header_text);
1486 received_for = NULL;
1490 if(spool_name[0] != 0)
1491 Uunlink(spool_name); /* Lose the data file */
1492 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Expansion of \"%s\" "
1493 "(received_header_text) failed: %s", string_printing(received_header_text),
1494 expand_string_message);
1497 /* The first element on the header chain is reserved for the Received header,
1498 so all we have to do is fill in the text pointer, and set the type. However, if
1499 the result of the expansion is an empty string, we leave the header marked as
1500 "old" so as to refrain from adding a Received header. */
1502 if (received[0] == 0)
1504 received_header->text = string_sprintf("Received: ; %s\n", timestamp);
1505 received_header->type = htype_old;
1509 received_header->text = string_sprintf("%s; %s\n", received, timestamp);
1510 received_header->type = htype_received;
1513 received_header->slen = Ustrlen(received_header->text);
1515 DEBUG(D_receive) debug_printf(">>Generated Received: header line\n%c %s",
1516 received_header->type, received_header->text);
1521 /*************************************************
1523 *************************************************/
1525 /* Receive a message on the given input, and put it into a pair of spool files.
1526 Either a non-null list of recipients, or the extract flag will be true, or
1527 both. The flag sender_local is true for locally generated messages. The flag
1528 submission_mode is true if an ACL has obeyed "control = submission". The flag
1529 suppress_local_fixups is true if an ACL has obeyed "control =
1530 suppress_local_fixups" or -G was passed on the command-line.
1531 The flag smtp_input is true if the message is to be
1532 handled using SMTP conventions about termination and lines starting with dots.
1533 For non-SMTP messages, dot_ends is true for dot-terminated messages.
1535 If a message was successfully read, message_id[0] will be non-zero.
1537 The general actions of this function are:
1539 . Read the headers of the message (if any) into a chain of store
1542 . If there is a "sender:" header and the message is locally originated,
1543 throw it away, unless the caller is trusted, or unless
1544 active_local_sender_retain is set - which can only happen if
1545 active_local_from_check is false.
1547 . If recipients are to be extracted from the message, build the
1548 recipients list from the headers, removing any that were on the
1549 original recipients list (unless extract_addresses_remove_arguments is
1550 false), and at the same time, remove any bcc header that may be present.
1552 . Get the spool file for the data, sort out its unique name, open
1553 and lock it (but don't give it the name yet).
1555 . Generate a "Message-Id" header if the message doesn't have one, for
1556 locally-originated messages.
1558 . Generate a "Received" header.
1560 . Ensure the recipients list is fully qualified and rewritten if necessary.
1562 . If there are any rewriting rules, apply them to the sender address
1563 and also to the headers.
1565 . If there is no from: header, generate one, for locally-generated messages
1566 and messages in "submission mode" only.
1568 . If the sender is local, check that from: is correct, and if not, generate
1569 a Sender: header, unless message comes from a trusted caller, or this
1570 feature is disabled by active_local_from_check being false.
1572 . If there is no "date" header, generate one, for locally-originated
1573 or submission mode messages only.
1575 . Copy the rest of the input, or up to a terminating "." if in SMTP or
1576 dot_ends mode, to the data file. Leave it open, to hold the lock.
1578 . Write the envelope and the headers to a new file.
1580 . Set the name for the header file; close it.
1582 . Set the name for the data file; close it.
1584 Because this function can potentially be called many times in a single
1585 SMTP connection, all store should be got by store_get(), so that it will be
1586 automatically retrieved after the message is accepted.
1588 FUDGE: It seems that sites on the net send out messages with just LF
1589 terminators, despite the warnings in the RFCs, and other MTAs handle this. So
1590 we make the CRs optional in all cases.
1592 July 2003: Bare CRs in messages, especially in header lines, cause trouble. A
1593 new regime is now in place in which bare CRs in header lines are turned into LF
1594 followed by a space, so as not to terminate the header line.
1596 February 2004: A bare LF in a header line in a message whose first line was
1597 terminated by CRLF is treated in the same way as a bare CR.
1600 extract_recip TRUE if recipients are to be extracted from the message's
1603 Returns: TRUE there are more messages to be read (SMTP input)
1604 FALSE there are no more messages to be read (non-SMTP input
1605 or SMTP connection collapsed, or other failure)
1607 When reading a message for filter testing, the returned value indicates
1608 whether the headers (which is all that is read) were terminated by '.' or
1612 receive_msg(BOOL extract_recip)
1617 int process_info_len = Ustrlen(process_info);
1618 int error_rc = (error_handling == ERRORS_SENDER)?
1619 errors_sender_rc : EXIT_FAILURE;
1620 int header_size = 256;
1621 int start, end, domain;
1624 int prevlines_length = 0;
1626 register int ptr = 0;
1628 BOOL contains_resent_headers = FALSE;
1629 BOOL extracted_ignored = FALSE;
1630 BOOL first_line_ended_crlf = TRUE_UNSET;
1631 BOOL smtp_yield = TRUE;
1634 BOOL resents_exist = FALSE;
1635 uschar *resent_prefix = US"";
1636 uschar *blackholed_by = NULL;
1637 uschar *blackhole_log_msg = US"";
1638 enum {NOT_TRIED, TMP_REJ, PERM_REJ, ACCEPTED} cutthrough_done = NOT_TRIED;
1641 error_block *bad_addresses = NULL;
1643 uschar *frozen_by = NULL;
1644 uschar *queued_by = NULL;
1648 struct stat statbuf;
1650 /* Final message to give to SMTP caller, and messages from ACLs */
1652 uschar *smtp_reply = NULL;
1653 uschar *user_msg, *log_msg;
1655 /* Working header pointers */
1657 header_line *h, *next;
1659 /* Flags for noting the existence of certain headers (only one left) */
1661 BOOL date_header_exists = FALSE;
1663 /* Pointers to receive the addresses of headers whose contents we need. */
1665 header_line *from_header = NULL;
1666 header_line *subject_header = NULL;
1667 header_line *msgid_header = NULL;
1668 header_line *received_header;
1670 #ifdef EXPERIMENTAL_DMARC
1672 #endif /* EXPERIMENTAL_DMARC */
1674 /* Variables for use when building the Received: header. */
1679 /* Release any open files that might have been cached while preparing to
1680 accept the message - e.g. by verifying addresses - because reading a message
1681 might take a fair bit of real time. */
1685 /* Extracting the recipient list from an input file is incompatible with
1686 cutthrough delivery with the no-spool option. It shouldn't be possible
1687 to set up the combination, but just in case kill any ongoing connection. */
1688 if (extract_recip || !smtp_input)
1689 cancel_cutthrough_connection(TRUE, US"not smtp input");
1691 /* Initialize the chain of headers by setting up a place-holder for Received:
1692 header. Temporarily mark it as "old", i.e. not to be used. We keep header_last
1693 pointing to the end of the chain to make adding headers simple. */
1695 received_header = header_list = header_last = store_get(sizeof(header_line));
1696 header_list->next = NULL;
1697 header_list->type = htype_old;
1698 header_list->text = NULL;
1699 header_list->slen = 0;
1701 /* Control block for the next header to be read. */
1703 next = store_get(sizeof(header_line));
1704 next->text = store_get(header_size);
1706 /* Initialize message id to be null (indicating no message read), and the
1707 header names list to be the normal list. Indicate there is no data file open
1708 yet, initialize the size and warning count, and deal with no size limit. */
1716 received_count = 1; /* For the one we will add */
1718 if (thismessage_size_limit <= 0) thismessage_size_limit = INT_MAX;
1720 /* While reading the message, the following counts are computed. */
1722 message_linecount = body_linecount = body_zerocount =
1723 max_received_linelength = 0;
1725 #ifndef DISABLE_DKIM
1726 /* Call into DKIM to set up the context. In CHUNKING mode
1727 we clear the dot-stuffing flag */
1728 if (smtp_input && !smtp_batched_input && !dkim_disable_verify)
1729 dkim_exim_verify_init(chunking_state <= CHUNKING_OFFERED);
1732 #ifdef EXPERIMENTAL_DMARC
1733 /* initialize libopendmarc */
1734 dmarc_up = dmarc_init();
1737 /* Remember the time of reception. Exim uses time+pid for uniqueness of message
1738 ids, and fractions of a second are required. See the comments that precede the
1739 message id creation below. */
1741 (void)gettimeofday(&message_id_tv, NULL);
1743 /* For other uses of the received time we can operate with granularity of one
1744 second, and for that we use the global variable received_time. This is for
1745 things like ultimate message timeouts. */
1747 received_time = message_id_tv;
1749 /* If SMTP input, set the special handler for timeouts. The alarm() calls
1750 happen in the smtp_getc() function when it refills its buffer. */
1752 if (smtp_input) os_non_restarting_signal(SIGALRM, data_timeout_handler);
1754 /* If not SMTP input, timeout happens only if configured, and we just set a
1755 single timeout for the whole message. */
1757 else if (receive_timeout > 0)
1759 os_non_restarting_signal(SIGALRM, data_timeout_handler);
1760 alarm(receive_timeout);
1763 /* SIGTERM and SIGINT are caught always. */
1765 signal(SIGTERM, data_sigterm_sigint_handler);
1766 signal(SIGINT, data_sigterm_sigint_handler);
1768 /* Header lines in messages are not supposed to be very long, though when
1769 unfolded, to: and cc: headers can take up a lot of store. We must also cope
1770 with the possibility of junk being thrown at us. Start by getting 256 bytes for
1771 storing the header, and extend this as necessary using string_cat().
1773 To cope with total lunacies, impose an upper limit on the length of the header
1774 section of the message, as otherwise the store will fill up. We must also cope
1775 with the possibility of binary zeros in the data. Hence we cannot use fgets().
1776 Folded header lines are joined into one string, leaving the '\n' characters
1777 inside them, so that writing them out reproduces the input.
1779 Loop for each character of each header; the next structure for chaining the
1780 header is set up already, with ptr the offset of the next character in
1785 int ch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1787 /* If we hit EOF on a SMTP connection, it's an error, since incoming
1788 SMTP must have a correct "." terminator. */
1790 if (ch == EOF && smtp_input /* && !smtp_batched_input */)
1792 smtp_reply = handle_lost_connection(US" (header)");
1794 goto TIDYUP; /* Skip to end of function */
1797 /* See if we are at the current header's size limit - there must be at least
1798 four bytes left. This allows for the new character plus a zero, plus two for
1799 extra insertions when we are playing games with dots and carriage returns. If
1800 we are at the limit, extend the text buffer. This could have been done
1801 automatically using string_cat() but because this is a tightish loop storing
1802 only one character at a time, we choose to do it inline. Normally
1803 store_extend() will be able to extend the block; only at the end of a big
1804 store block will a copy be needed. To handle the case of very long headers
1805 (and sometimes lunatic messages can have ones that are 100s of K long) we
1806 call store_release() for strings that have been copied - if the string is at
1807 the start of a block (and therefore the only thing in it, because we aren't
1808 doing any other gets), the block gets freed. We can only do this release if
1809 there were no allocations since the once that we want to free. */
1811 if (ptr >= header_size - 4)
1813 int oldsize = header_size;
1814 /* header_size += 256; */
1816 if (!store_extend(next->text, oldsize, header_size))
1817 next->text = store_newblock(next->text, header_size, ptr);
1820 /* Cope with receiving a binary zero. There is dispute about whether
1821 these should be allowed in RFC 822 messages. The middle view is that they
1822 should not be allowed in headers, at least. Exim takes this attitude at
1823 the moment. We can't just stomp on them here, because we don't know that
1824 this line is a header yet. Set a flag to cause scanning later. */
1826 if (ch == 0) had_zero++;
1828 /* Test for termination. Lines in remote SMTP are terminated by CRLF, while
1829 those from data files use just LF. Treat LF in local SMTP input as a
1830 terminator too. Treat EOF as a line terminator always. */
1832 if (ch == EOF) goto EOL;
1834 /* FUDGE: There are sites out there that don't send CRs before their LFs, and
1835 other MTAs accept this. We are therefore forced into this "liberalisation"
1836 too, so we accept LF as a line terminator whatever the source of the message.
1837 However, if the first line of the message ended with a CRLF, we treat a bare
1838 LF specially by inserting a white space after it to ensure that the header
1839 line is not terminated. */
1843 if (first_line_ended_crlf == TRUE_UNSET) first_line_ended_crlf = FALSE;
1844 else if (first_line_ended_crlf) receive_ungetc(' ');
1848 /* This is not the end of the line. If this is SMTP input and this is
1849 the first character in the line and it is a "." character, ignore it.
1850 This implements the dot-doubling rule, though header lines starting with
1851 dots aren't exactly common. They are legal in RFC 822, though. If the
1852 following is CRLF or LF, this is the line that that terminates the
1853 entire message. We set message_ended to indicate this has happened (to
1854 prevent further reading), and break out of the loop, having freed the
1855 empty header, and set next = NULL to indicate no data line. */
1857 if (ptr == 0 && ch == '.' && dot_ends)
1859 ch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1862 ch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1866 ch = '\r'; /* Revert to CR */
1871 message_ended = END_DOT;
1874 break; /* End character-reading loop */
1877 /* For non-SMTP input, the dot at the start of the line was really a data
1878 character. What is now in ch is the following character. We guaranteed
1879 enough space for this above. */
1883 next->text[ptr++] = '.';
1888 /* If CR is immediately followed by LF, end the line, ignoring the CR, and
1889 remember this case if this is the first line ending. */
1893 ch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1896 if (first_line_ended_crlf == TRUE_UNSET) first_line_ended_crlf = TRUE;
1900 /* Otherwise, put back the character after CR, and turn the bare CR
1903 ch = (receive_ungetc)(ch);
1904 next->text[ptr++] = '\n';
1909 /* We have a data character for the header line. */
1911 next->text[ptr++] = ch; /* Add to buffer */
1912 message_size++; /* Total message size so far */
1914 /* Handle failure due to a humungously long header section. The >= allows
1915 for the terminating \n. Add what we have so far onto the headers list so
1916 that it gets reflected in any error message, and back up the just-read
1919 if (message_size >= header_maxsize)
1921 next->text[ptr] = 0;
1923 next->type = htype_other;
1925 header_last->next = next;
1928 log_write(0, LOG_MAIN, "ridiculously long message header received from "
1929 "%s (more than %d characters): message abandoned",
1930 sender_host_unknown? sender_ident : sender_fullhost, header_maxsize);
1934 smtp_reply = US"552 Message header is ridiculously long";
1935 receive_swallow_smtp();
1936 goto TIDYUP; /* Skip to end of function */
1941 give_local_error(ERRMESS_VLONGHEADER,
1942 string_sprintf("message header longer than %d characters received: "
1943 "message not accepted", header_maxsize), US"", error_rc, stdin,
1945 /* Does not return */
1949 continue; /* With next input character */
1951 /* End of header line reached */
1955 /* Keep track of lines for BSMTP errors and overall message_linecount. */
1957 receive_linecount++;
1958 message_linecount++;
1960 /* Keep track of maximum line length */
1962 if (ptr - prevlines_length > max_received_linelength)
1963 max_received_linelength = ptr - prevlines_length;
1964 prevlines_length = ptr + 1;
1966 /* Now put in the terminating newline. There is always space for
1967 at least two more characters. */
1969 next->text[ptr++] = '\n';
1972 /* A blank line signals the end of the headers; release the unwanted
1973 space and set next to NULL to indicate this. */
1982 /* There is data in the line; see if the next input character is a
1983 whitespace character. If it is, we have a continuation of this header line.
1984 There is always space for at least one character at this point. */
1988 int nextch = (receive_getc)(GETC_BUFFER_UNLIMITED);
1989 if (nextch == ' ' || nextch == '\t')
1991 next->text[ptr++] = nextch;
1993 continue; /* Iterate the loop */
1995 else if (nextch != EOF) (receive_ungetc)(nextch); /* For next time */
1996 else ch = EOF; /* Cause main loop to exit at end */
1999 /* We have got to the real line end. Terminate the string and release store
2000 beyond it. If it turns out to be a real header, internal binary zeros will
2001 be squashed later. */
2003 next->text[ptr] = 0;
2005 store_reset(next->text + ptr + 1);
2007 /* Check the running total size against the overall message size limit. We
2008 don't expect to fail here, but if the overall limit is set less than MESSAGE_
2009 MAXSIZE and a big header is sent, we want to catch it. Just stop reading
2010 headers - the code to read the body will then also hit the buffer. */
2012 if (message_size > thismessage_size_limit) break;
2014 /* A line that is not syntactically correct for a header also marks
2015 the end of the headers. In this case, we leave next containing the
2016 first data line. This might actually be several lines because of the
2017 continuation logic applied above, but that doesn't matter.
2019 It turns out that smail, and presumably sendmail, accept leading lines
2022 From ph10 Fri Jan 5 12:35 GMT 1996
2024 in messages. The "mail" command on Solaris 2 sends such lines. I cannot
2025 find any documentation of this, but for compatibility it had better be
2026 accepted. Exim restricts it to the case of non-smtp messages, and
2027 treats it as an alternative to the -f command line option. Thus it is
2028 ignored except for trusted users or filter testing. Otherwise it is taken
2029 as the sender address, unless -f was used (sendmail compatibility).
2031 It further turns out that some UUCPs generate the From_line in a different
2034 From ph10 Fri, 7 Jan 97 14:00:00 GMT
2036 The regex for matching these things is now capable of recognizing both
2037 formats (including 2- and 4-digit years in the latter). In fact, the regex
2038 is now configurable, as is the expansion string to fish out the sender.
2040 Even further on it has been discovered that some broken clients send
2041 these lines in SMTP messages. There is now an option to ignore them from
2042 specified hosts or networks. Sigh. */
2044 if ( header_last == header_list
2046 || ( sender_host_address
2047 && verify_check_host(&ignore_fromline_hosts) == OK
2049 || (!sender_host_address && ignore_fromline_local)
2051 && regex_match_and_setup(regex_From, next->text, 0, -1)
2054 if (!sender_address_forced)
2056 uschar *uucp_sender = expand_string(uucp_from_sender);
2058 log_write(0, LOG_MAIN|LOG_PANIC,
2059 "expansion of \"%s\" failed after matching "
2060 "\"From \" line: %s", uucp_from_sender, expand_string_message);
2063 int start, end, domain;
2065 uschar *newsender = parse_extract_address(uucp_sender, &errmess,
2066 &start, &end, &domain, TRUE);
2069 if (domain == 0 && newsender[0] != 0)
2070 newsender = rewrite_address_qualify(newsender, FALSE);
2072 if (filter_test != FTEST_NONE || receive_check_set_sender(newsender))
2074 sender_address = newsender;
2076 if (trusted_caller || filter_test != FTEST_NONE)
2078 authenticated_sender = NULL;
2079 originator_name = US"";
2080 sender_local = FALSE;
2083 if (filter_test != FTEST_NONE)
2084 printf("Sender taken from \"From \" line\n");
2091 /* Not a leading "From " line. Check to see if it is a valid header line.
2092 Header names may contain any non-control characters except space and colon,
2097 uschar *p = next->text;
2099 /* If not a valid header line, break from the header reading loop, leaving
2100 next != NULL, indicating that it holds the first line of the body. */
2102 if (isspace(*p)) break;
2103 while (mac_isgraph(*p) && *p != ':') p++;
2104 while (isspace(*p)) p++;
2107 body_zerocount = had_zero;
2111 /* We have a valid header line. If there were any binary zeroes in
2112 the line, stomp on them here. */
2115 for (p = next->text; p < next->text + ptr; p++) if (*p == 0) *p = '?';
2117 /* It is perfectly legal to have an empty continuation line
2118 at the end of a header, but it is confusing to humans
2119 looking at such messages, since it looks like a blank line.
2120 Reduce confusion by removing redundant white space at the
2121 end. We know that there is at least one printing character
2122 (the ':' tested for above) so there is no danger of running
2125 p = next->text + ptr - 2;
2128 while (*p == ' ' || *p == '\t') p--;
2129 if (*p != '\n') break;
2130 ptr = (p--) - next->text + 1;
2131 message_size -= next->slen - ptr;
2132 next->text[ptr] = 0;
2136 /* Add the header to the chain */
2138 next->type = htype_other;
2140 header_last->next = next;
2143 /* Check the limit for individual line lengths. This comes after adding to
2144 the chain so that the failing line is reflected if a bounce is generated
2145 (for a local message). */
2147 if (header_line_maxsize > 0 && next->slen > header_line_maxsize)
2149 log_write(0, LOG_MAIN, "overlong message header line received from "
2150 "%s (more than %d characters): message abandoned",
2151 sender_host_unknown? sender_ident : sender_fullhost,
2152 header_line_maxsize);
2156 smtp_reply = US"552 A message header line is too long";
2157 receive_swallow_smtp();
2158 goto TIDYUP; /* Skip to end of function */
2162 give_local_error(ERRMESS_VLONGHDRLINE,
2163 string_sprintf("message header line longer than %d characters "
2164 "received: message not accepted", header_line_maxsize), US"",
2165 error_rc, stdin, header_list->next);
2166 /* Does not return */
2169 /* Note if any resent- fields exist. */
2171 if (!resents_exist && strncmpic(next->text, US"resent-", 7) == 0)
2173 resents_exist = TRUE;
2174 resent_prefix = US"Resent-";
2178 /* Reject CHUNKING messages that do not CRLF their first header line */
2180 if (!first_line_ended_crlf && chunking_state > CHUNKING_OFFERED)
2182 log_write(L_size_reject, LOG_MAIN|LOG_REJECT, "rejected from <%s>%s%s%s%s: "
2183 "Non-CRLF-terminated header, under CHUNKING: message abandoned",
2185 sender_fullhost ? " H=" : "", sender_fullhost ? sender_fullhost : US"",
2186 sender_ident ? " U=" : "", sender_ident ? sender_ident : US"");
2187 smtp_printf("552 Message header not CRLF terminated\r\n", FALSE);
2190 goto TIDYUP; /* Skip to end of function */
2193 /* The line has been handled. If we have hit EOF, break out of the loop,
2194 indicating no pending data line. */
2196 if (ch == EOF) { next = NULL; break; }
2198 /* Set up for the next header */
2201 next = store_get(sizeof(header_line));
2202 next->text = store_get(header_size);
2205 prevlines_length = 0;
2206 } /* Continue, starting to read the next header */
2208 /* At this point, we have read all the headers into a data structure in main
2209 store. The first header is still the dummy placeholder for the Received: header
2210 we are going to generate a bit later on. If next != NULL, it contains the first
2211 data line - which terminated the headers before reaching a blank line (not the
2216 debug_printf(">>Headers received:\n");
2217 for (h = header_list->next; h; h = h->next)
2218 debug_printf("%s", h->text);
2222 /* End of file on any SMTP connection is an error. If an incoming SMTP call
2223 is dropped immediately after valid headers, the next thing we will see is EOF.
2224 We must test for this specially, as further down the reading of the data is
2225 skipped if already at EOF. */
2227 if (smtp_input && (receive_feof)())
2229 smtp_reply = handle_lost_connection(US" (after header)");
2231 goto TIDYUP; /* Skip to end of function */
2234 /* If this is a filter test run and no headers were read, output a warning
2235 in case there is a mistake in the test message. */
2237 if (filter_test != FTEST_NONE && header_list->next == NULL)
2238 printf("Warning: no message headers read\n");
2241 /* Scan the headers to identify them. Some are merely marked for later
2242 processing; some are dealt with here. */
2244 for (h = header_list->next; h; h = h->next)
2246 BOOL is_resent = strncmpic(h->text, US"resent-", 7) == 0;
2247 if (is_resent) contains_resent_headers = TRUE;
2249 switch (header_checkname(h, is_resent))
2252 h->type = htype_bcc; /* Both Bcc: and Resent-Bcc: */
2256 h->type = htype_cc; /* Both Cc: and Resent-Cc: */
2259 /* Record whether a Date: or Resent-Date: header exists, as appropriate. */
2262 if (!resents_exist || is_resent) date_header_exists = TRUE;
2265 /* Same comments as about Return-Path: below. */
2267 case htype_delivery_date:
2268 if (delivery_date_remove) h->type = htype_old;
2271 /* Same comments as about Return-Path: below. */
2273 case htype_envelope_to:
2274 if (envelope_to_remove) h->type = htype_old;
2277 /* Mark all "From:" headers so they get rewritten. Save the one that is to
2278 be used for Sender: checking. For Sendmail compatibility, if the "From:"
2279 header consists of just the login id of the user who called Exim, rewrite
2280 it with the gecos field first. Apply this rule to Resent-From: if there
2281 are resent- fields. */
2284 h->type = htype_from;
2285 if (!resents_exist || is_resent)
2291 uschar *s = Ustrchr(h->text, ':') + 1;
2292 while (isspace(*s)) s++;
2293 len = h->slen - (s - h->text) - 1;
2294 if (Ustrlen(originator_login) == len &&
2295 strncmpic(s, originator_login, len) == 0)
2297 uschar *name = is_resent? US"Resent-From" : US"From";
2298 header_add(htype_from, "%s: %s <%s@%s>\n", name, originator_name,
2299 originator_login, qualify_domain_sender);
2300 from_header = header_last;
2301 h->type = htype_old;
2302 DEBUG(D_receive|D_rewrite)
2303 debug_printf("rewrote \"%s:\" header using gecos\n", name);
2309 /* Identify the Message-id: header for generating "in-reply-to" in the
2310 autoreply transport. For incoming logging, save any resent- value. In both
2311 cases, take just the first of any multiples. */
2314 if (msgid_header == NULL && (!resents_exist || is_resent))
2321 /* Flag all Received: headers */
2323 case htype_received:
2324 h->type = htype_received;
2328 /* "Reply-to:" is just noted (there is no resent-reply-to field) */
2330 case htype_reply_to:
2331 h->type = htype_reply_to;
2334 /* The Return-path: header is supposed to be added to messages when
2335 they leave the SMTP system. We shouldn't receive messages that already
2336 contain Return-path. However, since Exim generates Return-path: on
2337 local delivery, resent messages may well contain it. We therefore
2338 provide an option (which defaults on) to remove any Return-path: headers
2339 on input. Removal actually means flagging as "old", which prevents the
2340 header being transmitted with the message. */
2342 case htype_return_path:
2343 if (return_path_remove) h->type = htype_old;
2345 /* If we are testing a mail filter file, use the value of the
2346 Return-Path: header to set up the return_path variable, which is not
2347 otherwise set. However, remove any <> that surround the address
2348 because the variable doesn't have these. */
2350 if (filter_test != FTEST_NONE)
2352 uschar *start = h->text + 12;
2353 uschar *end = start + Ustrlen(start);
2354 while (isspace(*start)) start++;
2355 while (end > start && isspace(end[-1])) end--;
2356 if (*start == '<' && end[-1] == '>')
2361 return_path = string_copyn(start, end - start);
2362 printf("Return-path taken from \"Return-path:\" header line\n");
2366 /* If there is a "Sender:" header and the message is locally originated,
2367 and from an untrusted caller and suppress_local_fixups is not set, or if we
2368 are in submission mode for a remote message, mark it "old" so that it will
2369 not be transmitted with the message, unless active_local_sender_retain is
2370 set. (This can only be true if active_local_from_check is false.) If there
2371 are any resent- headers in the message, apply this rule to Resent-Sender:
2372 instead of Sender:. Messages with multiple resent- header sets cannot be
2373 tidily handled. (For this reason, at least one MUA - Pine - turns old
2374 resent- headers into X-resent- headers when resending, leaving just one
2378 h->type = ((!active_local_sender_retain &&
2380 (sender_local && !trusted_caller && !suppress_local_fixups)
2384 (!resents_exist||is_resent))?
2385 htype_old : htype_sender;
2388 /* Remember the Subject: header for logging. There is no Resent-Subject */
2394 /* "To:" gets flagged, and the existence of a recipient header is noted,
2395 whether it's resent- or not. */
2400 to_or_cc_header_exists = TRUE;
2406 /* Extract recipients from the headers if that is required (the -t option).
2407 Note that this is documented as being done *before* any address rewriting takes
2408 place. There are two possibilities:
2410 (1) According to sendmail documentation for Solaris, IRIX, and HP-UX, any
2411 recipients already listed are to be REMOVED from the message. Smail 3 works
2412 like this. We need to build a non-recipients tree for that list, because in
2413 subsequent processing this data is held in a tree and that's what the
2414 spool_write_header() function expects. Make sure that non-recipient addresses
2415 are fully qualified and rewritten if necessary.
2417 (2) According to other sendmail documentation, -t ADDS extracted recipients to
2418 those in the command line arguments (and it is rumoured some other MTAs do
2419 this). Therefore, there is an option to make Exim behave this way.
2421 *** Notes on "Resent-" header lines ***
2423 The presence of resent-headers in the message makes -t horribly ambiguous.
2424 Experiments with sendmail showed that it uses recipients for all resent-
2425 headers, totally ignoring the concept of "sets of resent- headers" as described
2426 in RFC 2822 section 3.6.6. Sendmail also amalgamates them into a single set
2427 with all the addresses in one instance of each header.
2429 This seems to me not to be at all sensible. Before release 4.20, Exim 4 gave an
2430 error for -t if there were resent- headers in the message. However, after a
2431 discussion on the mailing list, I've learned that there are MUAs that use
2432 resent- headers with -t, and also that the stuff about sets of resent- headers
2433 and their ordering in RFC 2822 is generally ignored. An MUA that submits a
2434 message with -t and resent- header lines makes sure that only *its* resent-
2435 headers are present; previous ones are often renamed as X-resent- for example.
2437 Consequently, Exim has been changed so that, if any resent- header lines are
2438 present, the recipients are taken from all of the appropriate resent- lines,
2439 and not from the ordinary To:, Cc:, etc. */
2444 error_block **bnext = &bad_addresses;
2446 if (extract_addresses_remove_arguments)
2448 while (recipients_count-- > 0)
2450 uschar *s = rewrite_address(recipients_list[recipients_count].address,
2451 TRUE, TRUE, global_rewrite_rules, rewrite_existflags);
2452 tree_add_nonrecipient(s);
2454 recipients_list = NULL;
2455 recipients_count = recipients_list_max = 0;
2458 /* Now scan the headers */
2460 for (h = header_list->next; h; h = h->next)
2462 if ((h->type == htype_to || h->type == htype_cc || h->type == htype_bcc) &&
2463 (!contains_resent_headers || strncmpic(h->text, US"resent-", 7) == 0))
2465 uschar *s = Ustrchr(h->text, ':') + 1;
2466 while (isspace(*s)) s++;
2468 parse_allow_group = TRUE; /* Allow address group syntax */
2472 uschar *ss = parse_find_address_end(s, FALSE);
2473 uschar *recipient, *errmess, *p, *pp;
2474 int start, end, domain;
2476 /* Check on maximum */
2478 if (recipients_max > 0 && ++rcount > recipients_max)
2480 give_local_error(ERRMESS_TOOMANYRECIP, US"too many recipients",
2481 US"message rejected: ", error_rc, stdin, NULL);
2482 /* Does not return */
2485 /* Make a copy of the address, and remove any internal newlines. These
2486 may be present as a result of continuations of the header line. The
2487 white space that follows the newline must not be removed - it is part
2490 pp = recipient = store_get(ss - s + 1);
2491 for (p = s; p < ss; p++) if (*p != '\n') *pp++ = *p;
2496 BOOL b = allow_utf8_domains;
2497 allow_utf8_domains = TRUE;
2499 recipient = parse_extract_address(recipient, &errmess, &start, &end,
2503 if (string_is_utf8(recipient))
2504 message_smtputf8 = TRUE;
2506 allow_utf8_domains = b;
2510 /* Keep a list of all the bad addresses so we can send a single
2511 error message at the end. However, an empty address is not an error;
2512 just ignore it. This can come from an empty group list like
2514 To: Recipients of list:;
2516 If there are no recipients at all, an error will occur later. */
2518 if (recipient == NULL && Ustrcmp(errmess, "empty address") != 0)
2520 int len = Ustrlen(s);
2521 error_block *b = store_get(sizeof(error_block));
2522 while (len > 0 && isspace(s[len-1])) len--;
2524 b->text1 = string_printing(string_copyn(s, len));
2530 /* If the recipient is already in the nonrecipients tree, it must
2531 have appeared on the command line with the option extract_addresses_
2532 remove_arguments set. Do not add it to the recipients, and keep a note
2533 that this has happened, in order to give a better error if there are
2534 no recipients left. */
2536 else if (recipient != NULL)
2538 if (tree_search(tree_nonrecipients, recipient) == NULL)
2539 receive_add_recipient(recipient, -1);
2541 extracted_ignored = TRUE;
2544 /* Move on past this address */
2546 s = ss + (*ss? 1:0);
2547 while (isspace(*s)) s++;
2548 } /* Next address */
2550 parse_allow_group = FALSE; /* Reset group syntax flags */
2551 parse_found_group = FALSE;
2553 /* If this was the bcc: header, mark it "old", which means it
2554 will be kept on the spool, but not transmitted as part of the
2557 if (h->type == htype_bcc) h->type = htype_old;
2558 } /* For appropriate header line */
2559 } /* For each header line */
2563 /* Now build the unique message id. This has changed several times over the
2564 lifetime of Exim. This description was rewritten for Exim 4.14 (February 2003).
2565 Retaining all the history in the comment has become too unwieldy - read
2566 previous release sources if you want it.
2568 The message ID has 3 parts: tttttt-pppppp-ss. Each part is a number in base 62.
2569 The first part is the current time, in seconds. The second part is the current
2570 pid. Both are large enough to hold 32-bit numbers in base 62. The third part
2571 can hold a number in the range 0-3843. It used to be a computed sequence
2572 number, but is now the fractional component of the current time in units of
2573 1/2000 of a second (i.e. a value in the range 0-1999). After a message has been
2574 received, Exim ensures that the timer has ticked at the appropriate level
2575 before proceeding, to avoid duplication if the pid happened to be re-used
2576 within the same time period. It seems likely that most messages will take at
2577 least half a millisecond to be received, so no delay will normally be
2578 necessary. At least for some time...
2580 There is a modification when localhost_number is set. Formerly this was allowed
2581 to be as large as 255. Now it is restricted to the range 0-16, and the final
2582 component of the message id becomes (localhost_number * 200) + fractional time
2583 in units of 1/200 of a second (i.e. a value in the range 0-3399).
2585 Some not-really-Unix operating systems use case-insensitive file names (Darwin,
2586 Cygwin). For these, we have to use base 36 instead of base 62. Luckily, this
2587 still allows the tttttt field to hold a large enough number to last for some
2588 more decades, and the final two-digit field can hold numbers up to 1295, which
2589 is enough for milliseconds (instead of 1/2000 of a second).
2591 However, the pppppp field cannot hold a 32-bit pid, but it can hold a 31-bit
2592 pid, so it is probably safe because pids have to be positive. The
2593 localhost_number is restricted to 0-10 for these hosts, and when it is set, the
2594 final field becomes (localhost_number * 100) + fractional time in centiseconds.
2596 Note that string_base62() returns its data in a static storage block, so it
2597 must be copied before calling string_base62() again. It always returns exactly
2600 There doesn't seem to be anything in the RFC which requires a message id to
2601 start with a letter, but Smail was changed to ensure this. The external form of
2602 the message id (as supplied by string expansion) therefore starts with an
2603 additional leading 'E'. The spool file names do not include this leading
2604 letter and it is not used internally.
2606 NOTE: If ever the format of message ids is changed, the regular expression for
2607 checking that a string is in this format must be updated in a corresponding
2608 way. It appears in the initializing code in exim.c. The macro MESSAGE_ID_LENGTH
2609 must also be changed to reflect the correct string length. The queue-sort code
2610 needs to know the layout. Then, of course, other programs that rely on the
2611 message id format will need updating too. */
2613 Ustrncpy(message_id, string_base62((long int)(message_id_tv.tv_sec)), 6);
2614 message_id[6] = '-';
2615 Ustrncpy(message_id + 7, string_base62((long int)getpid()), 6);
2617 /* Deal with the case where the host number is set. The value of the number was
2618 checked when it was read, to ensure it isn't too big. The timing granularity is
2619 left in id_resolution so that an appropriate wait can be done after receiving
2620 the message, if necessary (we hope it won't be). */
2622 if (host_number_string)
2624 id_resolution = (BASE_62 == 62)? 5000 : 10000;
2625 sprintf(CS(message_id + MESSAGE_ID_LENGTH - 3), "-%2s",
2626 string_base62((long int)(
2627 host_number * (1000000/id_resolution) +
2628 message_id_tv.tv_usec/id_resolution)) + 4);
2631 /* Host number not set: final field is just the fractional time at an
2632 appropriate resolution. */
2636 id_resolution = (BASE_62 == 62)? 500 : 1000;
2637 sprintf(CS(message_id + MESSAGE_ID_LENGTH - 3), "-%2s",
2638 string_base62((long int)(message_id_tv.tv_usec/id_resolution)) + 4);
2641 /* Add the current message id onto the current process info string if
2644 (void)string_format(process_info + process_info_len,
2645 PROCESS_INFO_SIZE - process_info_len, " id=%s", message_id);
2647 /* If we are using multiple input directories, set up the one for this message
2648 to be the least significant base-62 digit of the time of arrival. Otherwise
2649 ensure that it is an empty string. */
2651 message_subdir[0] = split_spool_directory ? message_id[5] : 0;
2653 /* Now that we have the message-id, if there is no message-id: header, generate
2654 one, but only for local (without suppress_local_fixups) or submission mode
2655 messages. This can be user-configured if required, but we had better flatten
2656 any illegal characters therein. */
2659 && ((!sender_host_address && !suppress_local_fixups) || submission_mode))
2662 uschar *id_text = US"";
2663 uschar *id_domain = primary_hostname;
2665 /* Permit only letters, digits, dots, and hyphens in the domain */
2667 if (message_id_domain)
2669 uschar *new_id_domain = expand_string(message_id_domain);
2672 if (!expand_string_forcedfail)
2673 log_write(0, LOG_MAIN|LOG_PANIC,
2674 "expansion of \"%s\" (message_id_header_domain) "
2675 "failed: %s", message_id_domain, expand_string_message);
2677 else if (*new_id_domain)
2679 id_domain = new_id_domain;
2680 for (p = id_domain; *p; p++)
2681 if (!isalnum(*p) && *p != '.') *p = '-'; /* No need to test '-' ! */
2685 /* Permit all characters except controls and RFC 2822 specials in the
2686 additional text part. */
2688 if (message_id_text)
2690 uschar *new_id_text = expand_string(message_id_text);
2693 if (!expand_string_forcedfail)
2694 log_write(0, LOG_MAIN|LOG_PANIC,
2695 "expansion of \"%s\" (message_id_header_text) "
2696 "failed: %s", message_id_text, expand_string_message);
2698 else if (*new_id_text)
2700 id_text = new_id_text;
2701 for (p = id_text; *p; p++) if (mac_iscntrl_or_special(*p)) *p = '-';
2705 /* Add the header line
2706 * Resent-* headers are prepended, per RFC 5322 3.6.6. Non-Resent-* are
2707 * appended, to preserve classical expectations of header ordering. */
2709 header_add_at_position(!resents_exist, NULL, FALSE, htype_id,
2710 "%sMessage-Id: <%s%s%s@%s>\n", resent_prefix, message_id_external,
2711 (*id_text == 0)? "" : ".", id_text, id_domain);
2714 /* If we are to log recipients, keep a copy of the raw ones before any possible
2715 rewriting. Must copy the count, because later ACLs and the local_scan()
2716 function may mess with the real recipients. */
2718 if (LOGGING(received_recipients))
2720 raw_recipients = store_get(recipients_count * sizeof(uschar *));
2721 for (i = 0; i < recipients_count; i++)
2722 raw_recipients[i] = string_copy(recipients_list[i].address);
2723 raw_recipients_count = recipients_count;
2726 /* Ensure the recipients list is fully qualified and rewritten. Unqualified
2727 recipients will get here only if the conditions were right (allow_unqualified_
2728 recipient is TRUE). */
2730 for (i = 0; i < recipients_count; i++)
2731 recipients_list[i].address =
2732 rewrite_address(recipients_list[i].address, TRUE, TRUE,
2733 global_rewrite_rules, rewrite_existflags);
2735 /* If there is no From: header, generate one for local (without
2736 suppress_local_fixups) or submission_mode messages. If there is no sender
2737 address, but the sender is local or this is a local delivery error, use the
2738 originator login. This shouldn't happen for genuine bounces, but might happen
2739 for autoreplies. The addition of From: must be done *before* checking for the
2740 possible addition of a Sender: header, because untrusted_set_sender allows an
2741 untrusted user to set anything in the envelope (which might then get info
2742 From:) but we still want to ensure a valid Sender: if it is required. */
2745 && ((!sender_host_address && !suppress_local_fixups) || submission_mode))
2747 uschar *oname = US"";
2749 /* Use the originator_name if this is a locally submitted message and the
2750 caller is not trusted. For trusted callers, use it only if -F was used to
2751 force its value or if we have a non-SMTP message for which -f was not used
2752 to set the sender. */
2754 if (!sender_host_address)
2756 if (!trusted_caller || sender_name_forced ||
2757 (!smtp_input && !sender_address_forced))
2758 oname = originator_name;
2761 /* For non-locally submitted messages, the only time we use the originator
2762 name is when it was forced by the /name= option on control=submission. */
2764 else if (submission_name) oname = submission_name;
2766 /* Envelope sender is empty */
2768 if (!*sender_address)
2770 uschar *fromstart, *fromend;
2772 fromstart = string_sprintf("%sFrom: %s%s",
2773 resent_prefix, oname, *oname ? " <" : "");
2774 fromend = *oname ? US">" : US"";
2776 if (sender_local || local_error_message)
2777 header_add(htype_from, "%s%s@%s%s\n", fromstart,
2778 local_part_quote(originator_login), qualify_domain_sender,
2781 else if (submission_mode && authenticated_id)
2783 if (!submission_domain)
2784 header_add(htype_from, "%s%s@%s%s\n", fromstart,
2785 local_part_quote(authenticated_id), qualify_domain_sender,
2788 else if (!*submission_domain) /* empty => whole address set */
2789 header_add(htype_from, "%s%s%s\n", fromstart, authenticated_id,
2793 header_add(htype_from, "%s%s@%s%s\n", fromstart,
2794 local_part_quote(authenticated_id), submission_domain, fromend);
2796 from_header = header_last; /* To get it checked for Sender: */
2800 /* There is a non-null envelope sender. Build the header using the original
2801 sender address, before any rewriting that might have been done while
2806 header_add(htype_from, "%sFrom: %s%s%s%s\n", resent_prefix,
2809 sender_address_unrewritten ? sender_address_unrewritten : sender_address,
2812 from_header = header_last; /* To get it checked for Sender: */
2817 /* If the sender is local (without suppress_local_fixups), or if we are in
2818 submission mode and there is an authenticated_id, check that an existing From:
2819 is correct, and if not, generate a Sender: header, unless disabled. Any
2820 previously-existing Sender: header was removed above. Note that sender_local,
2821 as well as being TRUE if the caller of exim is not trusted, is also true if a
2822 trusted caller did not supply a -f argument for non-smtp input. To allow
2823 trusted callers to forge From: without supplying -f, we have to test explicitly
2824 here. If the From: header contains more than one address, then the call to
2825 parse_extract_address fails, and a Sender: header is inserted, as required. */
2828 && ( active_local_from_check
2829 && ( sender_local && !trusted_caller && !suppress_local_fixups
2830 || submission_mode && authenticated_id
2833 BOOL make_sender = TRUE;
2834 int start, end, domain;
2836 uschar *from_address =
2837 parse_extract_address(Ustrchr(from_header->text, ':') + 1, &errmess,
2838 &start, &end, &domain, FALSE);
2839 uschar *generated_sender_address;
2841 generated_sender_address = submission_mode
2842 ? !submission_domain
2843 ? string_sprintf("%s@%s",
2844 local_part_quote(authenticated_id), qualify_domain_sender)
2845 : !*submission_domain /* empty => full address */
2846 ? string_sprintf("%s", authenticated_id)
2847 : string_sprintf("%s@%s",
2848 local_part_quote(authenticated_id), submission_domain)
2849 : string_sprintf("%s@%s",
2850 local_part_quote(originator_login), qualify_domain_sender);
2852 /* Remove permitted prefixes and suffixes from the local part of the From:
2853 address before doing the comparison with the generated sender. */
2858 uschar *at = domain ? from_address + domain - 1 : NULL;
2861 from_address += route_check_prefix(from_address, local_from_prefix);
2862 slen = route_check_suffix(from_address, local_from_suffix);
2865 memmove(from_address+slen, from_address, Ustrlen(from_address)-slen);
2866 from_address += slen;
2870 if ( strcmpic(generated_sender_address, from_address) == 0
2871 || (!domain && strcmpic(from_address, originator_login) == 0))
2872 make_sender = FALSE;
2875 /* We have to cause the Sender header to be rewritten if there are
2876 appropriate rewriting rules. */
2879 if (submission_mode && !submission_name)
2880 header_add(htype_sender, "%sSender: %s\n", resent_prefix,
2881 generated_sender_address);
2883 header_add(htype_sender, "%sSender: %s <%s>\n",
2885 submission_mode? submission_name : originator_name,
2886 generated_sender_address);
2888 /* Ensure that a non-null envelope sender address corresponds to the
2889 submission mode sender address. */
2891 if (submission_mode && *sender_address)
2893 if (!sender_address_unrewritten)
2894 sender_address_unrewritten = sender_address;
2895 sender_address = generated_sender_address;
2896 if (Ustrcmp(sender_address_unrewritten, generated_sender_address) != 0)
2897 log_write(L_address_rewrite, LOG_MAIN,
2898 "\"%s\" from env-from rewritten as \"%s\" by submission mode",
2899 sender_address_unrewritten, generated_sender_address);
2903 /* If there are any rewriting rules, apply them to the sender address, unless
2904 it has already been rewritten as part of verification for SMTP input. */
2906 if (global_rewrite_rules && !sender_address_unrewritten && *sender_address)
2908 sender_address = rewrite_address(sender_address, FALSE, TRUE,
2909 global_rewrite_rules, rewrite_existflags);
2910 DEBUG(D_receive|D_rewrite)
2911 debug_printf("rewritten sender = %s\n", sender_address);
2915 /* The headers must be run through rewrite_header(), because it ensures that
2916 addresses are fully qualified, as well as applying any rewriting rules that may
2919 Qualification of header addresses in a message from a remote host happens only
2920 if the host is in sender_unqualified_hosts or recipient_unqualified hosts, as
2921 appropriate. For local messages, qualification always happens, unless -bnq is
2922 used to explicitly suppress it. No rewriting is done for an unqualified address
2923 that is left untouched.
2925 We start at the second header, skipping our own Received:. This rewriting is
2926 documented as happening *after* recipient addresses are taken from the headers
2927 by the -t command line option. An added Sender: gets rewritten here. */
2929 for (h = header_list->next; h; h = h->next)
2931 header_line *newh = rewrite_header(h, NULL, NULL, global_rewrite_rules,
2932 rewrite_existflags, TRUE);
2937 /* An RFC 822 (sic) message is not legal unless it has at least one of "to",
2938 "cc", or "bcc". Note that although the minimal examples in RFC 822 show just
2939 "to" or "bcc", the full syntax spec allows "cc" as well. If any resent- header
2940 exists, this applies to the set of resent- headers rather than the normal set.
2942 The requirement for a recipient header has been removed in RFC 2822. At this
2943 point in the code, earlier versions of Exim added a To: header for locally
2944 submitted messages, and an empty Bcc: header for others. In the light of the
2945 changes in RFC 2822, this was dropped in November 2003. */
2948 /* If there is no date header, generate one if the message originates locally
2949 (i.e. not over TCP/IP) and suppress_local_fixups is not set, or if the
2950 submission mode flag is set. Messages without Date: are not valid, but it seems
2951 to be more confusing if Exim adds one to all remotely-originated messages.
2952 As per Message-Id, we prepend if resending, else append.
2955 if ( !date_header_exists
2956 && ((!sender_host_address && !suppress_local_fixups) || submission_mode))
2957 header_add_at_position(!resents_exist, NULL, FALSE, htype_other,
2958 "%sDate: %s\n", resent_prefix, tod_stamp(tod_full));
2960 search_tidyup(); /* Free any cached resources */
2962 /* Show the complete set of headers if debugging. Note that the first one (the
2963 new Received:) has not yet been set. */
2967 debug_printf(">>Headers after rewriting and local additions:\n");
2968 for (h = header_list->next; h; h = h->next)
2969 debug_printf("%c %s", h->type, h->text);
2973 /* The headers are now complete in store. If we are running in filter
2974 testing mode, that is all this function does. Return TRUE if the message
2975 ended with a dot. */
2977 if (filter_test != FTEST_NONE)
2979 process_info[process_info_len] = 0;
2980 return message_ended == END_DOT;
2983 /*XXX CHUNKING: need to cancel cutthrough under BDAT, for now. In future,
2984 think more if it could be handled. Cannot do onward CHUNKING unless
2985 inbound is, but inbound chunking ought to be ok with outbound plain.
2986 Could we do onward CHUNKING given inbound CHUNKING?
2988 if (chunking_state > CHUNKING_OFFERED)
2989 cancel_cutthrough_connection(FALSE, US"chunking active");
2991 /* Cutthrough delivery:
2992 We have to create the Received header now rather than at the end of reception,
2993 so the timestamp behaviour is a change to the normal case.
2994 Having created it, send the headers to the destination. */
2996 if (cutthrough.fd >= 0 && cutthrough.delivery)
2998 if (received_count > received_headers_max)
3000 cancel_cutthrough_connection(TRUE, US"too many headers");
3001 if (smtp_input) receive_swallow_smtp(); /* Swallow incoming SMTP */
3002 log_write(0, LOG_MAIN|LOG_REJECT, "rejected from <%s>%s%s%s%s: "
3003 "Too many \"Received\" headers",
3005 sender_fullhost ? "H=" : "", sender_fullhost ? sender_fullhost : US"",
3006 sender_ident ? "U=" : "", sender_ident ? sender_ident : US"");
3007 message_id[0] = 0; /* Indicate no message accepted */
3008 smtp_reply = US"550 Too many \"Received\" headers - suspected mail loop";
3009 goto TIDYUP; /* Skip to end of function */
3011 received_header_gen();
3012 add_acl_headers(ACL_WHERE_RCPT, US"MAIL or RCPT");
3013 (void) cutthrough_headers_send();
3017 /* Open a new spool file for the data portion of the message. We need
3018 to access it both via a file descriptor and a stream. Try to make the
3019 directory if it isn't there. */
3021 spool_name = spool_fname(US"input", message_subdir, message_id, US"-D");
3022 DEBUG(D_receive) debug_printf("Data file name: %s\n", spool_name);
3024 if ((data_fd = Uopen(spool_name, O_RDWR|O_CREAT|O_EXCL, SPOOL_MODE)) < 0)
3026 if (errno == ENOENT)
3028 (void) directory_make(spool_directory,
3029 spool_sname(US"input", message_subdir),
3030 INPUT_DIRECTORY_MODE, TRUE);
3031 data_fd = Uopen(spool_name, O_RDWR|O_CREAT|O_EXCL, SPOOL_MODE);
3034 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Failed to create spool file %s: %s",
3035 spool_name, strerror(errno));
3038 /* Make sure the file's group is the Exim gid, and double-check the mode
3039 because the group setting doesn't always get set automatically. */
3041 if (fchown(data_fd, exim_uid, exim_gid))
3042 log_write(0, LOG_MAIN|LOG_PANIC_DIE,
3043 "Failed setting ownership on spool file %s: %s",
3044 spool_name, strerror(errno));
3045 (void)fchmod(data_fd, SPOOL_MODE);
3047 /* We now have data file open. Build a stream for it and lock it. We lock only
3048 the first line of the file (containing the message ID) because otherwise there
3049 are problems when Exim is run under Cygwin (I'm told). See comments in
3050 spool_in.c, where the same locking is done. */
3052 data_file = fdopen(data_fd, "w+");
3053 lock_data.l_type = F_WRLCK;
3054 lock_data.l_whence = SEEK_SET;
3055 lock_data.l_start = 0;
3056 lock_data.l_len = SPOOL_DATA_START_OFFSET;
3058 if (fcntl(data_fd, F_SETLK, &lock_data) < 0)
3059 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Cannot lock %s (%d): %s", spool_name,
3060 errno, strerror(errno));
3062 /* We have an open, locked data file. Write the message id to it to make it
3063 self-identifying. Then read the remainder of the input of this message and
3064 write it to the data file. If the variable next != NULL, it contains the first
3065 data line (which was read as a header but then turned out not to have the right
3066 format); write it (remembering that it might contain binary zeros). The result
3067 of fwrite() isn't inspected; instead we call ferror() below. */
3069 fprintf(data_file, "%s-D\n", message_id);
3072 uschar *s = next->text;
3073 int len = next->slen;
3074 len = fwrite(s, 1, len, data_file); len = len; /* compiler quietening */
3075 body_linecount++; /* Assumes only 1 line */
3078 /* Note that we might already be at end of file, or the logical end of file
3079 (indicated by '.'), or might have encountered an error while writing the
3080 message id or "next" line. */
3082 if (!ferror(data_file) && !(receive_feof)() && message_ended != END_DOT)
3086 message_ended = chunking_state <= CHUNKING_OFFERED
3087 ? read_message_data_smtp(data_file)
3089 ? read_message_bdat_smtp_wire(data_file)
3090 : read_message_bdat_smtp(data_file);
3091 receive_linecount++; /* The terminating "." line */
3093 else message_ended = read_message_data(data_file);
3095 receive_linecount += body_linecount; /* For BSMTP errors mainly */
3096 message_linecount += body_linecount;
3098 switch (message_ended)
3100 /* Handle premature termination of SMTP */
3105 Uunlink(spool_name); /* Lose data file when closed */
3106 cancel_cutthrough_connection(TRUE, US"sender closed connection");
3107 message_id[0] = 0; /* Indicate no message accepted */
3108 smtp_reply = handle_lost_connection(US"");
3110 goto TIDYUP; /* Skip to end of function */
3114 /* Handle message that is too big. Don't use host_or_ident() in the log
3115 message; we want to see the ident value even for non-remote messages. */
3118 Uunlink(spool_name); /* Lose the data file when closed */
3119 cancel_cutthrough_connection(TRUE, US"mail too big");
3120 if (smtp_input) receive_swallow_smtp(); /* Swallow incoming SMTP */
3122 log_write(L_size_reject, LOG_MAIN|LOG_REJECT, "rejected from <%s>%s%s%s%s: "
3123 "message too big: read=%d max=%d",
3125 sender_fullhost ? " H=" : "",
3126 sender_fullhost ? sender_fullhost : US"",
3127 sender_ident ? " U=" : "",
3128 sender_ident ? sender_ident : US"",
3130 thismessage_size_limit);
3134 smtp_reply = US"552 Message size exceeds maximum permitted";
3135 message_id[0] = 0; /* Indicate no message accepted */
3136 goto TIDYUP; /* Skip to end of function */
3140 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3141 give_local_error(ERRMESS_TOOBIG,
3142 string_sprintf("message too big (max=%d)", thismessage_size_limit),
3143 US"message rejected: ", error_rc, data_file, header_list);
3144 /* Does not return */
3148 /* Handle bad BDAT protocol sequence */
3151 Uunlink(spool_name); /* Lose the data file when closed */
3152 cancel_cutthrough_connection(TRUE, US"sender protocol error");
3153 smtp_reply = US""; /* Response already sent */
3154 message_id[0] = 0; /* Indicate no message accepted */
3155 goto TIDYUP; /* Skip to end of function */
3159 /* Restore the standard SIGALRM handler for any subsequent processing. (For
3160 example, there may be some expansion in an ACL that uses a timer.) */
3162 os_non_restarting_signal(SIGALRM, sigalrm_handler);
3164 /* The message body has now been read into the data file. Call fflush() to
3165 empty the buffers in C, and then call fsync() to get the data written out onto
3166 the disk, as fflush() doesn't do this (or at least, it isn't documented as
3167 having to do this). If there was an I/O error on either input or output,
3168 attempt to send an error message, and unlink the spool file. For non-SMTP input
3169 we can then give up. Note that for SMTP input we must swallow the remainder of
3170 the input in cases of output errors, since the far end doesn't expect to see
3171 anything until the terminating dot line is sent. */
3173 if (fflush(data_file) == EOF || ferror(data_file) ||
3174 EXIMfsync(fileno(data_file)) < 0 || (receive_ferror)())
3176 uschar *msg_errno = US strerror(errno);
3177 BOOL input_error = (receive_ferror)() != 0;
3178 uschar *msg = string_sprintf("%s error (%s) while receiving message from %s",
3179 input_error? "Input read" : "Spool write",
3181 sender_fullhost ? sender_fullhost : sender_ident);
3183 log_write(0, LOG_MAIN, "Message abandoned: %s", msg);
3184 Uunlink(spool_name); /* Lose the data file */
3185 cancel_cutthrough_connection(TRUE, US"error writing spoolfile");
3190 smtp_reply = US"451 Error while reading input data";
3193 smtp_reply = US"451 Error while writing spool file";
3194 receive_swallow_smtp();
3196 message_id[0] = 0; /* Indicate no message accepted */
3197 goto TIDYUP; /* Skip to end of function */
3202 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3203 give_local_error(ERRMESS_IOERR, msg, US"", error_rc, data_file,
3205 /* Does not return */
3210 /* No I/O errors were encountered while writing the data file. */
3212 DEBUG(D_receive) debug_printf("Data file written for message %s\n", message_id);
3213 if (LOGGING(receive_time)) timesince(&received_time_taken, &received_time);
3216 /* If there were any bad addresses extracted by -t, or there were no recipients
3217 left after -t, send a message to the sender of this message, or write it to
3218 stderr if the error handling option is set that way. Note that there may
3219 legitimately be no recipients for an SMTP message if they have all been removed
3222 We need to rewind the data file in order to read it. In the case of no
3223 recipients or stderr error writing, throw the data file away afterwards, and
3224 exit. (This can't be SMTP, which always ensures there's at least one
3225 syntactically good recipient address.) */
3227 if (extract_recip && (bad_addresses || recipients_count == 0))
3231 if (recipients_count == 0) debug_printf("*** No recipients\n");
3234 error_block *eblock = bad_addresses;
3235 debug_printf("*** Bad address(es)\n");
3236 while (eblock != NULL)
3238 debug_printf(" %s: %s\n", eblock->text1, eblock->text2);
3239 eblock = eblock->next;
3244 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3246 /* If configured to send errors to the sender, but this fails, force
3247 a failure error code. We use a special one for no recipients so that it
3248 can be detected by the autoreply transport. Otherwise error_rc is set to
3249 errors_sender_rc, which is EXIT_FAILURE unless -oee was given, in which case
3250 it is EXIT_SUCCESS. */
3252 if (error_handling == ERRORS_SENDER)
3254 if (!moan_to_sender(
3255 (bad_addresses == NULL)?
3256 (extracted_ignored? ERRMESS_IGADDRESS : ERRMESS_NOADDRESS) :
3257 (recipients_list == NULL)? ERRMESS_BADNOADDRESS : ERRMESS_BADADDRESS,
3258 bad_addresses, header_list, data_file, FALSE))
3259 error_rc = (bad_addresses == NULL)? EXIT_NORECIPIENTS : EXIT_FAILURE;
3265 if (extracted_ignored)
3266 fprintf(stderr, "exim: all -t recipients overridden by command line\n");
3268 fprintf(stderr, "exim: no recipients in message\n");
3272 fprintf(stderr, "exim: invalid address%s",
3273 (bad_addresses->next == NULL)? ":" : "es:\n");
3274 while (bad_addresses != NULL)
3276 fprintf(stderr, " %s: %s\n", bad_addresses->text1,
3277 bad_addresses->text2);
3278 bad_addresses = bad_addresses->next;
3283 if (recipients_count == 0 || error_handling == ERRORS_STDERR)
3285 Uunlink(spool_name);
3286 (void)fclose(data_file);
3287 exim_exit(error_rc, US"receiving");
3291 /* Data file successfully written. Generate text for the Received: header by
3292 expanding the configured string, and adding a timestamp. By leaving this
3293 operation till now, we ensure that the timestamp is the time that message
3294 reception was completed. However, this is deliberately done before calling the
3295 data ACL and local_scan().
3297 This Received: header may therefore be inspected by the data ACL and by code in
3298 the local_scan() function. When they have run, we update the timestamp to be
3299 the final time of reception.
3301 If there is just one recipient, set up its value in the $received_for variable
3302 for use when we generate the Received: header.
3304 Note: the checking for too many Received: headers is handled by the delivery
3306 /*XXX eventually add excess Received: check for cutthrough case back when classifying them */
3308 if (!received_header->text) /* Non-cutthrough case */
3310 received_header_gen();
3312 /* Set the value of message_body_size for the DATA ACL and for local_scan() */
3314 message_body_size = (fstat(data_fd, &statbuf) == 0)?
3315 statbuf.st_size - SPOOL_DATA_START_OFFSET : -1;
3317 /* If an ACL from any RCPT commands set up any warning headers to add, do so
3318 now, before running the DATA ACL. */
3320 add_acl_headers(ACL_WHERE_RCPT, US"MAIL or RCPT");
3323 message_body_size = (fstat(data_fd, &statbuf) == 0)?
3324 statbuf.st_size - SPOOL_DATA_START_OFFSET : -1;
3326 /* If an ACL is specified for checking things at this stage of reception of a
3327 message, run it, unless all the recipients were removed by "discard" in earlier
3328 ACLs. That is the only case in which recipients_count can be zero at this
3329 stage. Set deliver_datafile to point to the data file so that $message_body and
3330 $message_body_end can be extracted if needed. Allow $recipients in expansions.
3333 deliver_datafile = data_fd;
3336 enable_dollar_recipients = TRUE;
3338 if (recipients_count == 0)
3339 blackholed_by = recipients_discarded ? US"MAIL ACL" : US"RCPT ACL";
3343 /* Handle interactive SMTP messages */
3345 if (smtp_input && !smtp_batched_input)
3348 #ifndef DISABLE_DKIM
3349 if (!dkim_disable_verify)
3351 /* Finish verification */
3352 dkim_exim_verify_finish();
3354 /* Check if we must run the DKIM ACL */
3355 if (acl_smtp_dkim && dkim_verify_signers && *dkim_verify_signers)
3357 uschar * dkim_verify_signers_expanded =
3358 expand_string(dkim_verify_signers);
3359 gstring * results = NULL;
3363 gstring * seen_items = NULL;
3364 int old_pool = store_pool;
3366 store_pool = POOL_PERM; /* Allow created variables to live to data ACL */
3368 if (!(ptr = dkim_verify_signers_expanded))
3369 log_write(0, LOG_MAIN|LOG_PANIC,
3370 "expansion of dkim_verify_signers option failed: %s",
3371 expand_string_message);
3373 /* Default to OK when no items are present */
3375 while ((item = string_nextinlist(&ptr, &signer_sep, NULL, 0)))
3377 /* Prevent running ACL for an empty item */
3378 if (!item || !*item) continue;
3380 /* Only run ACL once for each domain or identity,
3381 no matter how often it appears in the expanded list. */
3385 const uschar * seen_items_list = string_from_gstring(seen_items);
3387 BOOL seen_this_item = FALSE;
3389 while ((seen_item = string_nextinlist(&seen_items_list, &seen_sep,
3391 if (Ustrcmp(seen_item,item) == 0)
3393 seen_this_item = TRUE;
3400 debug_printf("acl_smtp_dkim: skipping signer %s, "
3401 "already seen\n", item);
3405 seen_items = string_catn(seen_items, US":", 1);
3407 seen_items = string_cat(seen_items, item);
3409 rc = dkim_exim_acl_run(item, &results, &user_msg, &log_msg);
3413 debug_printf("acl_smtp_dkim: acl_check returned %d on %s, "
3414 "skipping remaining items\n", rc, item);
3415 cancel_cutthrough_connection(TRUE, US"dkim acl not ok");
3419 dkim_verify_status = string_from_gstring(results);
3420 store_pool = old_pool;
3421 add_acl_headers(ACL_WHERE_DKIM, US"DKIM");
3424 recipients_count = 0;
3425 blackholed_by = US"DKIM ACL";
3427 blackhole_log_msg = string_sprintf(": %s", log_msg);
3431 Uunlink(spool_name);
3432 if (smtp_handle_acl_fail(ACL_WHERE_DKIM, rc, user_msg, log_msg) != 0)
3433 smtp_yield = FALSE; /* No more messages after dropped connection */
3434 smtp_reply = US""; /* Indicate reply already sent */
3435 message_id[0] = 0; /* Indicate no message accepted */
3436 goto TIDYUP; /* Skip to end of function */
3440 dkim_exim_verify_log_all();
3442 #endif /* DISABLE_DKIM */
3444 #ifdef WITH_CONTENT_SCAN
3445 if ( recipients_count > 0
3447 && !run_mime_acl(acl_smtp_mime, &smtp_yield, &smtp_reply, &blackholed_by)
3450 #endif /* WITH_CONTENT_SCAN */
3452 #ifdef EXPERIMENTAL_DMARC
3453 dmarc_up = dmarc_store_data(from_header);
3454 #endif /* EXPERIMENTAL_DMARC */
3456 #ifndef DISABLE_PRDR
3457 if (prdr_requested && recipients_count > 1 && acl_smtp_data_prdr)
3461 int all_fail = FAIL;
3463 smtp_printf("353 PRDR content analysis beginning\r\n", TRUE);
3464 /* Loop through recipients, responses must be in same order received */
3465 for (c = 0; recipients_count > c; c++)
3467 uschar * addr= recipients_list[c].address;
3468 uschar * msg= US"PRDR R=<%s> %s";
3471 debug_printf("PRDR processing recipient %s (%d of %d)\n",
3472 addr, c+1, recipients_count);
3473 rc = acl_check(ACL_WHERE_PRDR, addr,
3474 acl_smtp_data_prdr, &user_msg, &log_msg);
3476 /* If any recipient rejected content, indicate it in final message */
3478 /* If all recipients rejected, indicate in final message */
3483 case OK: case DISCARD: code = US"250"; break;
3484 case DEFER: code = US"450"; break;
3485 default: code = US"550"; break;
3487 if (user_msg != NULL)
3488 smtp_user_msg(code, user_msg);
3493 case OK: case DISCARD:
3494 msg = string_sprintf(CS msg, addr, "acceptance"); break;
3496 msg = string_sprintf(CS msg, addr, "temporary refusal"); break;
3498 msg = string_sprintf(CS msg, addr, "refusal"); break;
3500 smtp_user_msg(code, msg);
3502 if (log_msg) log_write(0, LOG_MAIN, "PRDR %s %s", addr, log_msg);
3503 else if (user_msg) log_write(0, LOG_MAIN, "PRDR %s %s", addr, user_msg);
3504 else log_write(0, LOG_MAIN, "%s", CS msg);
3506 if (rc != OK) { receive_remove_recipient(addr); c--; }
3508 /* Set up final message, used if data acl gives OK */
3509 smtp_reply = string_sprintf("%s id=%s message %s",
3510 all_fail == FAIL ? US"550" : US"250",
3513 ? US"rejected for all recipients"
3516 : US"accepted for some recipients");
3517 if (recipients_count == 0)
3519 message_id[0] = 0; /* Indicate no message accepted */
3524 prdr_requested = FALSE;
3525 #endif /* !DISABLE_PRDR */
3527 /* Check the recipients count again, as the MIME ACL might have changed
3530 if (acl_smtp_data != NULL && recipients_count > 0)
3532 rc = acl_check(ACL_WHERE_DATA, NULL, acl_smtp_data, &user_msg, &log_msg);
3533 add_acl_headers(ACL_WHERE_DATA, US"DATA");
3536 recipients_count = 0;
3537 blackholed_by = US"DATA ACL";
3539 blackhole_log_msg = string_sprintf(": %s", log_msg);
3540 cancel_cutthrough_connection(TRUE, US"data acl discard");
3544 Uunlink(spool_name);
3545 cancel_cutthrough_connection(TRUE, US"data acl not ok");
3546 #ifdef WITH_CONTENT_SCAN
3549 #ifdef EXPERIMENTAL_DCC
3552 if (smtp_handle_acl_fail(ACL_WHERE_DATA, rc, user_msg, log_msg) != 0)
3553 smtp_yield = FALSE; /* No more messages after dropped connection */
3554 smtp_reply = US""; /* Indicate reply already sent */
3555 message_id[0] = 0; /* Indicate no message accepted */
3556 goto TIDYUP; /* Skip to end of function */
3561 /* Handle non-SMTP and batch SMTP (i.e. non-interactive) messages. Note that
3562 we cannot take different actions for permanent and temporary rejections. */
3567 #ifdef WITH_CONTENT_SCAN
3568 if ( acl_not_smtp_mime
3569 && !run_mime_acl(acl_not_smtp_mime, &smtp_yield, &smtp_reply,
3573 #endif /* WITH_CONTENT_SCAN */
3575 if (acl_not_smtp != NULL)
3577 uschar *user_msg, *log_msg;
3578 rc = acl_check(ACL_WHERE_NOTSMTP, NULL, acl_not_smtp, &user_msg, &log_msg);
3581 recipients_count = 0;
3582 blackholed_by = US"non-SMTP ACL";
3583 if (log_msg != NULL)
3584 blackhole_log_msg = string_sprintf(": %s", log_msg);
3588 Uunlink(spool_name);
3589 #ifdef WITH_CONTENT_SCAN
3592 #ifdef EXPERIMENTAL_DCC
3595 /* The ACL can specify where rejections are to be logged, possibly
3596 nowhere. The default is main and reject logs. */
3598 if (log_reject_target != 0)
3599 log_write(0, log_reject_target, "F=<%s> rejected by non-SMTP ACL: %s",
3600 sender_address, log_msg);
3602 if (user_msg == NULL) user_msg = US"local configuration problem";
3603 if (smtp_batched_input)
3605 moan_smtp_batch(NULL, "%d %s", 550, user_msg);
3606 /* Does not return */
3610 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3611 give_local_error(ERRMESS_LOCAL_ACL, user_msg,
3612 US"message rejected by non-SMTP ACL: ", error_rc, data_file,
3614 /* Does not return */
3617 add_acl_headers(ACL_WHERE_NOTSMTP, US"non-SMTP");
3621 /* The applicable ACLs have been run */
3623 if (deliver_freeze) frozen_by = US"ACL"; /* for later logging */
3624 if (queue_only_policy) queued_by = US"ACL";
3627 #ifdef WITH_CONTENT_SCAN
3631 #ifdef EXPERIMENTAL_DCC
3636 /* The final check on the message is to run the scan_local() function. The
3637 version supplied with Exim always accepts, but this is a hook for sysadmins to
3638 supply their own checking code. The local_scan() function is run even when all
3639 the recipients have been discarded. */
3640 /*XXS could we avoid this for the standard case, given that few people will use it? */
3642 lseek(data_fd, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3644 /* Arrange to catch crashes in local_scan(), so that the -D file gets
3645 deleted, and the incident gets logged. */
3647 os_non_restarting_signal(SIGSEGV, local_scan_crash_handler);
3648 os_non_restarting_signal(SIGFPE, local_scan_crash_handler);
3649 os_non_restarting_signal(SIGILL, local_scan_crash_handler);
3650 os_non_restarting_signal(SIGBUS, local_scan_crash_handler);
3652 DEBUG(D_receive) debug_printf("calling local_scan(); timeout=%d\n",
3653 local_scan_timeout);
3654 local_scan_data = NULL;
3656 os_non_restarting_signal(SIGALRM, local_scan_timeout_handler);
3657 if (local_scan_timeout > 0) alarm(local_scan_timeout);
3658 rc = local_scan(data_fd, &local_scan_data);
3660 os_non_restarting_signal(SIGALRM, sigalrm_handler);
3662 enable_dollar_recipients = FALSE;
3664 store_pool = POOL_MAIN; /* In case changed */
3665 DEBUG(D_receive) debug_printf("local_scan() returned %d %s\n", rc,
3668 os_non_restarting_signal(SIGSEGV, SIG_DFL);
3669 os_non_restarting_signal(SIGFPE, SIG_DFL);
3670 os_non_restarting_signal(SIGILL, SIG_DFL);
3671 os_non_restarting_signal(SIGBUS, SIG_DFL);
3673 /* The length check is paranoia against some runaway code, and also because
3674 (for a success return) lines in the spool file are read into big_buffer. */
3676 if (local_scan_data != NULL)
3678 int len = Ustrlen(local_scan_data);
3679 if (len > LOCAL_SCAN_MAX_RETURN) len = LOCAL_SCAN_MAX_RETURN;
3680 local_scan_data = string_copyn(local_scan_data, len);
3683 if (rc == LOCAL_SCAN_ACCEPT_FREEZE)
3685 if (!deliver_freeze) /* ACL might have already frozen */
3687 deliver_freeze = TRUE;
3688 deliver_frozen_at = time(NULL);
3689 frozen_by = US"local_scan()";
3691 rc = LOCAL_SCAN_ACCEPT;
3693 else if (rc == LOCAL_SCAN_ACCEPT_QUEUE)
3695 if (!queue_only_policy) /* ACL might have already queued */
3697 queue_only_policy = TRUE;
3698 queued_by = US"local_scan()";
3700 rc = LOCAL_SCAN_ACCEPT;
3703 /* Message accepted: remove newlines in local_scan_data because otherwise
3704 the spool file gets corrupted. Ensure that all recipients are qualified. */
3706 if (rc == LOCAL_SCAN_ACCEPT)
3708 if (local_scan_data != NULL)
3711 for (s = local_scan_data; *s != 0; s++) if (*s == '\n') *s = ' ';
3713 for (i = 0; i < recipients_count; i++)
3715 recipient_item *r = recipients_list + i;
3716 r->address = rewrite_address_qualify(r->address, TRUE);
3717 if (r->errors_to != NULL)
3718 r->errors_to = rewrite_address_qualify(r->errors_to, TRUE);
3720 if (recipients_count == 0 && blackholed_by == NULL)
3721 blackholed_by = US"local_scan";
3724 /* Message rejected: newlines permitted in local_scan_data to generate
3725 multiline SMTP responses. */
3729 uschar *istemp = US"";
3733 errmsg = local_scan_data;
3735 Uunlink(spool_name); /* Cancel this message */
3739 log_write(0, LOG_MAIN, "invalid return %d from local_scan(). Temporary "
3740 "rejection given", rc);
3743 case LOCAL_SCAN_REJECT_NOLOGHDR:
3744 BIT_CLEAR(log_selector, log_selector_size, Li_rejected_header);
3747 case LOCAL_SCAN_REJECT:
3748 smtp_code = US"550";
3749 if (!errmsg) errmsg = US"Administrative prohibition";
3752 case LOCAL_SCAN_TEMPREJECT_NOLOGHDR:
3753 BIT_CLEAR(log_selector, log_selector_size, Li_rejected_header);
3756 case LOCAL_SCAN_TEMPREJECT:
3758 smtp_code = US"451";
3759 if (!errmsg) errmsg = US"Temporary local problem";
3760 istemp = US"temporarily ";
3764 g = string_append(NULL, 2, US"F=",
3765 sender_address[0] == 0 ? US"<>" : sender_address);
3766 g = add_host_info_for_log(g);
3768 log_write(0, LOG_MAIN|LOG_REJECT, "%s %srejected by local_scan(): %.256s",
3769 string_from_gstring(g), istemp, string_printing(errmsg));
3773 if (!smtp_batched_input)
3775 smtp_respond(smtp_code, 3, TRUE, errmsg);
3776 message_id[0] = 0; /* Indicate no message accepted */
3777 smtp_reply = US""; /* Indicate reply already sent */
3778 goto TIDYUP; /* Skip to end of function */
3782 moan_smtp_batch(NULL, "%s %s", smtp_code, errmsg);
3783 /* Does not return */
3788 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3789 give_local_error(ERRMESS_LOCAL_SCAN, errmsg,
3790 US"message rejected by local scan code: ", error_rc, data_file,
3792 /* Does not return */
3796 /* Reset signal handlers to ignore signals that previously would have caused
3797 the message to be abandoned. */
3799 signal(SIGTERM, SIG_IGN);
3800 signal(SIGINT, SIG_IGN);
3803 /* Ensure the first time flag is set in the newly-received message. */
3805 deliver_firsttime = TRUE;
3807 #ifdef EXPERIMENTAL_BRIGHTMAIL
3809 { /* rewind data file */
3810 lseek(data_fd, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3811 bmi_verdicts = bmi_process_message(header_list, data_fd);
3815 /* Update the timestamp in our Received: header to account for any time taken by
3816 an ACL or by local_scan(). The new time is the time that all reception
3817 processing is complete. */
3819 timestamp = expand_string(US"${tod_full}");
3820 tslen = Ustrlen(timestamp);
3822 memcpy(received_header->text + received_header->slen - tslen - 1,
3825 /* In MUA wrapper mode, ignore queueing actions set by ACL or local_scan() */
3829 deliver_freeze = FALSE;
3830 queue_only_policy = FALSE;
3833 /* Keep the data file open until we have written the header file, in order to
3834 hold onto the lock. In a -bh run, or if the message is to be blackholed, we
3835 don't write the header file, and we unlink the data file. If writing the header
3836 file fails, we have failed to accept this message. */
3838 if (host_checking || blackholed_by != NULL)
3841 Uunlink(spool_name);
3842 msg_size = 0; /* Compute size for log line */
3843 for (h = header_list; h != NULL; h = h->next)
3844 if (h->type != '*') msg_size += h->slen;
3847 /* Write the -H file */
3850 if ((msg_size = spool_write_header(message_id, SW_RECEIVING, &errmsg)) < 0)
3852 log_write(0, LOG_MAIN, "Message abandoned: %s", errmsg);
3853 Uunlink(spool_name); /* Lose the data file */
3857 smtp_reply = US"451 Error in writing spool file";
3858 message_id[0] = 0; /* Indicate no message accepted */
3863 fseek(data_file, (long int)SPOOL_DATA_START_OFFSET, SEEK_SET);
3864 give_local_error(ERRMESS_IOERR, errmsg, US"", error_rc, data_file,
3866 /* Does not return */
3871 /* The message has now been successfully received. */
3873 receive_messagecount++;
3875 /* In SMTP sessions we may receive several in one connection. After each one,
3876 we wait for the clock to tick at the level of message-id granularity. This is
3877 so that the combination of time+pid is unique, even on systems where the pid
3878 can be re-used within our time interval. We can't shorten the interval without
3879 re-designing the message-id. See comments above where the message id is
3880 created. This is Something For The Future. */
3882 message_id_tv.tv_usec = (message_id_tv.tv_usec/id_resolution) * id_resolution;
3883 exim_wait_tick(&message_id_tv, id_resolution);
3885 /* Add data size to written header size. We do not count the initial file name
3886 that is in the file, but we do add one extra for the notional blank line that
3887 precedes the data. This total differs from message_size in that it include the
3888 added Received: header and any other headers that got created locally. */
3891 fstat(data_fd, &statbuf);
3893 msg_size += statbuf.st_size - SPOOL_DATA_START_OFFSET + 1;
3895 /* Generate a "message received" log entry. We do this by building up a dynamic
3896 string as required. Since we commonly want to add two items at a time, use a
3897 macro to simplify the coding. We log the arrival of a new message while the
3898 file is still locked, just in case the machine is *really* fast, and delivers
3899 it first! Include any message id that is in the message - since the syntax of a
3900 message id is actually an addr-spec, we can use the parse routine to canonicalize
3903 g = string_get(256);
3905 g = string_append(g, 2,
3906 fake_response == FAIL ? US"(= " : US"<= ",
3907 sender_address[0] == 0 ? US"<>" : sender_address);
3908 if (message_reference)
3909 g = string_append(g, 2, US" R=", message_reference);
3911 g = add_host_info_for_log(g);
3914 if (LOGGING(tls_cipher) && tls_in.cipher)
3915 g = string_append(g, 2, US" X=", tls_in.cipher);
3916 if (LOGGING(tls_certificate_verified) && tls_in.cipher)
3917 g = string_append(g, 2, US" CV=", tls_in.certificate_verified ? "yes":"no");
3918 if (LOGGING(tls_peerdn) && tls_in.peerdn)
3919 g = string_append(g, 3, US" DN=\"", string_printing(tls_in.peerdn), US"\"");
3920 if (LOGGING(tls_sni) && tls_in.sni)
3921 g = string_append(g, 3, US" SNI=\"", string_printing(tls_in.sni), US"\"");
3924 if (sender_host_authenticated)
3926 g = string_append(g, 2, US" A=", sender_host_authenticated);
3927 if (authenticated_id)
3929 g = string_append(g, 2, US":", authenticated_id);
3930 if (LOGGING(smtp_mailauth) && authenticated_sender)
3931 g = string_append(g, 2, US":", authenticated_sender);
3935 #ifndef DISABLE_PRDR
3937 g = string_catn(g, US" PRDR", 5);
3940 #ifdef SUPPORT_PROXY
3941 if (proxy_session && LOGGING(proxy))
3942 g = string_append(g, 2, US" PRX=", proxy_local_address);
3945 if (chunking_state > CHUNKING_OFFERED)
3946 g = string_catn(g, US" K", 2);
3948 sprintf(CS big_buffer, "%d", msg_size);
3949 g = string_append(g, 2, US" S=", big_buffer);
3951 /* log 8BITMIME mode announced in MAIL_FROM
3955 if (LOGGING(8bitmime))
3957 sprintf(CS big_buffer, "%d", body_8bitmime);
3958 g = string_append(g, 2, US" M8S=", big_buffer);
3961 #ifndef DISABLE_DKIM
3962 if (LOGGING(dkim) && dkim_verify_overall)
3963 g = string_append(g, 2, US" DKIM=", dkim_verify_overall);
3966 if (LOGGING(receive_time))
3967 g = string_append(g, 2, US" RT=", string_timediff(&received_time_taken));
3970 g = string_append(g, 2, US" Q=", queue_name);
3972 /* If an addr-spec in a message-id contains a quoted string, it can contain
3973 any characters except " \ and CR and so in particular it can contain NL!
3974 Therefore, make sure we use a printing-characters only version for the log.
3975 Also, allow for domain literals in the message id. */
3980 BOOL save_allow_domain_literals = allow_domain_literals;
3981 allow_domain_literals = TRUE;
3982 old_id = parse_extract_address(Ustrchr(msgid_header->text, ':') + 1,
3983 &errmsg, &start, &end, &domain, FALSE);
3984 allow_domain_literals = save_allow_domain_literals;
3986 g = string_append(g, 2, US" id=", string_printing(old_id));
3989 /* If subject logging is turned on, create suitable printing-character
3990 text. By expanding $h_subject: we make use of the MIME decoding. */
3992 if (LOGGING(subject) && subject_header)
3995 uschar *p = big_buffer;
3996 uschar *ss = expand_string(US"$h_subject:");
3998 /* Backslash-quote any double quotes or backslashes so as to make a
3999 a C-like string, and turn any non-printers into escape sequences. */
4002 if (*ss != 0) for (i = 0; i < 100 && ss[i] != 0; i++)
4004 if (ss[i] == '\"' || ss[i] == '\\') *p++ = '\\';
4009 g = string_append(g, 2, US" T=", string_printing(big_buffer));
4012 /* Terminate the string: string_cat() and string_append() leave room, but do
4013 not put the zero in. */
4015 (void) string_from_gstring(g);
4017 /* Create a message log file if message logs are being used and this message is
4018 not blackholed. Write the reception stuff to it. We used to leave message log
4019 creation until the first delivery, but this has proved confusing for some
4022 if (message_logs && !blackholed_by)
4026 spool_name = spool_fname(US"msglog", message_subdir, message_id, US"");
4028 if ( (fd = Uopen(spool_name, O_WRONLY|O_APPEND|O_CREAT, SPOOL_MODE)) < 0
4032 (void)directory_make(spool_directory,
4033 spool_sname(US"msglog", message_subdir),
4034 MSGLOG_DIRECTORY_MODE, TRUE);
4035 fd = Uopen(spool_name, O_WRONLY|O_APPEND|O_CREAT, SPOOL_MODE);
4039 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't open message log %s: %s",
4040 spool_name, strerror(errno));
4043 FILE *message_log = fdopen(fd, "a");
4044 if (message_log == NULL)
4046 log_write(0, LOG_MAIN|LOG_PANIC, "Couldn't fdopen message log %s: %s",
4047 spool_name, strerror(errno));
4052 uschar *now = tod_stamp(tod_log);
4053 fprintf(message_log, "%s Received from %s\n", now, g->s+3);
4054 if (deliver_freeze) fprintf(message_log, "%s frozen by %s\n", now,
4056 if (queue_only_policy) fprintf(message_log,
4057 "%s no immediate delivery: queued%s%s by %s\n", now,
4058 *queue_name ? " in " : "", *queue_name ? CS queue_name : "",
4060 (void)fclose(message_log);
4065 /* Everything has now been done for a successful message except logging its
4066 arrival, and outputting an SMTP response. While writing to the log, set a flag
4067 to cause a call to receive_bomb_out() if the log cannot be opened. */
4069 receive_call_bombout = TRUE;
4071 /* Before sending an SMTP response in a TCP/IP session, we check to see if the
4072 connection has gone away. This can only be done if there is no unconsumed input
4073 waiting in the local input buffer. We can test for this by calling
4074 receive_smtp_buffered(). RFC 2920 (pipelining) explicitly allows for additional
4075 input to be sent following the final dot, so the presence of following input is
4078 If the connection is still present, but there is no unread input for the
4079 socket, the result of a select() call will be zero. If, however, the connection
4080 has gone away, or if there is pending input, the result of select() will be
4081 non-zero. The two cases can be distinguished by trying to read the next input
4082 character. If we succeed, we can unread it so that it remains in the local
4083 buffer for handling later. If not, the connection has been lost.
4085 Of course, since TCP/IP is asynchronous, there is always a chance that the
4086 connection will vanish between the time of this test and the sending of the
4087 response, but the chance of this happening should be small. */
4089 if (smtp_input && sender_host_address != NULL && !sender_host_notsocket &&
4090 !receive_smtp_buffered())
4093 fd_set select_check;
4094 FD_ZERO(&select_check);
4095 FD_SET(fileno(smtp_in), &select_check);
4099 if (select(fileno(smtp_in) + 1, &select_check, NULL, NULL, &tv) != 0)
4101 int c = (receive_getc)(GETC_BUFFER_UNLIMITED);
4102 if (c != EOF) (receive_ungetc)(c); else
4104 smtp_notquit_exit(US"connection-lost", NULL, NULL);
4105 smtp_reply = US""; /* No attempt to send a response */
4106 smtp_yield = FALSE; /* Nothing more on this connection */
4108 /* Re-use the log line workspace */
4111 g = string_cat(g, US"SMTP connection lost after final dot");
4112 g = add_host_info_for_log(g);
4113 log_write(0, LOG_MAIN, "%s", string_from_gstring(g));
4115 /* Delete the files for this aborted message. */
4117 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-D"));
4118 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-H"));
4119 Uunlink(spool_fname(US"msglog", message_subdir, message_id, US""));
4126 /* The connection has not gone away; we really are going to take responsibility
4127 for this message. */
4129 /* Cutthrough - had sender last-dot; assume we've sent (or bufferred) all
4132 Send dot onward. If accepted, wipe the spooled files, log as delivered and accept
4133 the sender's dot (below).
4134 If rejected: copy response to sender, wipe the spooled files, log appropriately.
4135 If temp-reject: normally accept to sender, keep the spooled file - unless defer=pass
4136 in which case pass temp-reject back to initiator and dump the files.
4138 Having the normal spool files lets us do data-filtering, and store/forward on temp-reject.
4140 XXX We do not handle queue-only, freezing, or blackholes.
4142 if(cutthrough.fd >= 0 && cutthrough.delivery)
4144 uschar * msg = cutthrough_finaldot(); /* Ask the target system to accept the message */
4145 /* Logging was done in finaldot() */
4148 case '2': /* Accept. Do the same to the source; dump any spoolfiles. */
4149 cutthrough_done = ACCEPTED;
4150 break; /* message_id needed for SMTP accept below */
4152 case '4': /* Temp-reject. Keep spoolfiles and accept, unless defer-pass mode.
4153 ... for which, pass back the exact error */
4154 if (cutthrough.defer_pass) smtp_reply = string_copy_malloc(msg);
4157 default: /* Unknown response, or error. Treat as temp-reject. */
4158 cutthrough_done = TMP_REJ; /* Avoid the usual immediate delivery attempt */
4159 break; /* message_id needed for SMTP accept below */
4161 case '5': /* Perm-reject. Do the same to the source. Dump any spoolfiles */
4162 smtp_reply = string_copy_malloc(msg); /* Pass on the exact error */
4163 cutthrough_done = PERM_REJ;
4168 #ifndef DISABLE_PRDR
4169 if(!smtp_reply || prdr_requested)
4174 log_write(0, LOG_MAIN |
4175 (LOGGING(received_recipients)? LOG_RECIPIENTS : 0) |
4176 (LOGGING(received_sender)? LOG_SENDER : 0),
4179 /* Log any control actions taken by an ACL or local_scan(). */
4181 if (deliver_freeze) log_write(0, LOG_MAIN, "frozen by %s", frozen_by);
4182 if (queue_only_policy) log_write(L_delay_delivery, LOG_MAIN,
4183 "no immediate delivery: queued%s%s by %s",
4184 *queue_name ? " in " : "", *queue_name ? CS queue_name : "",
4187 receive_call_bombout = FALSE;
4189 store_reset(g); /* The store for the main log message can be reused */
4191 /* If the message is frozen, and freeze_tell is set, do the telling. */
4193 if (deliver_freeze && freeze_tell != NULL && freeze_tell[0] != 0)
4195 moan_tell_someone(freeze_tell, NULL, US"Message frozen on arrival",
4196 "Message %s was frozen on arrival by %s.\nThe sender is <%s>.\n",
4197 message_id, frozen_by, sender_address);
4201 /* Either a message has been successfully received and written to the two spool
4202 files, or an error in writing the spool has occurred for an SMTP message, or
4203 an SMTP message has been rejected for policy reasons. (For a non-SMTP message
4204 we will have already given up because there's no point in carrying on!) In
4205 either event, we must now close (and thereby unlock) the data file. In the
4206 successful case, this leaves the message on the spool, ready for delivery. In
4207 the error case, the spool file will be deleted. Then tidy up store, interact
4208 with an SMTP call if necessary, and return.
4210 A fflush() was done earlier in the expectation that any write errors on the
4211 data file will be flushed(!) out thereby. Nevertheless, it is theoretically
4212 possible for fclose() to fail - but what to do? What has happened to the lock
4217 process_info[process_info_len] = 0; /* Remove message id */
4218 if (data_file != NULL) (void)fclose(data_file); /* Frees the lock */
4220 /* Now reset signal handlers to their defaults */
4222 signal(SIGTERM, SIG_DFL);
4223 signal(SIGINT, SIG_DFL);
4225 /* Tell an SMTP caller the state of play, and arrange to return the SMTP return
4226 value, which defaults TRUE - meaning there may be more incoming messages from
4227 this connection. For non-SMTP callers (where there is only ever one message),
4228 the default is FALSE. */
4234 /* Handle interactive SMTP callers. After several kinds of error, smtp_reply
4235 is set to the response that should be sent. When it is NULL, we generate
4236 default responses. After an ACL error or local_scan() error, the response has
4237 already been sent, and smtp_reply is an empty string to indicate this. */
4239 if (!smtp_batched_input)
4243 if (fake_response != OK)
4244 smtp_respond(fake_response == DEFER ? US"450" : US"550",
4245 3, TRUE, fake_response_text);
4247 /* An OK response is required; use "message" text if present. */
4251 uschar *code = US"250";
4253 smtp_message_code(&code, &len, &user_msg, NULL, TRUE);
4254 smtp_respond(code, len, TRUE, user_msg);
4257 /* Default OK response */
4259 else if (chunking_state > CHUNKING_OFFERED)
4261 smtp_printf("250- %u byte chunk, total %d\r\n250 OK id=%s\r\n", FALSE,
4262 chunking_datasize, message_size+message_linecount, message_id);
4263 chunking_state = CHUNKING_OFFERED;
4266 smtp_printf("250 OK id=%s\r\n", FALSE, message_id);
4270 "\n**** SMTP testing: that is not a real message id!\n\n");
4273 /* smtp_reply is set non-empty */
4275 else if (smtp_reply[0] != 0)
4276 if (fake_response != OK && (smtp_reply[0] == '2'))
4277 smtp_respond((fake_response == DEFER)? US"450" : US"550", 3, TRUE,
4278 fake_response_text);
4280 smtp_printf("%.1024s\r\n", FALSE, smtp_reply);
4282 switch (cutthrough_done)
4285 log_write(0, LOG_MAIN, "Completed");/* Delivery was done */
4287 /* Delete spool files */
4288 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-D"));
4289 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-H"));
4290 Uunlink(spool_fname(US"msglog", message_subdir, message_id, US""));
4294 if (cutthrough.defer_pass)
4296 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-D"));
4297 Uunlink(spool_fname(US"input", message_subdir, message_id, US"-H"));
4298 Uunlink(spool_fname(US"msglog", message_subdir, message_id, US""));
4303 if (cutthrough_done != NOT_TRIED)
4305 message_id[0] = 0; /* Prevent a delivery from starting */
4306 cutthrough.delivery = cutthrough.callout_hold_only = FALSE;
4307 cutthrough.defer_pass = FALSE;
4311 /* For batched SMTP, generate an error message on failure, and do
4312 nothing on success. The function moan_smtp_batch() does not return -
4313 it exits from the program with a non-zero return code. */
4315 else if (smtp_reply)
4316 moan_smtp_batch(NULL, "%s", smtp_reply);
4320 /* If blackholing, we can immediately log this message's sad fate. The data
4321 file has already been unlinked, and the header file was never written to disk.
4322 We must now indicate that nothing was received, to prevent a delivery from
4327 const uschar *detail = local_scan_data
4328 ? string_printing(local_scan_data)
4329 : string_sprintf("(%s discarded recipients)", blackholed_by);
4330 log_write(0, LOG_MAIN, "=> blackhole %s%s", detail, blackhole_log_msg);
4331 log_write(0, LOG_MAIN, "Completed");
4335 /* Reset headers so that logging of rejects for a subsequent message doesn't
4336 include them. It is also important to set header_last = NULL before exiting
4337 from this function, as this prevents certain rewrites that might happen during
4338 subsequent verifying (of another incoming message) from trying to add headers
4339 when they shouldn't. */
4341 header_list = header_last = NULL;
4343 return yield; /* TRUE if more messages (SMTP only) */
4346 /* End of receive.c */