1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2014 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* Functions concerned with verifying things. The original code for callout
9 caching was contributed by Kevin Fleming (but I hacked it around a bit). */
13 #include "transports/smtp.h"
15 #define CUTTHROUGH_CMD_TIMEOUT 30 /* timeout for cutthrough-routing calls */
16 #define CUTTHROUGH_DATA_TIMEOUT 60 /* timeout for cutthrough-routing calls */
17 address_item cutthrough_addr;
18 static smtp_outblock ctblock;
19 uschar ctbuffer[8192];
22 /* Structure for caching DNSBL lookups */
24 typedef struct dnsbl_cache_block {
32 /* Anchor for DNSBL cache */
34 static tree_node *dnsbl_cache = NULL;
37 /* Bits for match_type in one_check_dnsbl() */
44 /*************************************************
45 * Retrieve a callout cache record *
46 *************************************************/
48 /* If a record exists, check whether it has expired.
51 dbm_file an open hints file
53 type "address" or "domain"
54 positive_expire expire time for positive records
55 negative_expire expire time for negative records
57 Returns: the cache record if a non-expired one exists, else NULL
60 static dbdata_callout_cache *
61 get_callout_cache_record(open_db *dbm_file, uschar *key, uschar *type,
62 int positive_expire, int negative_expire)
67 dbdata_callout_cache *cache_record;
69 cache_record = dbfn_read_with_length(dbm_file, key, &length);
71 if (cache_record == NULL)
73 HDEBUG(D_verify) debug_printf("callout cache: no %s record found\n", type);
77 /* We treat a record as "negative" if its result field is not positive, or if
78 it is a domain record and the postmaster field is negative. */
80 negative = cache_record->result != ccache_accept ||
81 (type[0] == 'd' && cache_record->postmaster_result == ccache_reject);
82 expire = negative? negative_expire : positive_expire;
85 if (now - cache_record->time_stamp > expire)
87 HDEBUG(D_verify) debug_printf("callout cache: %s record expired\n", type);
91 /* If this is a non-reject domain record, check for the obsolete format version
92 that doesn't have the postmaster and random timestamps, by looking at the
93 length. If so, copy it to a new-style block, replicating the record's
94 timestamp. Then check the additional timestamps. (There's no point wasting
95 effort if connections are rejected.) */
97 if (type[0] == 'd' && cache_record->result != ccache_reject)
99 if (length == sizeof(dbdata_callout_cache_obs))
101 dbdata_callout_cache *new = store_get(sizeof(dbdata_callout_cache));
102 memcpy(new, cache_record, length);
103 new->postmaster_stamp = new->random_stamp = new->time_stamp;
107 if (now - cache_record->postmaster_stamp > expire)
108 cache_record->postmaster_result = ccache_unknown;
110 if (now - cache_record->random_stamp > expire)
111 cache_record->random_result = ccache_unknown;
114 HDEBUG(D_verify) debug_printf("callout cache: found %s record\n", type);
120 /*************************************************
121 * Do callout verification for an address *
122 *************************************************/
124 /* This function is called from verify_address() when the address has routed to
125 a host list, and a callout has been requested. Callouts are expensive; that is
126 why a cache is used to improve the efficiency.
129 addr the address that's been routed
130 host_list the list of hosts to try
131 tf the transport feedback block
133 ifstring "interface" option from transport, or NULL
134 portstring "port" option from transport, or NULL
135 protocolstring "protocol" option from transport, or NULL
136 callout the per-command callout timeout
137 callout_overall the overall callout timeout (if < 0 use 4*callout)
138 callout_connect the callout connection timeout (if < 0 use callout)
139 options the verification options - these bits are used:
140 vopt_is_recipient => this is a recipient address
141 vopt_callout_no_cache => don't use callout cache
142 vopt_callout_fullpm => if postmaster check, do full one
143 vopt_callout_random => do the "random" thing
144 vopt_callout_recipsender => use real sender for recipient
145 vopt_callout_recippmaster => use postmaster for recipient
146 se_mailfrom MAIL FROM address for sender verify; NULL => ""
147 pm_mailfrom if non-NULL, do the postmaster check with this sender
149 Returns: OK/FAIL/DEFER
153 do_callout(address_item *addr, host_item *host_list, transport_feedback *tf,
154 int callout, int callout_overall, int callout_connect, int options,
155 uschar *se_mailfrom, uschar *pm_mailfrom)
157 BOOL is_recipient = (options & vopt_is_recipient) != 0;
158 BOOL callout_no_cache = (options & vopt_callout_no_cache) != 0;
159 BOOL callout_random = (options & vopt_callout_random) != 0;
162 int old_domain_cache_result = ccache_accept;
165 uschar *from_address;
166 uschar *random_local_part = NULL;
167 uschar *save_deliver_domain = deliver_domain;
168 uschar **failure_ptr = is_recipient?
169 &recipient_verify_failure : &sender_verify_failure;
171 open_db *dbm_file = NULL;
172 dbdata_callout_cache new_domain_record;
173 dbdata_callout_cache_address new_address_record;
175 time_t callout_start_time;
177 new_domain_record.result = ccache_unknown;
178 new_domain_record.postmaster_result = ccache_unknown;
179 new_domain_record.random_result = ccache_unknown;
181 memset(&new_address_record, 0, sizeof(new_address_record));
183 /* For a recipient callout, the key used for the address cache record must
184 include the sender address if we are using the real sender in the callout,
185 because that may influence the result of the callout. */
187 address_key = addr->address;
192 if ((options & vopt_callout_recipsender) != 0)
194 address_key = string_sprintf("%s/<%s>", addr->address, sender_address);
195 from_address = sender_address;
197 else if ((options & vopt_callout_recippmaster) != 0)
199 address_key = string_sprintf("%s/<postmaster@%s>", addr->address,
200 qualify_domain_sender);
201 from_address = string_sprintf("postmaster@%s", qualify_domain_sender);
205 /* For a sender callout, we must adjust the key if the mailfrom address is not
210 from_address = (se_mailfrom == NULL)? US"" : se_mailfrom;
211 if (from_address[0] != 0)
212 address_key = string_sprintf("%s/<%s>", addr->address, from_address);
215 /* Open the callout cache database, it it exists, for reading only at this
216 stage, unless caching has been disabled. */
218 if (callout_no_cache)
220 HDEBUG(D_verify) debug_printf("callout cache: disabled by no_cache\n");
222 else if ((dbm_file = dbfn_open(US"callout", O_RDWR, &dbblock, FALSE)) == NULL)
224 HDEBUG(D_verify) debug_printf("callout cache: not available\n");
227 /* If a cache database is available see if we can avoid the need to do an
228 actual callout by making use of previously-obtained data. */
230 if (dbm_file != NULL)
232 dbdata_callout_cache_address *cache_address_record;
233 dbdata_callout_cache *cache_record = get_callout_cache_record(dbm_file,
234 addr->domain, US"domain",
235 callout_cache_domain_positive_expire,
236 callout_cache_domain_negative_expire);
238 /* If an unexpired cache record was found for this domain, see if the callout
239 process can be short-circuited. */
241 if (cache_record != NULL)
243 /* In most cases, if an early command (up to and including MAIL FROM:<>)
244 was rejected, there is no point carrying on. The callout fails. However, if
245 we are doing a recipient verification with use_sender or use_postmaster
246 set, a previous failure of MAIL FROM:<> doesn't count, because this time we
247 will be using a non-empty sender. We have to remember this situation so as
248 not to disturb the cached domain value if this whole verification succeeds
249 (we don't want it turning into "accept"). */
251 old_domain_cache_result = cache_record->result;
253 if (cache_record->result == ccache_reject ||
254 (*from_address == 0 && cache_record->result == ccache_reject_mfnull))
256 setflag(addr, af_verify_nsfail);
258 debug_printf("callout cache: domain gave initial rejection, or "
259 "does not accept HELO or MAIL FROM:<>\n");
260 setflag(addr, af_verify_nsfail);
261 addr->user_message = US"(result of an earlier callout reused).";
263 *failure_ptr = US"mail";
267 /* If a previous check on a "random" local part was accepted, we assume
268 that the server does not do any checking on local parts. There is therefore
269 no point in doing the callout, because it will always be successful. If a
270 random check previously failed, arrange not to do it again, but preserve
271 the data in the new record. If a random check is required but hasn't been
272 done, skip the remaining cache processing. */
274 if (callout_random) switch(cache_record->random_result)
278 debug_printf("callout cache: domain accepts random addresses\n");
279 goto END_CALLOUT; /* Default yield is OK */
283 debug_printf("callout cache: domain rejects random addresses\n");
284 callout_random = FALSE;
285 new_domain_record.random_result = ccache_reject;
286 new_domain_record.random_stamp = cache_record->random_stamp;
291 debug_printf("callout cache: need to check random address handling "
292 "(not cached or cache expired)\n");
296 /* If a postmaster check is requested, but there was a previous failure,
297 there is again no point in carrying on. If a postmaster check is required,
298 but has not been done before, we are going to have to do a callout, so skip
299 remaining cache processing. */
301 if (pm_mailfrom != NULL)
303 if (cache_record->postmaster_result == ccache_reject)
305 setflag(addr, af_verify_pmfail);
307 debug_printf("callout cache: domain does not accept "
308 "RCPT TO:<postmaster@domain>\n");
310 *failure_ptr = US"postmaster";
311 setflag(addr, af_verify_pmfail);
312 addr->user_message = US"(result of earlier verification reused).";
315 if (cache_record->postmaster_result == ccache_unknown)
318 debug_printf("callout cache: need to check RCPT "
319 "TO:<postmaster@domain> (not cached or cache expired)\n");
323 /* If cache says OK, set pm_mailfrom NULL to prevent a redundant
324 postmaster check if the address itself has to be checked. Also ensure
325 that the value in the cache record is preserved (with its old timestamp).
328 HDEBUG(D_verify) debug_printf("callout cache: domain accepts RCPT "
329 "TO:<postmaster@domain>\n");
331 new_domain_record.postmaster_result = ccache_accept;
332 new_domain_record.postmaster_stamp = cache_record->postmaster_stamp;
336 /* We can't give a result based on information about the domain. See if there
337 is an unexpired cache record for this specific address (combined with the
338 sender address if we are doing a recipient callout with a non-empty sender).
341 cache_address_record = (dbdata_callout_cache_address *)
342 get_callout_cache_record(dbm_file,
343 address_key, US"address",
344 callout_cache_positive_expire,
345 callout_cache_negative_expire);
347 if (cache_address_record != NULL)
349 if (cache_address_record->result == ccache_accept)
352 debug_printf("callout cache: address record is positive\n");
357 debug_printf("callout cache: address record is negative\n");
358 addr->user_message = US"Previous (cached) callout verification failure";
359 *failure_ptr = US"recipient";
365 /* Close the cache database while we actually do the callout for real. */
368 dbfn_close(dbm_file);
372 if (!addr->transport)
374 HDEBUG(D_verify) debug_printf("cannot callout via null transport\n");
376 else if (Ustrcmp(addr->transport->driver_name, "smtp") != 0)
377 log_write(0, LOG_MAIN|LOG_PANIC|LOG_CONFIG_FOR, "callout transport '%s': %s is non-smtp",
378 addr->transport->name, addr->transport->driver_name);
381 smtp_transport_options_block *ob =
382 (smtp_transport_options_block *)addr->transport->options_block;
384 /* The information wasn't available in the cache, so we have to do a real
385 callout and save the result in the cache for next time, unless no_cache is set,
386 or unless we have a previously cached negative random result. If we are to test
387 with a random local part, ensure that such a local part is available. If not,
388 log the fact, but carry on without randomming. */
390 if (callout_random && callout_random_local_part != NULL)
392 random_local_part = expand_string(callout_random_local_part);
393 if (random_local_part == NULL)
394 log_write(0, LOG_MAIN|LOG_PANIC, "failed to expand "
395 "callout_random_local_part: %s", expand_string_message);
398 /* Default the connect and overall callout timeouts if not set, and record the
399 time we are starting so that we can enforce it. */
401 if (callout_overall < 0) callout_overall = 4 * callout;
402 if (callout_connect < 0) callout_connect = callout;
403 callout_start_time = time(NULL);
405 /* Before doing a real callout, if this is an SMTP connection, flush the SMTP
406 output because a callout might take some time. When PIPELINING is active and
407 there are many recipients, the total time for doing lots of callouts can add up
408 and cause the client to time out. So in this case we forgo the PIPELINING
411 if (smtp_out != NULL && !disable_callout_flush) mac_smtp_fflush();
413 /* Now make connections to the hosts and do real callouts. The list of hosts
414 is passed in as an argument. */
416 for (host = host_list; host != NULL && !done; host = host->next)
418 smtp_inblock inblock;
419 smtp_outblock outblock;
422 BOOL send_quit = TRUE;
423 uschar *active_hostname = smtp_active_hostname;
427 BOOL suppress_tls = FALSE;
428 uschar *interface = NULL; /* Outgoing interface to use; NULL => any */
429 #if defined(SUPPORT_TLS) && defined(EXPERIMENTAL_DANE)
431 dns_answer tlsa_dnsa;
433 uschar inbuffer[4096];
434 uschar outbuffer[1024];
435 uschar responsebuffer[4096];
437 clearflag(addr, af_verify_pmfail); /* postmaster callout flag */
438 clearflag(addr, af_verify_nsfail); /* null sender callout flag */
440 /* Skip this host if we don't have an IP address for it. */
442 if (host->address == NULL)
444 DEBUG(D_verify) debug_printf("no IP address for host name %s: skipping\n",
449 /* Check the overall callout timeout */
451 if (time(NULL) - callout_start_time >= callout_overall)
453 HDEBUG(D_verify) debug_printf("overall timeout for callout exceeded\n");
457 /* Set IPv4 or IPv6 */
459 host_af = (Ustrchr(host->address, ':') == NULL)? AF_INET:AF_INET6;
461 /* Expand and interpret the interface and port strings. The latter will not
462 be used if there is a host-specific port (e.g. from a manualroute router).
463 This has to be delayed till now, because they may expand differently for
464 different hosts. If there's a failure, log it, but carry on with the
467 deliver_host = host->name;
468 deliver_host_address = host->address;
469 deliver_host_port = host->port;
470 deliver_domain = addr->domain;
471 transport_name = addr->transport->name;
473 if (!smtp_get_interface(tf->interface, host_af, addr, NULL, &interface,
475 !smtp_get_port(tf->port, addr, &port, US"callout"))
476 log_write(0, LOG_MAIN|LOG_PANIC, "<%s>: %s", addr->address,
479 /* Set HELO string according to the protocol */
480 lmtp= Ustrcmp(tf->protocol, "lmtp") == 0;
481 smtps= Ustrcmp(tf->protocol, "smtps") == 0;
484 HDEBUG(D_verify) debug_printf("interface=%s port=%d\n", interface, port);
486 #if defined(SUPPORT_TLS) && defined(EXPERIMENTAL_DANE)
491 tls_out.dane_verified = FALSE;
492 tls_out.tlsa_usage = 0;
494 dane_required = verify_check_this_host(&ob->hosts_require_dane, NULL,
495 host->name, host->address, NULL) == OK;
497 if (host->dnssec == DS_YES)
500 || verify_check_this_host(&ob->hosts_try_dane, NULL,
501 host->name, host->address, NULL) == OK
503 if ((rc = tlsa_lookup(host, &tlsa_dnsa, dane_required, &dane)) != OK)
506 else if (dane_required)
508 log_write(0, LOG_MAIN, "DANE error: %s lookup not DNSSEC", host->name);
513 ob->tls_tempfail_tryclear = FALSE;
517 /* Set up the buffer for reading SMTP response packets. */
519 inblock.buffer = inbuffer;
520 inblock.buffersize = sizeof(inbuffer);
521 inblock.ptr = inbuffer;
522 inblock.ptrend = inbuffer;
524 /* Set up the buffer for holding SMTP commands while pipelining */
526 outblock.buffer = outbuffer;
527 outblock.buffersize = sizeof(outbuffer);
528 outblock.ptr = outbuffer;
529 outblock.cmd_count = 0;
530 outblock.authenticating = FALSE;
532 /* Reset the parameters of a TLS session */
533 tls_out.cipher = tls_out.peerdn = NULL;
535 /* Connect to the host; on failure, just loop for the next one, but we
536 set the error for the last one. Use the callout_connect timeout. */
538 tls_retry_connection:
540 inblock.sock = outblock.sock =
541 smtp_connect(host, host_af, port, interface, callout_connect, TRUE, NULL
542 #ifdef EXPERIMENTAL_EVENT
543 /*XXX event action? NULL for now. */
547 /* reconsider DSCP here */
548 if (inblock.sock < 0)
550 addr->message = string_sprintf("could not connect to %s [%s]: %s",
551 host->name, host->address, strerror(errno));
552 transport_name = NULL;
553 deliver_host = deliver_host_address = NULL;
554 deliver_domain = save_deliver_domain;
558 /* Expand the helo_data string to find the host name to use. */
560 if (tf->helo_data != NULL)
562 uschar *s = expand_string(tf->helo_data);
564 log_write(0, LOG_MAIN|LOG_PANIC, "<%s>: failed to expand transport's "
565 "helo_data value for callout: %s", addr->address,
566 expand_string_message);
567 else active_hostname = s;
570 /* Wait for initial response, and send HELO. The smtp_write_command()
571 function leaves its command in big_buffer. This is used in error responses.
572 Initialize it in case the connection is rejected. */
574 Ustrcpy(big_buffer, "initial connection");
576 /* Unless ssl-on-connect, wait for the initial greeting */
580 if (!smtps || (smtps && tls_out.active >= 0))
583 if (!(done= smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer), '2', callout)))
584 goto RESPONSE_FAILED;
586 #ifdef EXPERIMENTAL_EVENT
587 if (event_raise(addr->transport->event_action,
588 US"smtp:connect", responsebuffer))
590 /* Logging? Debug? */
591 goto RESPONSE_FAILED;
596 /* Not worth checking greeting line for ESMTP support */
597 if (!(esmtp = verify_check_this_host(&(ob->hosts_avoid_esmtp), NULL,
598 host->name, host->address, NULL) != OK))
600 debug_printf("not sending EHLO (host matches hosts_avoid_esmtp)\n");
605 if (smtps && tls_out.active < 0) /* ssl-on-connect, first pass */
608 ob->tls_tempfail_tryclear = FALSE;
610 else /* all other cases */
615 if (!(done= smtp_write_command(&outblock, FALSE, "%s %s\r\n",
616 !esmtp? "HELO" : lmtp? "LHLO" : "EHLO", active_hostname) >= 0))
618 if (!smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer), '2', callout))
620 if (errno != 0 || responsebuffer[0] == 0 || lmtp || !esmtp || tls_out.active >= 0)
623 goto RESPONSE_FAILED;
629 goto esmtp_retry; /* fallback to HELO */
632 /* Set tls_offered if the response to EHLO specifies support for STARTTLS. */
634 if (esmtp && !suppress_tls && tls_out.active < 0)
636 if (regex_STARTTLS == NULL) regex_STARTTLS =
637 regex_must_compile(US"\\n250[\\s\\-]STARTTLS(\\s|\\n|$)", FALSE, TRUE);
639 tls_offered = pcre_exec(regex_STARTTLS, NULL, CS responsebuffer,
640 Ustrlen(responsebuffer), 0, PCRE_EOPT, NULL, 0) >= 0;
647 /* If TLS is available on this connection attempt to
648 start up a TLS session, unless the host is in hosts_avoid_tls. If successful,
649 send another EHLO - the server may give a different answer in secure mode. We
650 use a separate buffer for reading the response to STARTTLS so that if it is
651 negative, the original EHLO data is available for subsequent analysis, should
652 the client not be required to use TLS. If the response is bad, copy the buffer
653 for error analysis. */
657 verify_check_this_host(&(ob->hosts_avoid_tls), NULL, host->name,
658 host->address, NULL) != OK &&
659 verify_check_this_host(&(ob->hosts_verify_avoid_tls), NULL, host->name,
660 host->address, NULL) != OK
663 uschar buffer2[4096];
665 && !(done= smtp_write_command(&outblock, FALSE, "STARTTLS\r\n") >= 0))
668 /* If there is an I/O error, transmission of this message is deferred. If
669 there is a temporary rejection of STARRTLS and tls_tempfail_tryclear is
670 false, we also defer. However, if there is a temporary rejection of STARTTLS
671 and tls_tempfail_tryclear is true, or if there is an outright rejection of
672 STARTTLS, we carry on. This means we will try to send the message in clear,
673 unless the host is in hosts_require_tls (tested below). */
675 if (!smtps && !smtp_read_response(&inblock, buffer2, sizeof(buffer2), '2',
676 ob->command_timeout))
678 if (errno != 0 || buffer2[0] == 0 ||
679 (buffer2[0] == '4' && !ob->tls_tempfail_tryclear))
681 Ustrncpy(responsebuffer, buffer2, sizeof(responsebuffer));
683 goto RESPONSE_FAILED;
687 /* STARTTLS accepted or ssl-on-connect: try to negotiate a TLS session. */
690 int oldtimeout = ob->command_timeout;
693 ob->command_timeout = callout;
694 rc = tls_client_start(inblock.sock, host, addr, addr->transport
695 #ifdef EXPERIMENTAL_DANE
696 , dane ? &tlsa_dnsa : NULL
699 ob->command_timeout = oldtimeout;
701 /* TLS negotiation failed; give an error. Try in clear on a new connection,
702 if the options permit it for this host. */
706 && ob->tls_tempfail_tryclear
708 && verify_check_this_host(&(ob->hosts_require_tls), NULL,
709 host->name, host->address, NULL) != OK
712 (void)close(inblock.sock);
713 #ifdef EXPERIMENTAL_EVENT
714 (void) event_raise(addr->transport->event_action,
715 US"tcp:close", NULL);
717 log_write(0, LOG_MAIN, "TLS session failure: delivering unencrypted "
718 "to %s [%s] (not in hosts_require_tls)", host->name, host->address);
720 goto tls_retry_connection;
722 /*save_errno = ERRNO_TLSFAILURE;*/
723 /*message = US"failure while setting up TLS session";*/
729 /* TLS session is set up. Copy info for logging. */
730 addr->cipher = tls_out.cipher;
731 addr->peerdn = tls_out.peerdn;
733 /* For SMTPS we need to wait for the initial OK response, then do HELO. */
735 goto smtps_redo_greeting;
737 /* For STARTTLS we need to redo EHLO */
742 /* If the host is required to use a secure channel, ensure that we have one. */
743 if (tls_out.active < 0)
745 #ifdef EXPERIMENTAL_DANE
748 verify_check_this_host(&(ob->hosts_require_tls), NULL, host->name,
749 host->address, NULL) == OK
752 /*save_errno = ERRNO_TLSREQUIRED;*/
753 log_write(0, LOG_MAIN,
754 "H=%s [%s]: a TLS session is required for this host, but %s",
755 host->name, host->address,
756 tls_offered ? "an attempt to start TLS failed"
757 : "the server did not offer TLS support");
762 #endif /*SUPPORT_TLS*/
764 done = TRUE; /* so far so good; have response to HELO */
766 /*XXX the EHLO response would be analyzed here for IGNOREQUOTA, SIZE, PIPELINING */
768 /* For now, transport_filter by cutthrough-delivery is not supported */
769 /* Need proper integration with the proper transport mechanism. */
770 if (cutthrough_delivery)
772 if (addr->transport->filter_command)
774 cutthrough_delivery= FALSE;
775 HDEBUG(D_acl|D_v) debug_printf("Cutthrough cancelled by presence of transport filter\n");
780 cutthrough_delivery= FALSE;
781 HDEBUG(D_acl|D_v) debug_printf("Cutthrough cancelled by presence of DKIM signing\n");
790 /* Clear down of the TLS, SMTP and TCP layers on error is handled below. */
792 /* Failure to accept HELO is cached; this blocks the whole domain for all
793 senders. I/O errors and defer responses are not cached. */
797 *failure_ptr = US"mail"; /* At or before MAIL */
798 if (errno == 0 && responsebuffer[0] == '5')
800 setflag(addr, af_verify_nsfail);
801 new_domain_record.result = ccache_reject;
805 /* If we haven't authenticated, but are required to, give up. */
808 else done = smtp_auth(responsebuffer, sizeof(responsebuffer),
809 addr, host, ob, esmtp, &inblock, &outblock) == OK &&
811 /* Copy AUTH info for logging */
812 ( (addr->authenticator = client_authenticator),
813 (addr->auth_id = client_authenticated_id),
815 /* Build a mail-AUTH string (re-using responsebuffer for convenience */
816 !smtp_mail_auth_str(responsebuffer, sizeof(responsebuffer), addr, ob)
819 ( (addr->auth_sndr = client_authenticated_sender),
821 /* Send the MAIL command */
822 (smtp_write_command(&outblock, FALSE, "MAIL FROM:<%s>%s\r\n",
823 from_address, responsebuffer) >= 0)
826 smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer),
829 deliver_host = deliver_host_address = NULL;
830 deliver_domain = save_deliver_domain;
832 /* If the host does not accept MAIL FROM:<>, arrange to cache this
833 information, but again, don't record anything for an I/O error or a defer. Do
834 not cache rejections of MAIL when a non-empty sender has been used, because
835 that blocks the whole domain for all senders. */
839 *failure_ptr = US"mail"; /* At or before MAIL */
840 if (errno == 0 && responsebuffer[0] == '5')
842 setflag(addr, af_verify_nsfail);
843 if (from_address[0] == 0)
844 new_domain_record.result = ccache_reject_mfnull;
848 /* Otherwise, proceed to check a "random" address (if required), then the
849 given address, and the postmaster address (if required). Between each check,
850 issue RSET, because some servers accept only one recipient after MAIL
853 Before doing this, set the result in the domain cache record to "accept",
854 unless its previous value was ccache_reject_mfnull. In that case, the domain
855 rejects MAIL FROM:<> and we want to continue to remember that. When that is
856 the case, we have got here only in the case of a recipient verification with
857 a non-null sender. */
861 new_domain_record.result =
862 (old_domain_cache_result == ccache_reject_mfnull)?
863 ccache_reject_mfnull: ccache_accept;
865 /* Do the random local part check first */
867 if (random_local_part != NULL)
869 uschar randombuffer[1024];
871 smtp_write_command(&outblock, FALSE,
872 "RCPT TO:<%.1000s@%.1000s>\r\n", random_local_part,
873 addr->domain) >= 0 &&
874 smtp_read_response(&inblock, randombuffer,
875 sizeof(randombuffer), '2', callout);
877 /* Remember when we last did a random test */
879 new_domain_record.random_stamp = time(NULL);
881 /* If accepted, we aren't going to do any further tests below. */
884 new_domain_record.random_result = ccache_accept;
886 /* Otherwise, cache a real negative response, and get back to the right
887 state to send RCPT. Unless there's some problem such as a dropped
888 connection, we expect to succeed, because the commands succeeded above. */
892 if (randombuffer[0] == '5')
893 new_domain_record.random_result = ccache_reject;
896 smtp_write_command(&outblock, FALSE, "RSET\r\n") >= 0 &&
897 smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer),
900 smtp_write_command(&outblock, FALSE, "MAIL FROM:<%s>\r\n",
901 from_address) >= 0 &&
902 smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer),
905 else done = FALSE; /* Some timeout/connection problem */
908 /* If the host is accepting all local parts, as determined by the "random"
909 check, we don't need to waste time doing any further checking. */
911 if (new_domain_record.random_result != ccache_accept && done)
913 /* Get the rcpt_include_affixes flag from the transport if there is one,
914 but assume FALSE if there is not. */
917 smtp_write_command(&outblock, FALSE, "RCPT TO:<%.1000s>\r\n",
918 transport_rcpt_address(addr,
919 (addr->transport == NULL)? FALSE :
920 addr->transport->rcpt_include_affixes)) >= 0 &&
921 smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer),
925 new_address_record.result = ccache_accept;
926 else if (errno == 0 && responsebuffer[0] == '5')
928 *failure_ptr = US"recipient";
929 new_address_record.result = ccache_reject;
932 /* Do postmaster check if requested; if a full check is required, we
933 check for RCPT TO:<postmaster> (no domain) in accordance with RFC 821. */
935 if (done && pm_mailfrom != NULL)
937 /*XXX not suitable for cutthrough - sequencing problems */
938 cutthrough_delivery= FALSE;
939 HDEBUG(D_acl|D_v) debug_printf("Cutthrough cancelled by presence of postmaster verify\n");
942 smtp_write_command(&outblock, FALSE, "RSET\r\n") >= 0 &&
943 smtp_read_response(&inblock, responsebuffer,
944 sizeof(responsebuffer), '2', callout) &&
946 smtp_write_command(&outblock, FALSE,
947 "MAIL FROM:<%s>\r\n", pm_mailfrom) >= 0 &&
948 smtp_read_response(&inblock, responsebuffer,
949 sizeof(responsebuffer), '2', callout) &&
951 /* First try using the current domain */
954 smtp_write_command(&outblock, FALSE,
955 "RCPT TO:<postmaster@%.1000s>\r\n", addr->domain) >= 0 &&
956 smtp_read_response(&inblock, responsebuffer,
957 sizeof(responsebuffer), '2', callout)
962 /* If that doesn't work, and a full check is requested,
963 try without the domain. */
966 (options & vopt_callout_fullpm) != 0 &&
967 smtp_write_command(&outblock, FALSE,
968 "RCPT TO:<postmaster>\r\n") >= 0 &&
969 smtp_read_response(&inblock, responsebuffer,
970 sizeof(responsebuffer), '2', callout)
973 /* Sort out the cache record */
975 new_domain_record.postmaster_stamp = time(NULL);
978 new_domain_record.postmaster_result = ccache_accept;
979 else if (errno == 0 && responsebuffer[0] == '5')
981 *failure_ptr = US"postmaster";
982 setflag(addr, af_verify_pmfail);
983 new_domain_record.postmaster_result = ccache_reject;
986 } /* Random not accepted */
987 } /* MAIL FROM: accepted */
989 /* For any failure of the main check, other than a negative response, we just
990 close the connection and carry on. We can identify a negative response by the
991 fact that errno is zero. For I/O errors it will be non-zero
993 Set up different error texts for logging and for sending back to the caller
994 as an SMTP response. Log in all cases, using a one-line format. For sender
995 callouts, give a full response to the caller, but for recipient callouts,
996 don't give the IP address because this may be an internal host whose identity
997 is not to be widely broadcast. */
1001 if (errno == ETIMEDOUT)
1003 HDEBUG(D_verify) debug_printf("SMTP timeout\n");
1006 else if (errno == 0)
1008 if (*responsebuffer == 0) Ustrcpy(responsebuffer, US"connection dropped");
1011 string_sprintf("response to \"%s\" from %s [%s] was: %s",
1012 big_buffer, host->name, host->address,
1013 string_printing(responsebuffer));
1015 addr->user_message = is_recipient?
1016 string_sprintf("Callout verification failed:\n%s", responsebuffer)
1018 string_sprintf("Called: %s\nSent: %s\nResponse: %s",
1019 host->address, big_buffer, responsebuffer);
1021 /* Hard rejection ends the process */
1023 if (responsebuffer[0] == '5') /* Address rejected */
1031 /* End the SMTP conversation and close the connection. */
1033 /* Cutthrough - on a successfull connect and recipient-verify with use-sender
1034 and we have no cutthrough conn so far
1035 here is where we want to leave the conn open */
1036 if ( cutthrough_delivery
1039 && (options & (vopt_callout_recipsender|vopt_callout_recippmaster)) == vopt_callout_recipsender
1040 && !random_local_part
1042 && cutthrough_fd < 0
1045 cutthrough_fd= outblock.sock; /* We assume no buffer in use in the outblock */
1046 cutthrough_addr = *addr; /* Save the address_item for later logging */
1047 cutthrough_addr.next = NULL;
1048 cutthrough_addr.host_used = store_get(sizeof(host_item));
1049 *(cutthrough_addr.host_used) = *host;
1051 *(cutthrough_addr.parent = store_get(sizeof(address_item)))= *addr->parent;
1052 ctblock.buffer = ctbuffer;
1053 ctblock.buffersize = sizeof(ctbuffer);
1054 ctblock.ptr = ctbuffer;
1055 /* ctblock.cmd_count = 0; ctblock.authenticating = FALSE; */
1056 ctblock.sock = cutthrough_fd;
1060 /* Ensure no cutthrough on multiple address verifies */
1061 if (options & vopt_callout_recipsender)
1062 cancel_cutthrough_connection("multiple verify calls");
1063 if (send_quit) (void)smtp_write_command(&outblock, FALSE, "QUIT\r\n");
1066 tls_close(FALSE, TRUE);
1068 (void)close(inblock.sock);
1069 #ifdef EXPERIMENTAL_EVENT
1070 (void) event_raise(addr->transport->event_action,
1071 US"tcp:close", NULL);
1075 } /* Loop through all hosts, while !done */
1078 /* If we get here with done == TRUE, a successful callout happened, and yield
1079 will be set OK or FAIL according to the response to the RCPT command.
1080 Otherwise, we looped through the hosts but couldn't complete the business.
1081 However, there may be domain-specific information to cache in both cases.
1083 The value of the result field in the new_domain record is ccache_unknown if
1084 there was an error before or with MAIL FROM:, and errno was not zero,
1085 implying some kind of I/O error. We don't want to write the cache in that case.
1086 Otherwise the value is ccache_accept, ccache_reject, or ccache_reject_mfnull. */
1088 if (!callout_no_cache && new_domain_record.result != ccache_unknown)
1090 if ((dbm_file = dbfn_open(US"callout", O_RDWR|O_CREAT, &dbblock, FALSE))
1093 HDEBUG(D_verify) debug_printf("callout cache: not available\n");
1097 (void)dbfn_write(dbm_file, addr->domain, &new_domain_record,
1098 (int)sizeof(dbdata_callout_cache));
1099 HDEBUG(D_verify) debug_printf("wrote callout cache domain record:\n"
1100 " result=%d postmaster=%d random=%d\n",
1101 new_domain_record.result,
1102 new_domain_record.postmaster_result,
1103 new_domain_record.random_result);
1107 /* If a definite result was obtained for the callout, cache it unless caching
1112 if (!callout_no_cache && new_address_record.result != ccache_unknown)
1114 if (dbm_file == NULL)
1115 dbm_file = dbfn_open(US"callout", O_RDWR|O_CREAT, &dbblock, FALSE);
1116 if (dbm_file == NULL)
1118 HDEBUG(D_verify) debug_printf("no callout cache available\n");
1122 (void)dbfn_write(dbm_file, address_key, &new_address_record,
1123 (int)sizeof(dbdata_callout_cache_address));
1124 HDEBUG(D_verify) debug_printf("wrote %s callout cache address record\n",
1125 (new_address_record.result == ccache_accept)? "positive" : "negative");
1130 /* Failure to connect to any host, or any response other than 2xx or 5xx is a
1131 temporary error. If there was only one host, and a response was received, leave
1132 it alone if supplying details. Otherwise, give a generic response. */
1136 uschar *dullmsg = string_sprintf("Could not complete %s verify callout",
1137 is_recipient? "recipient" : "sender");
1140 if (host_list->next != NULL || addr->message == NULL) addr->message = dullmsg;
1142 addr->user_message = (!smtp_return_error_details)? dullmsg :
1143 string_sprintf("%s for <%s>.\n"
1144 "The mail server(s) for the domain may be temporarily unreachable, or\n"
1145 "they may be permanently unreachable from this server. In the latter case,\n%s",
1146 dullmsg, addr->address,
1148 "the address will never be accepted."
1150 "you need to change the address or create an MX record for its domain\n"
1151 "if it is supposed to be generally accessible from the Internet.\n"
1152 "Talk to your mail administrator for details.");
1154 /* Force a specific error code */
1156 addr->basic_errno = ERRNO_CALLOUTDEFER;
1159 /* Come here from within the cache-reading code on fast-track exit. */
1162 if (dbm_file != NULL) dbfn_close(dbm_file);
1168 /* Called after recipient-acl to get a cutthrough connection open when
1169 one was requested and a recipient-verify wasn't subsequently done.
1172 open_cutthrough_connection( address_item * addr )
1176 /* Use a recipient-verify-callout to set up the cutthrough connection. */
1177 /* We must use a copy of the address for verification, because it might
1181 HDEBUG(D_acl) debug_printf("----------- start cutthrough setup ------------\n");
1182 (void) verify_address(&addr2, NULL,
1183 vopt_is_recipient | vopt_callout_recipsender | vopt_callout_no_cache,
1184 CUTTHROUGH_CMD_TIMEOUT, -1, -1,
1186 HDEBUG(D_acl) debug_printf("----------- end cutthrough setup ------------\n");
1192 /* Send given number of bytes from the buffer */
1194 cutthrough_send(int n)
1196 if(cutthrough_fd < 0)
1201 (tls_out.active == cutthrough_fd) ? tls_write(FALSE, ctblock.buffer, n) :
1203 send(cutthrough_fd, ctblock.buffer, n, 0) > 0
1206 transport_count += n;
1207 ctblock.ptr= ctblock.buffer;
1211 HDEBUG(D_transport|D_acl) debug_printf("cutthrough_send failed: %s\n", strerror(errno));
1218 _cutthrough_puts(uschar * cp, int n)
1222 if(ctblock.ptr >= ctblock.buffer+ctblock.buffersize)
1223 if(!cutthrough_send(ctblock.buffersize))
1226 *ctblock.ptr++ = *cp++;
1231 /* Buffered output of counted data block. Return boolean success */
1233 cutthrough_puts(uschar * cp, int n)
1235 if (cutthrough_fd < 0) return TRUE;
1236 if (_cutthrough_puts(cp, n)) return TRUE;
1237 cancel_cutthrough_connection("transmit failed");
1243 _cutthrough_flush_send( void )
1245 int n= ctblock.ptr-ctblock.buffer;
1248 if(!cutthrough_send(n))
1254 /* Send out any bufferred output. Return boolean success. */
1256 cutthrough_flush_send( void )
1258 if (_cutthrough_flush_send()) return TRUE;
1259 cancel_cutthrough_connection("transmit failed");
1265 cutthrough_put_nl( void )
1267 return cutthrough_puts(US"\r\n", 2);
1271 /* Get and check response from cutthrough target */
1273 cutthrough_response(char expect, uschar ** copy)
1275 smtp_inblock inblock;
1276 uschar inbuffer[4096];
1277 uschar responsebuffer[4096];
1279 inblock.buffer = inbuffer;
1280 inblock.buffersize = sizeof(inbuffer);
1281 inblock.ptr = inbuffer;
1282 inblock.ptrend = inbuffer;
1283 inblock.sock = cutthrough_fd;
1284 /* this relies on (inblock.sock == tls_out.active) */
1285 if(!smtp_read_response(&inblock, responsebuffer, sizeof(responsebuffer), expect, CUTTHROUGH_DATA_TIMEOUT))
1286 cancel_cutthrough_connection("target timeout on read");
1291 *copy= cp= string_copy(responsebuffer);
1292 /* Trim the trailing end of line */
1293 cp += Ustrlen(responsebuffer);
1294 if(cp > *copy && cp[-1] == '\n') *--cp = '\0';
1295 if(cp > *copy && cp[-1] == '\r') *--cp = '\0';
1298 return responsebuffer[0];
1302 /* Negotiate dataphase with the cutthrough target, returning success boolean */
1304 cutthrough_predata( void )
1306 if(cutthrough_fd < 0)
1309 HDEBUG(D_transport|D_acl|D_v) debug_printf(" SMTP>> DATA\n");
1310 cutthrough_puts(US"DATA\r\n", 6);
1311 cutthrough_flush_send();
1313 /* Assume nothing buffered. If it was it gets ignored. */
1314 return cutthrough_response('3', NULL) == '3';
1318 /* fd and use_crlf args only to match write_chunk() */
1320 cutthrough_write_chunk(int fd, uschar * s, int len, BOOL use_crlf)
1323 while(s && (s2 = Ustrchr(s, '\n')))
1325 if(!cutthrough_puts(s, s2-s) || !cutthrough_put_nl())
1333 /* Buffered send of headers. Return success boolean. */
1334 /* Expands newlines to wire format (CR,NL). */
1335 /* Also sends header-terminating blank line. */
1337 cutthrough_headers_send( void )
1339 if(cutthrough_fd < 0)
1342 /* We share a routine with the mainline transport to handle header add/remove/rewrites,
1343 but having a separate buffered-output function (for now)
1345 HDEBUG(D_acl) debug_printf("----------- start cutthrough headers send -----------\n");
1347 if (!transport_headers_send(&cutthrough_addr, cutthrough_fd,
1348 cutthrough_addr.transport->add_headers, cutthrough_addr.transport->remove_headers,
1349 &cutthrough_write_chunk, TRUE,
1350 cutthrough_addr.transport->rewrite_rules, cutthrough_addr.transport->rewrite_existflags))
1353 HDEBUG(D_acl) debug_printf("----------- done cutthrough headers send ------------\n");
1359 close_cutthrough_connection( const char * why )
1361 if(cutthrough_fd >= 0)
1363 /* We could be sending this after a bunch of data, but that is ok as
1364 the only way to cancel the transfer in dataphase is to drop the tcp
1365 conn before the final dot.
1367 ctblock.ptr = ctbuffer;
1368 HDEBUG(D_transport|D_acl|D_v) debug_printf(" SMTP>> QUIT\n");
1369 _cutthrough_puts(US"QUIT\r\n", 6); /* avoid recursion */
1370 _cutthrough_flush_send();
1371 /* No wait for response */
1374 tls_close(FALSE, TRUE);
1376 (void)close(cutthrough_fd);
1378 HDEBUG(D_acl) debug_printf("----------- cutthrough shutdown (%s) ------------\n", why);
1380 ctblock.ptr = ctbuffer;
1384 cancel_cutthrough_connection( const char * why )
1386 close_cutthrough_connection(why);
1387 cutthrough_delivery= FALSE;
1393 /* Have senders final-dot. Send one to cutthrough target, and grab the response.
1394 Log an OK response as a transmission.
1395 Close the connection.
1396 Return smtp response-class digit.
1399 cutthrough_finaldot( void )
1401 HDEBUG(D_transport|D_acl|D_v) debug_printf(" SMTP>> .\n");
1403 /* Assume data finshed with new-line */
1404 if(!cutthrough_puts(US".", 1) || !cutthrough_put_nl() || !cutthrough_flush_send())
1405 return cutthrough_addr.message;
1407 switch(cutthrough_response('2', &cutthrough_addr.message))
1410 delivery_log(LOG_MAIN, &cutthrough_addr, (int)'>', NULL);
1411 close_cutthrough_connection("delivered");
1415 delivery_log(LOG_MAIN, &cutthrough_addr, 0, US"tmp-reject from cutthrough after DATA:");
1419 delivery_log(LOG_MAIN|LOG_REJECT, &cutthrough_addr, 0, US"rejected after DATA:");
1425 return cutthrough_addr.message;
1430 /*************************************************
1431 * Copy error to toplevel address *
1432 *************************************************/
1434 /* This function is used when a verify fails or defers, to ensure that the
1435 failure or defer information is in the original toplevel address. This applies
1436 when an address is redirected to a single new address, and the failure or
1437 deferral happens to the child address.
1440 vaddr the verify address item
1441 addr the final address item
1444 Returns: the value of YIELD
1448 copy_error(address_item *vaddr, address_item *addr, int yield)
1452 vaddr->message = addr->message;
1453 vaddr->user_message = addr->user_message;
1454 vaddr->basic_errno = addr->basic_errno;
1455 vaddr->more_errno = addr->more_errno;
1456 vaddr->p.address_data = addr->p.address_data;
1457 copyflag(vaddr, addr, af_pass_message);
1465 /**************************************************
1466 * printf that automatically handles TLS if needed *
1467 ***************************************************/
1469 /* This function is used by verify_address() as a substitute for all fprintf()
1470 calls; a direct fprintf() will not produce output in a TLS SMTP session, such
1471 as a response to an EXPN command. smtp_in.c makes smtp_printf available but
1472 that assumes that we always use the smtp_out FILE* when not using TLS or the
1473 ssl buffer when we are. Instead we take a FILE* parameter and check to see if
1474 that is smtp_out; if so, smtp_printf() with TLS support, otherwise regular
1478 f the candidate FILE* to write to
1479 format format string
1480 ... optional arguments
1486 static void PRINTF_FUNCTION(2,3)
1487 respond_printf(FILE *f, const char *format, ...)
1491 va_start(ap, format);
1492 if (smtp_out && (f == smtp_out))
1493 smtp_vprintf(format, ap);
1495 vfprintf(f, format, ap);
1501 /*************************************************
1502 * Verify an email address *
1503 *************************************************/
1505 /* This function is used both for verification (-bv and at other times) and
1506 address testing (-bt), which is indicated by address_test_mode being set.
1509 vaddr contains the address to verify; the next field in this block
1511 f if not NULL, write the result to this file
1512 options various option bits:
1513 vopt_fake_sender => this sender verify is not for the real
1514 sender (it was verify=sender=xxxx or an address from a
1515 header line) - rewriting must not change sender_address
1516 vopt_is_recipient => this is a recipient address, otherwise
1517 it's a sender address - this affects qualification and
1518 rewriting and messages from callouts
1519 vopt_qualify => qualify an unqualified address; else error
1520 vopt_expn => called from SMTP EXPN command
1521 vopt_success_on_redirect => when a new address is generated
1522 the verification instantly succeeds
1524 These ones are used by do_callout() -- the options variable
1527 vopt_callout_fullpm => if postmaster check, do full one
1528 vopt_callout_no_cache => don't use callout cache
1529 vopt_callout_random => do the "random" thing
1530 vopt_callout_recipsender => use real sender for recipient
1531 vopt_callout_recippmaster => use postmaster for recipient
1533 callout if > 0, specifies that callout is required, and gives timeout
1534 for individual commands
1535 callout_overall if > 0, gives overall timeout for the callout function;
1536 if < 0, a default is used (see do_callout())
1537 callout_connect the connection timeout for callouts
1538 se_mailfrom when callout is requested to verify a sender, use this
1539 in MAIL FROM; NULL => ""
1540 pm_mailfrom when callout is requested, if non-NULL, do the postmaster
1541 thing and use this as the sender address (may be "")
1543 routed if not NULL, set TRUE if routing succeeded, so we can
1544 distinguish between routing failed and callout failed
1546 Returns: OK address verified
1547 FAIL address failed to verify
1548 DEFER can't tell at present
1552 verify_address(address_item *vaddr, FILE *f, int options, int callout,
1553 int callout_overall, int callout_connect, uschar *se_mailfrom,
1554 uschar *pm_mailfrom, BOOL *routed)
1557 BOOL full_info = (f == NULL)? FALSE : (debug_selector != 0);
1558 BOOL is_recipient = (options & vopt_is_recipient) != 0;
1559 BOOL expn = (options & vopt_expn) != 0;
1560 BOOL success_on_redirect = (options & vopt_success_on_redirect) != 0;
1563 int verify_type = expn? v_expn :
1564 address_test_mode? v_none :
1565 is_recipient? v_recipient : v_sender;
1566 address_item *addr_list;
1567 address_item *addr_new = NULL;
1568 address_item *addr_remote = NULL;
1569 address_item *addr_local = NULL;
1570 address_item *addr_succeed = NULL;
1571 uschar **failure_ptr = is_recipient?
1572 &recipient_verify_failure : &sender_verify_failure;
1573 uschar *ko_prefix, *cr;
1574 uschar *address = vaddr->address;
1575 uschar *save_sender;
1576 uschar null_sender[] = { 0 }; /* Ensure writeable memory */
1578 /* Clear, just in case */
1580 *failure_ptr = NULL;
1582 /* Set up a prefix and suffix for error message which allow us to use the same
1583 output statements both in EXPN mode (where an SMTP response is needed) and when
1584 debugging with an output file. */
1588 ko_prefix = US"553 ";
1591 else ko_prefix = cr = US"";
1593 /* Add qualify domain if permitted; otherwise an unqualified address fails. */
1595 if (parse_find_at(address) == NULL)
1597 if ((options & vopt_qualify) == 0)
1600 respond_printf(f, "%sA domain is required for \"%s\"%s\n",
1601 ko_prefix, address, cr);
1602 *failure_ptr = US"qualify";
1605 address = rewrite_address_qualify(address, is_recipient);
1610 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
1611 debug_printf("%s %s\n", address_test_mode? "Testing" : "Verifying", address);
1614 /* Rewrite and report on it. Clear the domain and local part caches - these
1615 may have been set by domains and local part tests during an ACL. */
1617 if (global_rewrite_rules != NULL)
1619 uschar *old = address;
1620 address = rewrite_address(address, is_recipient, FALSE,
1621 global_rewrite_rules, rewrite_existflags);
1624 for (i = 0; i < (MAX_NAMED_LIST * 2)/32; i++) vaddr->localpart_cache[i] = 0;
1625 for (i = 0; i < (MAX_NAMED_LIST * 2)/32; i++) vaddr->domain_cache[i] = 0;
1626 if (f != NULL && !expn) fprintf(f, "Address rewritten as: %s\n", address);
1630 /* If this is the real sender address, we must update sender_address at
1631 this point, because it may be referred to in the routers. */
1633 if ((options & (vopt_fake_sender|vopt_is_recipient)) == 0)
1634 sender_address = address;
1636 /* If the address was rewritten to <> no verification can be done, and we have
1637 to return OK. This rewriting is permitted only for sender addresses; for other
1638 addresses, such rewriting fails. */
1640 if (address[0] == 0) return OK;
1642 /* Flip the legacy TLS-related variables over to the outbound set in case
1643 they're used in the context of a transport used by verification. Reset them
1644 at exit from this routine. */
1646 tls_modify_variables(&tls_out);
1648 /* Save a copy of the sender address for re-instating if we change it to <>
1649 while verifying a sender address (a nice bit of self-reference there). */
1651 save_sender = sender_address;
1653 /* Update the address structure with the possibly qualified and rewritten
1654 address. Set it up as the starting address on the chain of new addresses. */
1656 vaddr->address = address;
1659 /* We need a loop, because an address can generate new addresses. We must also
1660 cope with generated pipes and files at the top level. (See also the code and
1661 comment in deliver.c.) However, it is usually the case that the router for
1662 user's .forward files has its verify flag turned off.
1664 If an address generates more than one child, the loop is used only when
1665 full_info is set, and this can only be set locally. Remote enquiries just get
1666 information about the top level address, not anything that it generated. */
1668 while (addr_new != NULL)
1671 address_item *addr = addr_new;
1673 addr_new = addr->next;
1678 debug_printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
1679 debug_printf("Considering %s\n", addr->address);
1682 /* Handle generated pipe, file or reply addresses. We don't get these
1683 when handling EXPN, as it does only one level of expansion. */
1685 if (testflag(addr, af_pfr))
1692 if (addr->address[0] == '>')
1694 allow = testflag(addr, af_allow_reply);
1695 fprintf(f, "%s -> mail %s", addr->parent->address, addr->address + 1);
1699 allow = (addr->address[0] == '|')?
1700 testflag(addr, af_allow_pipe) : testflag(addr, af_allow_file);
1701 fprintf(f, "%s -> %s", addr->parent->address, addr->address);
1704 if (addr->basic_errno == ERRNO_BADTRANSPORT)
1705 fprintf(f, "\n*** Error in setting up pipe, file, or autoreply:\n"
1706 "%s\n", addr->message);
1708 fprintf(f, "\n transport = %s\n", addr->transport->name);
1710 fprintf(f, " *** forbidden ***\n");
1715 /* Just in case some router parameter refers to it. */
1717 return_path = (addr->p.errors_address != NULL)?
1718 addr->p.errors_address : sender_address;
1720 /* Split the address into domain and local part, handling the %-hack if
1721 necessary, and then route it. While routing a sender address, set
1722 $sender_address to <> because that is what it will be if we were trying to
1723 send a bounce to the sender. */
1725 if (routed != NULL) *routed = FALSE;
1726 if ((rc = deliver_split_address(addr)) == OK)
1728 if (!is_recipient) sender_address = null_sender;
1729 rc = route_address(addr, &addr_local, &addr_remote, &addr_new,
1730 &addr_succeed, verify_type);
1731 sender_address = save_sender; /* Put back the real sender */
1734 /* If routing an address succeeded, set the flag that remembers, for use when
1735 an ACL cached a sender verify (in case a callout fails). Then if routing set
1736 up a list of hosts or the transport has a host list, and the callout option
1737 is set, and we aren't in a host checking run, do the callout verification,
1738 and set another flag that notes that a callout happened. */
1742 if (routed != NULL) *routed = TRUE;
1745 host_item *host_list = addr->host_list;
1747 /* Make up some data for use in the case where there is no remote
1750 transport_feedback tf = {
1751 NULL, /* interface (=> any) */
1752 US"smtp", /* port */
1753 US"smtp", /* protocol */
1755 US"$smtp_active_hostname", /* helo_data */
1756 FALSE, /* hosts_override */
1757 FALSE, /* hosts_randomize */
1758 FALSE, /* gethostbyname */
1759 TRUE, /* qualify_single */
1760 FALSE /* search_parents */
1763 /* If verification yielded a remote transport, we want to use that
1764 transport's options, so as to mimic what would happen if we were really
1765 sending a message to this address. */
1767 if (addr->transport != NULL && !addr->transport->info->local)
1769 (void)(addr->transport->setup)(addr->transport, addr, &tf, 0, 0, NULL);
1771 /* If the transport has hosts and the router does not, or if the
1772 transport is configured to override the router's hosts, we must build a
1773 host list of the transport's hosts, and find the IP addresses */
1775 if (tf.hosts != NULL && (host_list == NULL || tf.hosts_override))
1778 uschar *save_deliver_domain = deliver_domain;
1779 uschar *save_deliver_localpart = deliver_localpart;
1781 host_list = NULL; /* Ignore the router's hosts */
1783 deliver_domain = addr->domain;
1784 deliver_localpart = addr->local_part;
1785 s = expand_string(tf.hosts);
1786 deliver_domain = save_deliver_domain;
1787 deliver_localpart = save_deliver_localpart;
1791 log_write(0, LOG_MAIN|LOG_PANIC, "failed to expand list of hosts "
1792 "\"%s\" in %s transport for callout: %s", tf.hosts,
1793 addr->transport->name, expand_string_message);
1798 uschar *canonical_name;
1799 host_item *host, *nexthost;
1800 host_build_hostlist(&host_list, s, tf.hosts_randomize);
1802 /* Just ignore failures to find a host address. If we don't manage
1803 to find any addresses, the callout will defer. Note that more than
1804 one address may be found for a single host, which will result in
1805 additional host items being inserted into the chain. Hence we must
1806 save the next host first. */
1808 flags = HOST_FIND_BY_A;
1809 if (tf.qualify_single) flags |= HOST_FIND_QUALIFY_SINGLE;
1810 if (tf.search_parents) flags |= HOST_FIND_SEARCH_PARENTS;
1812 for (host = host_list; host != NULL; host = nexthost)
1814 nexthost = host->next;
1815 if (tf.gethostbyname ||
1816 string_is_ip_address(host->name, NULL) != 0)
1817 (void)host_find_byname(host, NULL, flags, &canonical_name, TRUE);
1820 uschar * d_request = NULL, * d_require = NULL;
1821 if (Ustrcmp(addr->transport->driver_name, "smtp") == 0)
1823 smtp_transport_options_block * ob =
1824 (smtp_transport_options_block *)
1825 addr->transport->options_block;
1826 d_request = ob->dnssec_request_domains;
1827 d_require = ob->dnssec_require_domains;
1830 (void)host_find_bydns(host, NULL, flags, NULL, NULL, NULL,
1831 d_request, d_require, &canonical_name, NULL);
1838 /* Can only do a callout if we have at least one host! If the callout
1839 fails, it will have set ${sender,recipient}_verify_failure. */
1841 if (host_list != NULL)
1843 HDEBUG(D_verify) debug_printf("Attempting full verification using callout\n");
1844 if (host_checking && !host_checking_callout)
1847 debug_printf("... callout omitted by default when host testing\n"
1848 "(Use -bhc if you want the callouts to happen.)\n");
1853 deliver_set_expansions(addr);
1855 verify_mode = is_recipient ? US"R" : US"S";
1856 rc = do_callout(addr, host_list, &tf, callout, callout_overall,
1857 callout_connect, options, se_mailfrom, pm_mailfrom);
1863 HDEBUG(D_verify) debug_printf("Cannot do callout: neither router nor "
1864 "transport provided a host list\n");
1869 /* Otherwise, any failure is a routing failure */
1871 else *failure_ptr = US"route";
1873 /* A router may return REROUTED if it has set up a child address as a result
1874 of a change of domain name (typically from widening). In this case we always
1875 want to continue to verify the new child. */
1877 if (rc == REROUTED) continue;
1879 /* Handle hard failures */
1886 address_item *p = addr->parent;
1888 respond_printf(f, "%s%s %s", ko_prefix,
1889 full_info? addr->address : address,
1890 address_test_mode? "is undeliverable" : "failed to verify");
1891 if (!expn && admin_user)
1893 if (addr->basic_errno > 0)
1894 respond_printf(f, ": %s", strerror(addr->basic_errno));
1895 if (addr->message != NULL)
1896 respond_printf(f, ": %s", addr->message);
1899 /* Show parents iff doing full info */
1901 if (full_info) while (p != NULL)
1903 respond_printf(f, "%s\n <-- %s", cr, p->address);
1906 respond_printf(f, "%s\n", cr);
1908 cancel_cutthrough_connection("routing hard fail");
1912 yield = copy_error(vaddr, addr, FAIL);
1920 else if (rc == DEFER)
1925 address_item *p = addr->parent;
1926 respond_printf(f, "%s%s cannot be resolved at this time", ko_prefix,
1927 full_info? addr->address : address);
1928 if (!expn && admin_user)
1930 if (addr->basic_errno > 0)
1931 respond_printf(f, ": %s", strerror(addr->basic_errno));
1932 if (addr->message != NULL)
1933 respond_printf(f, ": %s", addr->message);
1934 else if (addr->basic_errno <= 0)
1935 respond_printf(f, ": unknown error");
1938 /* Show parents iff doing full info */
1940 if (full_info) while (p != NULL)
1942 respond_printf(f, "%s\n <-- %s", cr, p->address);
1945 respond_printf(f, "%s\n", cr);
1947 cancel_cutthrough_connection("routing soft fail");
1951 yield = copy_error(vaddr, addr, DEFER);
1954 else if (yield == OK) yield = DEFER;
1957 /* If we are handling EXPN, we do not want to continue to route beyond
1958 the top level (whose address is in "address"). */
1962 uschar *ok_prefix = US"250-";
1963 if (addr_new == NULL)
1965 if (addr_local == NULL && addr_remote == NULL)
1966 respond_printf(f, "250 mail to <%s> is discarded\r\n", address);
1968 respond_printf(f, "250 <%s>\r\n", address);
1970 else while (addr_new != NULL)
1972 address_item *addr2 = addr_new;
1973 addr_new = addr2->next;
1974 if (addr_new == NULL) ok_prefix = US"250 ";
1975 respond_printf(f, "%s<%s>\r\n", ok_prefix, addr2->address);
1981 /* Successful routing other than EXPN. */
1985 /* Handle successful routing when short info wanted. Otherwise continue for
1986 other (generated) addresses. Short info is the operational case. Full info
1987 can be requested only when debug_selector != 0 and a file is supplied.
1989 There is a conflict between the use of aliasing as an alternate email
1990 address, and as a sort of mailing list. If an alias turns the incoming
1991 address into just one address (e.g. J.Caesar->jc44) you may well want to
1992 carry on verifying the generated address to ensure it is valid when
1993 checking incoming mail. If aliasing generates multiple addresses, you
1994 probably don't want to do this. Exim therefore treats the generation of
1995 just a single new address as a special case, and continues on to verify the
1996 generated address. */
1998 if (!full_info && /* Stop if short info wanted AND */
1999 (((addr_new == NULL || /* No new address OR */
2000 addr_new->next != NULL || /* More than one new address OR */
2001 testflag(addr_new, af_pfr))) /* New address is pfr */
2003 (addr_new != NULL && /* At least one new address AND */
2004 success_on_redirect))) /* success_on_redirect is set */
2006 if (f != NULL) fprintf(f, "%s %s\n", address,
2007 address_test_mode? "is deliverable" : "verified");
2009 /* If we have carried on to verify a child address, we want the value
2010 of $address_data to be that of the child */
2012 vaddr->p.address_data = addr->p.address_data;
2017 } /* Loop for generated addresses */
2019 /* Display the full results of the successful routing, including any generated
2020 addresses. Control gets here only when full_info is set, which requires f not
2021 to be NULL, and this occurs only when a top-level verify is called with the
2022 debugging switch on.
2024 If there are no local and no remote addresses, and there were no pipes, files,
2025 or autoreplies, and there were no errors or deferments, the message is to be
2026 discarded, usually because of the use of :blackhole: in an alias file. */
2028 if (allok && addr_local == NULL && addr_remote == NULL)
2030 fprintf(f, "mail to %s is discarded\n", address);
2034 for (addr_list = addr_local, i = 0; i < 2; addr_list = addr_remote, i++)
2036 while (addr_list != NULL)
2038 address_item *addr = addr_list;
2039 address_item *p = addr->parent;
2040 addr_list = addr->next;
2042 fprintf(f, "%s", CS addr->address);
2043 #ifdef EXPERIMENTAL_SRS
2044 if(addr->p.srs_sender)
2045 fprintf(f, " [srs = %s]", addr->p.srs_sender);
2048 /* If the address is a duplicate, show something about it. */
2050 if (!testflag(addr, af_pfr))
2053 if ((tnode = tree_search(tree_duplicates, addr->unique)) != NULL)
2054 fprintf(f, " [duplicate, would not be delivered]");
2055 else tree_add_duplicate(addr->unique, addr);
2058 /* Now show its parents */
2062 fprintf(f, "\n <-- %s", p->address);
2067 /* Show router, and transport */
2069 fprintf(f, "router = %s, ", addr->router->name);
2070 fprintf(f, "transport = %s\n", (addr->transport == NULL)? US"unset" :
2071 addr->transport->name);
2073 /* Show any hosts that are set up by a router unless the transport
2074 is going to override them; fiddle a bit to get a nice format. */
2076 if (addr->host_list != NULL && addr->transport != NULL &&
2077 !addr->transport->overrides_hosts)
2082 for (h = addr->host_list; h != NULL; h = h->next)
2084 int len = Ustrlen(h->name);
2085 if (len > maxlen) maxlen = len;
2086 len = (h->address != NULL)? Ustrlen(h->address) : 7;
2087 if (len > maxaddlen) maxaddlen = len;
2089 for (h = addr->host_list; h != NULL; h = h->next)
2091 int len = Ustrlen(h->name);
2092 fprintf(f, " host %s ", h->name);
2093 while (len++ < maxlen) fprintf(f, " ");
2094 if (h->address != NULL)
2096 fprintf(f, "[%s] ", h->address);
2097 len = Ustrlen(h->address);
2099 else if (!addr->transport->info->local) /* Omit [unknown] for local */
2101 fprintf(f, "[unknown] ");
2105 while (len++ < maxaddlen) fprintf(f," ");
2106 if (h->mx >= 0) fprintf(f, "MX=%d", h->mx);
2107 if (h->port != PORT_NONE) fprintf(f, " port=%d", h->port);
2108 if (h->status == hstatus_unusable) fprintf(f, " ** unusable **");
2115 /* Yield will be DEFER or FAIL if any one address has, only for full_info (which is
2116 the -bv or -bt case). */
2119 tls_modify_variables(&tls_in);
2127 /*************************************************
2128 * Check headers for syntax errors *
2129 *************************************************/
2131 /* This function checks those header lines that contain addresses, and verifies
2132 that all the addresses therein are syntactially correct.
2135 msgptr where to put an error message
2142 verify_check_headers(uschar **msgptr)
2148 for (h = header_list; h != NULL && yield == OK; h = h->next)
2150 if (h->type != htype_from &&
2151 h->type != htype_reply_to &&
2152 h->type != htype_sender &&
2153 h->type != htype_to &&
2154 h->type != htype_cc &&
2155 h->type != htype_bcc)
2158 colon = Ustrchr(h->text, ':');
2160 while (isspace(*s)) s++;
2162 /* Loop for multiple addresses in the header, enabling group syntax. Note
2163 that we have to reset this after the header has been scanned. */
2165 parse_allow_group = TRUE;
2169 uschar *ss = parse_find_address_end(s, FALSE);
2170 uschar *recipient, *errmess;
2171 int terminator = *ss;
2172 int start, end, domain;
2174 /* Temporarily terminate the string at this point, and extract the
2175 operative address within, allowing group syntax. */
2178 recipient = parse_extract_address(s,&errmess,&start,&end,&domain,FALSE);
2181 /* Permit an unqualified address only if the message is local, or if the
2182 sending host is configured to be permitted to send them. */
2184 if (recipient != NULL && domain == 0)
2186 if (h->type == htype_from || h->type == htype_sender)
2188 if (!allow_unqualified_sender) recipient = NULL;
2192 if (!allow_unqualified_recipient) recipient = NULL;
2194 if (recipient == NULL) errmess = US"unqualified address not permitted";
2197 /* It's an error if no address could be extracted, except for the special
2198 case of an empty address. */
2200 if (recipient == NULL && Ustrcmp(errmess, "empty address") != 0)
2202 uschar *verb = US"is";
2207 /* Arrange not to include any white space at the end in the
2208 error message or the header name. */
2210 while (t > s && isspace(t[-1])) t--;
2211 while (tt > h->text && isspace(tt[-1])) tt--;
2213 /* Add the address that failed to the error message, since in a
2214 header with very many addresses it is sometimes hard to spot
2215 which one is at fault. However, limit the amount of address to
2216 quote - cases have been seen where, for example, a missing double
2217 quote in a humungous To: header creates an "address" that is longer
2218 than string_sprintf can handle. */
2227 *msgptr = string_printing(
2228 string_sprintf("%s: failing address in \"%.*s:\" header %s: %.*s",
2229 errmess, tt - h->text, h->text, verb, len, s));
2232 break; /* Out of address loop */
2235 /* Advance to the next address */
2237 s = ss + (terminator? 1:0);
2238 while (isspace(*s)) s++;
2239 } /* Next address */
2241 parse_allow_group = FALSE;
2242 parse_found_group = FALSE;
2243 } /* Next header unless yield has been set FALSE */
2249 /*************************************************
2250 * Check header names for 8-bit characters *
2251 *************************************************/
2253 /* This function checks for invalid charcters in header names. See
2254 RFC 5322, 2.2. and RFC 6532, 3.
2257 msgptr where to put an error message
2264 verify_check_header_names_ascii(uschar **msgptr)
2269 for (h = header_list; h != NULL; h = h->next)
2271 colon = Ustrchr(h->text, ':');
2272 for(s = h->text; s < colon; s++)
2274 if ((*s < 33) || (*s > 126))
2276 *msgptr = string_sprintf("Invalid character in header \"%.*s\" found",
2277 colon - h->text, h->text);
2285 /*************************************************
2286 * Check for blind recipients *
2287 *************************************************/
2289 /* This function checks that every (envelope) recipient is mentioned in either
2290 the To: or Cc: header lines, thus detecting blind carbon copies.
2292 There are two ways of scanning that could be used: either scan the header lines
2293 and tick off the recipients, or scan the recipients and check the header lines.
2294 The original proposed patch did the former, but I have chosen to do the latter,
2295 because (a) it requires no memory and (b) will use fewer resources when there
2296 are many addresses in To: and/or Cc: and only one or two envelope recipients.
2299 Returns: OK if there are no blind recipients
2300 FAIL if there is at least one blind recipient
2304 verify_check_notblind(void)
2307 for (i = 0; i < recipients_count; i++)
2311 uschar *address = recipients_list[i].address;
2313 for (h = header_list; !found && h != NULL; h = h->next)
2317 if (h->type != htype_to && h->type != htype_cc) continue;
2319 colon = Ustrchr(h->text, ':');
2321 while (isspace(*s)) s++;
2323 /* Loop for multiple addresses in the header, enabling group syntax. Note
2324 that we have to reset this after the header has been scanned. */
2326 parse_allow_group = TRUE;
2330 uschar *ss = parse_find_address_end(s, FALSE);
2331 uschar *recipient,*errmess;
2332 int terminator = *ss;
2333 int start, end, domain;
2335 /* Temporarily terminate the string at this point, and extract the
2336 operative address within, allowing group syntax. */
2339 recipient = parse_extract_address(s,&errmess,&start,&end,&domain,FALSE);
2342 /* If we found a valid recipient that has a domain, compare it with the
2343 envelope recipient. Local parts are compared case-sensitively, domains
2344 case-insensitively. By comparing from the start with length "domain", we
2345 include the "@" at the end, which ensures that we are comparing the whole
2346 local part of each address. */
2348 if (recipient != NULL && domain != 0)
2350 found = Ustrncmp(recipient, address, domain) == 0 &&
2351 strcmpic(recipient + domain, address + domain) == 0;
2355 /* Advance to the next address */
2357 s = ss + (terminator? 1:0);
2358 while (isspace(*s)) s++;
2359 } /* Next address */
2361 parse_allow_group = FALSE;
2362 parse_found_group = FALSE;
2363 } /* Next header (if found is false) */
2365 if (!found) return FAIL;
2366 } /* Next recipient */
2373 /*************************************************
2374 * Find if verified sender *
2375 *************************************************/
2377 /* Usually, just a single address is verified as the sender of the message.
2378 However, Exim can be made to verify other addresses as well (often related in
2379 some way), and this is useful in some environments. There may therefore be a
2380 chain of such addresses that have previously been tested. This function finds
2381 whether a given address is on the chain.
2383 Arguments: the address to be verified
2384 Returns: pointer to an address item, or NULL
2388 verify_checked_sender(uschar *sender)
2391 for (addr = sender_verified_list; addr != NULL; addr = addr->next)
2392 if (Ustrcmp(sender, addr->address) == 0) break;
2400 /*************************************************
2401 * Get valid header address *
2402 *************************************************/
2404 /* Scan the originator headers of the message, looking for an address that
2405 verifies successfully. RFC 822 says:
2407 o The "Sender" field mailbox should be sent notices of
2408 any problems in transport or delivery of the original
2409 messages. If there is no "Sender" field, then the
2410 "From" field mailbox should be used.
2412 o If the "Reply-To" field exists, then the reply should
2413 go to the addresses indicated in that field and not to
2414 the address(es) indicated in the "From" field.
2416 So we check a Sender field if there is one, else a Reply_to field, else a From
2417 field. As some strange messages may have more than one of these fields,
2418 especially if they are resent- fields, check all of them if there is more than
2422 user_msgptr points to where to put a user error message
2423 log_msgptr points to where to put a log error message
2424 callout timeout for callout check (passed to verify_address())
2425 callout_overall overall callout timeout (ditto)
2426 callout_connect connect callout timeout (ditto)
2427 se_mailfrom mailfrom for verify; NULL => ""
2428 pm_mailfrom sender for pm callout check (passed to verify_address())
2429 options callout options (passed to verify_address())
2430 verrno where to put the address basic_errno
2432 If log_msgptr is set to something without setting user_msgptr, the caller
2433 normally uses log_msgptr for both things.
2435 Returns: result of the verification attempt: OK, FAIL, or DEFER;
2436 FAIL is given if no appropriate headers are found
2440 verify_check_header_address(uschar **user_msgptr, uschar **log_msgptr,
2441 int callout, int callout_overall, int callout_connect, uschar *se_mailfrom,
2442 uschar *pm_mailfrom, int options, int *verrno)
2444 static int header_types[] = { htype_sender, htype_reply_to, htype_from };
2449 for (i = 0; i < 3 && !done; i++)
2452 for (h = header_list; h != NULL && !done; h = h->next)
2454 int terminator, new_ok;
2455 uschar *s, *ss, *endname;
2457 if (h->type != header_types[i]) continue;
2458 s = endname = Ustrchr(h->text, ':') + 1;
2460 /* Scan the addresses in the header, enabling group syntax. Note that we
2461 have to reset this after the header has been scanned. */
2463 parse_allow_group = TRUE;
2467 address_item *vaddr;
2469 while (isspace(*s) || *s == ',') s++;
2470 if (*s == 0) break; /* End of header */
2472 ss = parse_find_address_end(s, FALSE);
2474 /* The terminator is a comma or end of header, but there may be white
2475 space preceding it (including newline for the last address). Move back
2476 past any white space so we can check against any cached envelope sender
2477 address verifications. */
2479 while (isspace(ss[-1])) ss--;
2483 HDEBUG(D_verify) debug_printf("verifying %.*s header address %s\n",
2484 (int)(endname - h->text), h->text, s);
2486 /* See if we have already verified this address as an envelope sender,
2487 and if so, use the previous answer. */
2489 vaddr = verify_checked_sender(s);
2491 if (vaddr != NULL && /* Previously checked */
2492 (callout <= 0 || /* No callout needed; OR */
2493 vaddr->special_action > 256)) /* Callout was done */
2495 new_ok = vaddr->special_action & 255;
2496 HDEBUG(D_verify) debug_printf("previously checked as envelope sender\n");
2497 *ss = terminator; /* Restore shortened string */
2500 /* Otherwise we run the verification now. We must restore the shortened
2501 string before running the verification, so the headers are correct, in
2502 case there is any rewriting. */
2506 int start, end, domain;
2507 uschar *address = parse_extract_address(s, log_msgptr, &start, &end,
2512 /* If we found an empty address, just carry on with the next one, but
2513 kill the message. */
2515 if (address == NULL && Ustrcmp(*log_msgptr, "empty address") == 0)
2522 /* If verification failed because of a syntax error, fail this
2523 function, and ensure that the failing address gets added to the error
2526 if (address == NULL)
2529 while (ss > s && isspace(ss[-1])) ss--;
2530 *log_msgptr = string_sprintf("syntax error in '%.*s' header when "
2531 "scanning for sender: %s in \"%.*s\"",
2532 endname - h->text, h->text, *log_msgptr, ss - s, s);
2538 /* Else go ahead with the sender verification. But it isn't *the*
2539 sender of the message, so set vopt_fake_sender to stop sender_address
2540 being replaced after rewriting or qualification. */
2544 vaddr = deliver_make_addr(address, FALSE);
2545 new_ok = verify_address(vaddr, NULL, options | vopt_fake_sender,
2546 callout, callout_overall, callout_connect, se_mailfrom,
2551 /* We now have the result, either newly found, or cached. If we are
2552 giving out error details, set a specific user error. This means that the
2553 last of these will be returned to the user if all three fail. We do not
2554 set a log message - the generic one below will be used. */
2558 *verrno = vaddr->basic_errno;
2559 if (smtp_return_error_details)
2561 *user_msgptr = string_sprintf("Rejected after DATA: "
2562 "could not verify \"%.*s\" header address\n%s: %s",
2563 endname - h->text, h->text, vaddr->address, vaddr->message);
2567 /* Success or defer */
2576 if (new_ok == DEFER) yield = DEFER;
2578 /* Move on to any more addresses in the header */
2581 } /* Next address */
2583 parse_allow_group = FALSE;
2584 parse_found_group = FALSE;
2585 } /* Next header, unless done */
2586 } /* Next header type unless done */
2588 if (yield == FAIL && *log_msgptr == NULL)
2589 *log_msgptr = US"there is no valid sender in any header line";
2591 if (yield == DEFER && *log_msgptr == NULL)
2592 *log_msgptr = US"all attempts to verify a sender in a header line deferred";
2600 /*************************************************
2601 * Get RFC 1413 identification *
2602 *************************************************/
2604 /* Attempt to get an id from the sending machine via the RFC 1413 protocol. If
2605 the timeout is set to zero, then the query is not done. There may also be lists
2606 of hosts and nets which are exempt. To guard against malefactors sending
2607 non-printing characters which could, for example, disrupt a message's headers,
2608 make sure the string consists of printing characters only.
2611 port the port to connect to; usually this is IDENT_PORT (113), but when
2612 running in the test harness with -bh a different value is used.
2616 Side effect: any received ident value is put in sender_ident (NULL otherwise)
2620 verify_get_ident(int port)
2622 int sock, host_af, qlen;
2623 int received_sender_port, received_interface_port, n;
2625 uschar buffer[2048];
2627 /* Default is no ident. Check whether we want to do an ident check for this
2630 sender_ident = NULL;
2631 if (rfc1413_query_timeout <= 0 || verify_check_host(&rfc1413_hosts) != OK)
2634 DEBUG(D_ident) debug_printf("doing ident callback\n");
2636 /* Set up a connection to the ident port of the remote host. Bind the local end
2637 to the incoming interface address. If the sender host address is an IPv6
2638 address, the incoming interface address will also be IPv6. */
2640 host_af = (Ustrchr(sender_host_address, ':') == NULL)? AF_INET : AF_INET6;
2641 sock = ip_socket(SOCK_STREAM, host_af);
2642 if (sock < 0) return;
2644 if (ip_bind(sock, host_af, interface_address, 0) < 0)
2646 DEBUG(D_ident) debug_printf("bind socket for ident failed: %s\n",
2651 if (ip_connect(sock, host_af, sender_host_address, port, rfc1413_query_timeout)
2654 if (errno == ETIMEDOUT && (log_extra_selector & LX_ident_timeout) != 0)
2656 log_write(0, LOG_MAIN, "ident connection to %s timed out",
2657 sender_host_address);
2661 DEBUG(D_ident) debug_printf("ident connection to %s failed: %s\n",
2662 sender_host_address, strerror(errno));
2667 /* Construct and send the query. */
2669 sprintf(CS buffer, "%d , %d\r\n", sender_host_port, interface_port);
2670 qlen = Ustrlen(buffer);
2671 if (send(sock, buffer, qlen, 0) < 0)
2673 DEBUG(D_ident) debug_printf("ident send failed: %s\n", strerror(errno));
2677 /* Read a response line. We put it into the rest of the buffer, using several
2678 recv() calls if necessary. */
2686 int size = sizeof(buffer) - (p - buffer);
2688 if (size <= 0) goto END_OFF; /* Buffer filled without seeing \n. */
2689 count = ip_recv(sock, p, size, rfc1413_query_timeout);
2690 if (count <= 0) goto END_OFF; /* Read error or EOF */
2692 /* Scan what we just read, to see if we have reached the terminating \r\n. Be
2693 generous, and accept a plain \n terminator as well. The only illegal
2696 for (pp = p; pp < p + count; pp++)
2698 if (*pp == 0) goto END_OFF; /* Zero octet not allowed */
2701 if (pp[-1] == '\r') pp--;
2703 goto GOT_DATA; /* Break out of both loops */
2707 /* Reached the end of the data without finding \n. Let the loop continue to
2708 read some more, if there is room. */
2715 /* We have received a line of data. Check it carefully. It must start with the
2716 same two port numbers that we sent, followed by data as defined by the RFC. For
2719 12345 , 25 : USERID : UNIX :root
2721 However, the amount of white space may be different to what we sent. In the
2722 "osname" field there may be several sub-fields, comma separated. The data we
2723 actually want to save follows the third colon. Some systems put leading spaces
2724 in it - we discard those. */
2726 if (sscanf(CS buffer + qlen, "%d , %d%n", &received_sender_port,
2727 &received_interface_port, &n) != 2 ||
2728 received_sender_port != sender_host_port ||
2729 received_interface_port != interface_port)
2732 p = buffer + qlen + n;
2733 while(isspace(*p)) p++;
2734 if (*p++ != ':') goto END_OFF;
2735 while(isspace(*p)) p++;
2736 if (Ustrncmp(p, "USERID", 6) != 0) goto END_OFF;
2738 while(isspace(*p)) p++;
2739 if (*p++ != ':') goto END_OFF;
2740 while (*p != 0 && *p != ':') p++;
2741 if (*p++ == 0) goto END_OFF;
2742 while(isspace(*p)) p++;
2743 if (*p == 0) goto END_OFF;
2745 /* The rest of the line is the data we want. We turn it into printing
2746 characters when we save it, so that it cannot mess up the format of any logging
2747 or Received: lines into which it gets inserted. We keep a maximum of 127
2750 sender_ident = string_printing(string_copyn(p, 127));
2751 DEBUG(D_ident) debug_printf("sender_ident = %s\n", sender_ident);
2761 /*************************************************
2762 * Match host to a single host-list item *
2763 *************************************************/
2765 /* This function compares a host (name or address) against a single item
2766 from a host list. The host name gets looked up if it is needed and is not
2767 already known. The function is called from verify_check_this_host() via
2768 match_check_list(), which is why most of its arguments are in a single block.
2771 arg the argument block (see below)
2772 ss the host-list item
2773 valueptr where to pass back looked up data, or NULL
2774 error for error message when returning ERROR
2777 host_name (a) the host name, or
2778 (b) NULL, implying use sender_host_name and
2779 sender_host_aliases, looking them up if required, or
2780 (c) the empty string, meaning that only IP address matches
2782 host_address the host address
2783 host_ipv4 the IPv4 address taken from an IPv6 one
2787 DEFER lookup deferred
2788 ERROR (a) failed to find the host name or IP address, or
2789 (b) unknown lookup type specified, or
2790 (c) host name encountered when only IP addresses are
2795 check_host(void *arg, uschar *ss, uschar **valueptr, uschar **error)
2797 check_host_block *cb = (check_host_block *)arg;
2800 BOOL iplookup = FALSE;
2801 BOOL isquery = FALSE;
2802 BOOL isiponly = cb->host_name != NULL && cb->host_name[0] == 0;
2807 /* Optimize for the special case when the pattern is "*". */
2809 if (*ss == '*' && ss[1] == 0) return OK;
2811 /* If the pattern is empty, it matches only in the case when there is no host -
2812 this can occur in ACL checking for SMTP input using the -bs option. In this
2813 situation, the host address is the empty string. */
2815 if (cb->host_address[0] == 0) return (*ss == 0)? OK : FAIL;
2816 if (*ss == 0) return FAIL;
2818 /* If the pattern is precisely "@" then match against the primary host name,
2819 provided that host name matching is permitted; if it's "@[]" match against the
2820 local host's IP addresses. */
2826 if (isiponly) return ERROR;
2827 ss = primary_hostname;
2829 else if (Ustrcmp(ss, "@[]") == 0)
2831 ip_address_item *ip;
2832 for (ip = host_find_interfaces(); ip != NULL; ip = ip->next)
2833 if (Ustrcmp(ip->address, cb->host_address) == 0) return OK;
2838 /* If the pattern is an IP address, optionally followed by a bitmask count, do
2839 a (possibly masked) comparision with the current IP address. */
2841 if (string_is_ip_address(ss, &maskoffset) != 0)
2842 return (host_is_in_net(cb->host_address, ss, maskoffset)? OK : FAIL);
2844 /* The pattern is not an IP address. A common error that people make is to omit
2845 one component of an IPv4 address, either by accident, or believing that, for
2846 example, 1.2.3/24 is the same as 1.2.3.0/24, or 1.2.3 is the same as 1.2.3.0,
2847 which it isn't. (Those applications that do accept 1.2.3 as an IP address
2848 interpret it as 1.2.0.3 because the final component becomes 16-bit - this is an
2849 ancient specification.) To aid in debugging these cases, we give a specific
2850 error if the pattern contains only digits and dots or contains a slash preceded
2851 only by digits and dots (a slash at the start indicates a file name and of
2852 course slashes may be present in lookups, but not preceded only by digits and
2855 for (t = ss; isdigit(*t) || *t == '.'; t++);
2856 if (*t == 0 || (*t == '/' && t != ss))
2858 *error = US"malformed IPv4 address or address mask";
2862 /* See if there is a semicolon in the pattern */
2864 semicolon = Ustrchr(ss, ';');
2866 /* If we are doing an IP address only match, then all lookups must be IP
2867 address lookups, even if there is no "net-". */
2871 iplookup = semicolon != NULL;
2874 /* Otherwise, if the item is of the form net[n]-lookup;<file|query> then it is
2875 a lookup on a masked IP network, in textual form. We obey this code even if we
2876 have already set iplookup, so as to skip over the "net-" prefix and to set the
2877 mask length. The net- stuff really only applies to single-key lookups where the
2878 key is implicit. For query-style lookups the key is specified in the query.
2879 From release 4.30, the use of net- for query style is no longer needed, but we
2880 retain it for backward compatibility. */
2882 if (Ustrncmp(ss, "net", 3) == 0 && semicolon != NULL)
2885 for (t = ss + 3; isdigit(*t); t++) mlen = mlen * 10 + *t - '0';
2886 if (mlen == 0 && t == ss+3) mlen = -1; /* No mask supplied */
2887 iplookup = (*t++ == '-');
2891 /* Do the IP address lookup if that is indeed what we have */
2899 uschar *filename, *key, *result;
2902 /* Find the search type */
2904 search_type = search_findtype(t, semicolon - t);
2906 if (search_type < 0) log_write(0, LOG_MAIN|LOG_PANIC_DIE, "%s",
2907 search_error_message);
2909 /* Adjust parameters for the type of lookup. For a query-style lookup, there
2910 is no file name, and the "key" is just the query. For query-style with a file
2911 name, we have to fish the file off the start of the query. For a single-key
2912 lookup, the key is the current IP address, masked appropriately, and
2913 reconverted to text form, with the mask appended. For IPv6 addresses, specify
2914 dot separators instead of colons, except when the lookup type is "iplsearch".
2917 if (mac_islookup(search_type, lookup_absfilequery))
2919 filename = semicolon + 1;
2921 while (*key != 0 && !isspace(*key)) key++;
2922 filename = string_copyn(filename, key - filename);
2923 while (isspace(*key)) key++;
2925 else if (mac_islookup(search_type, lookup_querystyle))
2928 key = semicolon + 1;
2930 else /* Single-key style */
2932 int sep = (Ustrcmp(lookup_list[search_type]->name, "iplsearch") == 0)?
2934 insize = host_aton(cb->host_address, incoming);
2935 host_mask(insize, incoming, mlen);
2936 (void)host_nmtoa(insize, incoming, mlen, buffer, sep);
2938 filename = semicolon + 1;
2941 /* Now do the actual lookup; note that there is no search_close() because
2942 of the caching arrangements. */
2944 handle = search_open(filename, search_type, 0, NULL, NULL);
2945 if (handle == NULL) log_write(0, LOG_MAIN|LOG_PANIC_DIE, "%s",
2946 search_error_message);
2947 result = search_find(handle, filename, key, -1, NULL, 0, 0, NULL);
2948 if (valueptr != NULL) *valueptr = result;
2949 return (result != NULL)? OK : search_find_defer? DEFER: FAIL;
2952 /* The pattern is not an IP address or network reference of any kind. That is,
2953 it is a host name pattern. If this is an IP only match, there's an error in the
2958 *error = US"cannot match host name in match_ip list";
2962 /* Check the characters of the pattern to see if they comprise only letters,
2963 digits, full stops, and hyphens (the constituents of domain names). Allow
2964 underscores, as they are all too commonly found. Sigh. Also, if
2965 allow_utf8_domains is set, allow top-bit characters. */
2967 for (t = ss; *t != 0; t++)
2968 if (!isalnum(*t) && *t != '.' && *t != '-' && *t != '_' &&
2969 (!allow_utf8_domains || *t < 128)) break;
2971 /* If the pattern is a complete domain name, with no fancy characters, look up
2972 its IP address and match against that. Note that a multi-homed host will add
2973 items to the chain. */
2984 rc = host_find_byname(&h, NULL, HOST_FIND_QUALIFY_SINGLE, NULL, FALSE);
2985 if (rc == HOST_FOUND || rc == HOST_FOUND_LOCAL)
2988 for (hh = &h; hh != NULL; hh = hh->next)
2990 if (host_is_in_net(hh->address, cb->host_address, 0)) return OK;
2994 if (rc == HOST_FIND_AGAIN) return DEFER;
2995 *error = string_sprintf("failed to find IP address for %s", ss);
2999 /* Almost all subsequent comparisons require the host name, and can be done
3000 using the general string matching function. When this function is called for
3001 outgoing hosts, the name is always given explicitly. If it is NULL, it means we
3002 must use sender_host_name and its aliases, looking them up if necessary. */
3004 if (cb->host_name != NULL) /* Explicit host name given */
3005 return match_check_string(cb->host_name, ss, -1, TRUE, TRUE, TRUE,
3008 /* Host name not given; in principle we need the sender host name and its
3009 aliases. However, for query-style lookups, we do not need the name if the
3010 query does not contain $sender_host_name. From release 4.23, a reference to
3011 $sender_host_name causes it to be looked up, so we don't need to do the lookup
3014 if ((semicolon = Ustrchr(ss, ';')) != NULL)
3017 int partial, affixlen, starflags, id;
3020 id = search_findtype_partial(ss, &partial, &affix, &affixlen, &starflags);
3023 if (id < 0) /* Unknown lookup type */
3025 log_write(0, LOG_MAIN|LOG_PANIC, "%s in host list item \"%s\"",
3026 search_error_message, ss);
3029 isquery = mac_islookup(id, lookup_querystyle|lookup_absfilequery);
3034 switch(match_check_string(US"", ss, -1, TRUE, TRUE, TRUE, valueptr))
3037 case DEFER: return DEFER;
3038 default: return FAIL;
3042 /* Not a query-style lookup; must ensure the host name is present, and then we
3043 do a check on the name and all its aliases. */
3045 if (sender_host_name == NULL)
3047 HDEBUG(D_host_lookup)
3048 debug_printf("sender host name required, to match against %s\n", ss);
3049 if (host_lookup_failed || host_name_lookup() != OK)
3051 *error = string_sprintf("failed to find host name for %s",
3052 sender_host_address);;
3055 host_build_sender_fullhost();
3058 /* Match on the sender host name, using the general matching function */
3060 switch(match_check_string(sender_host_name, ss, -1, TRUE, TRUE, TRUE,
3064 case DEFER: return DEFER;
3067 /* If there are aliases, try matching on them. */
3069 aliases = sender_host_aliases;
3070 while (*aliases != NULL)
3072 switch(match_check_string(*aliases++, ss, -1, TRUE, TRUE, TRUE, valueptr))
3075 case DEFER: return DEFER;
3084 /*************************************************
3085 * Check a specific host matches a host list *
3086 *************************************************/
3088 /* This function is passed a host list containing items in a number of
3089 different formats and the identity of a host. Its job is to determine whether
3090 the given host is in the set of hosts defined by the list. The host name is
3091 passed as a pointer so that it can be looked up if needed and not already
3092 known. This is commonly the case when called from verify_check_host() to check
3093 an incoming connection. When called from elsewhere the host name should usually
3096 This function is now just a front end to match_check_list(), which runs common
3097 code for scanning a list. We pass it the check_host() function to perform a
3101 listptr pointer to the host list
3102 cache_bits pointer to cache for named lists, or NULL
3103 host_name the host name or NULL, implying use sender_host_name and
3104 sender_host_aliases, looking them up if required
3105 host_address the IP address
3106 valueptr if not NULL, data from a lookup is passed back here
3108 Returns: OK if the host is in the defined set
3109 FAIL if the host is not in the defined set,
3110 DEFER if a data lookup deferred (not a host lookup)
3112 If the host name was needed in order to make a comparison, and could not be
3113 determined from the IP address, the result is FAIL unless the item
3114 "+allow_unknown" was met earlier in the list, in which case OK is returned. */
3117 verify_check_this_host(uschar **listptr, unsigned int *cache_bits,
3118 uschar *host_name, uschar *host_address, uschar **valueptr)
3121 unsigned int *local_cache_bits = cache_bits;
3122 uschar *save_host_address = deliver_host_address;
3123 check_host_block cb;
3124 cb.host_name = host_name;
3125 cb.host_address = host_address;
3127 if (valueptr != NULL) *valueptr = NULL;
3129 /* If the host address starts off ::ffff: it is an IPv6 address in
3130 IPv4-compatible mode. Find the IPv4 part for checking against IPv4
3133 cb.host_ipv4 = (Ustrncmp(host_address, "::ffff:", 7) == 0)?
3134 host_address + 7 : host_address;
3136 /* During the running of the check, put the IP address into $host_address. In
3137 the case of calls from the smtp transport, it will already be there. However,
3138 in other calls (e.g. when testing ignore_target_hosts), it won't. Just to be on
3139 the safe side, any existing setting is preserved, though as I write this
3140 (November 2004) I can't see any cases where it is actually needed. */
3142 deliver_host_address = host_address;
3143 rc = match_check_list(
3144 listptr, /* the list */
3145 0, /* separator character */
3146 &hostlist_anchor, /* anchor pointer */
3147 &local_cache_bits, /* cache pointer */
3148 check_host, /* function for testing */
3149 &cb, /* argument for function */
3150 MCL_HOST, /* type of check */
3151 (host_address == sender_host_address)?
3152 US"host" : host_address, /* text for debugging */
3153 valueptr); /* where to pass back data */
3154 deliver_host_address = save_host_address;
3161 /*************************************************
3162 * Check the remote host matches a list *
3163 *************************************************/
3165 /* This is a front end to verify_check_this_host(), created because checking
3166 the remote host is a common occurrence. With luck, a good compiler will spot
3167 the tail recursion and optimize it. If there's no host address, this is
3168 command-line SMTP input - check against an empty string for the address.
3171 listptr pointer to the host list
3173 Returns: the yield of verify_check_this_host(),
3174 i.e. OK, FAIL, or DEFER
3178 verify_check_host(uschar **listptr)
3180 return verify_check_this_host(listptr, sender_host_cache, NULL,
3181 (sender_host_address == NULL)? US"" : sender_host_address, NULL);
3188 /*************************************************
3189 * Invert an IP address *
3190 *************************************************/
3192 /* Originally just used for DNS xBL lists, now also used for the
3193 reverse_ip expansion operator.
3196 buffer where to put the answer
3197 address the address to invert
3201 invert_address(uschar *buffer, uschar *address)
3204 uschar *bptr = buffer;
3206 /* If this is an IPv4 address mapped into IPv6 format, adjust the pointer
3207 to the IPv4 part only. */
3209 if (Ustrncmp(address, "::ffff:", 7) == 0) address += 7;
3211 /* Handle IPv4 address: when HAVE_IPV6 is false, the result of host_aton() is
3214 if (host_aton(address, bin) == 1)
3218 for (i = 0; i < 4; i++)
3220 sprintf(CS bptr, "%d.", x & 255);
3221 while (*bptr) bptr++;
3226 /* Handle IPv6 address. Actually, as far as I know, there are no IPv6 addresses
3227 in any DNS black lists, and the format in which they will be looked up is
3228 unknown. This is just a guess. */
3234 for (j = 3; j >= 0; j--)
3237 for (i = 0; i < 8; i++)
3239 sprintf(CS bptr, "%x.", x & 15);
3240 while (*bptr) bptr++;
3247 /* Remove trailing period -- this is needed so that both arbitrary
3248 dnsbl keydomains and inverted addresses may be combined with the
3249 same format string, "%s.%s" */
3256 /*************************************************
3257 * Perform a single dnsbl lookup *
3258 *************************************************/
3260 /* This function is called from verify_check_dnsbl() below. It is also called
3261 recursively from within itself when domain and domain_txt are different
3262 pointers, in order to get the TXT record from the alternate domain.
3265 domain the outer dnsbl domain
3266 domain_txt alternate domain to lookup TXT record on success; when the
3267 same domain is to be used, domain_txt == domain (that is,
3268 the pointers must be identical, not just the text)
3269 keydomain the current keydomain (for debug message)
3270 prepend subdomain to lookup (like keydomain, but
3271 reversed if IP address)
3272 iplist the list of matching IP addresses, or NULL for "any"
3273 bitmask true if bitmask matching is wanted
3274 match_type condition for 'succeed' result
3275 0 => Any RR in iplist (=)
3276 1 => No RR in iplist (!=)
3277 2 => All RRs in iplist (==)
3278 3 => Some RRs not in iplist (!==)
3279 the two bits are defined as MT_NOT and MT_ALL
3280 defer_return what to return for a defer
3282 Returns: OK if lookup succeeded
3287 one_check_dnsbl(uschar *domain, uschar *domain_txt, uschar *keydomain,
3288 uschar *prepend, uschar *iplist, BOOL bitmask, int match_type,
3294 dnsbl_cache_block *cb;
3295 int old_pool = store_pool;
3296 uschar query[256]; /* DNS domain max length */
3298 /* Construct the specific query domainname */
3300 if (!string_format(query, sizeof(query), "%s.%s", prepend, domain))
3302 log_write(0, LOG_MAIN|LOG_PANIC, "dnslist query is too long "
3303 "(ignored): %s...", query);
3307 /* Look for this query in the cache. */
3309 t = tree_search(dnsbl_cache, query);
3311 /* If not cached from a previous lookup, we must do a DNS lookup, and
3312 cache the result in permanent memory. */
3316 store_pool = POOL_PERM;
3318 /* Set up a tree entry to cache the lookup */
3320 t = store_get(sizeof(tree_node) + Ustrlen(query));
3321 Ustrcpy(t->name, query);
3322 t->data.ptr = cb = store_get(sizeof(dnsbl_cache_block));
3323 (void)tree_insertnode(&dnsbl_cache, t);
3325 /* Do the DNS loopup . */
3327 HDEBUG(D_dnsbl) debug_printf("new DNS lookup for %s\n", query);
3328 cb->rc = dns_basic_lookup(&dnsa, query, T_A);
3329 cb->text_set = FALSE;
3333 /* If the lookup succeeded, cache the RHS address. The code allows for
3334 more than one address - this was for complete generality and the possible
3335 use of A6 records. However, A6 records have been reduced to experimental
3336 status (August 2001) and may die out. So they may never get used at all,
3337 let alone in dnsbl records. However, leave the code here, just in case.
3339 Quite apart from one A6 RR generating multiple addresses, there are DNS
3340 lists that return more than one A record, so we must handle multiple
3341 addresses generated in that way as well. */
3343 if (cb->rc == DNS_SUCCEED)
3346 dns_address **addrp = &(cb->rhs);
3347 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
3349 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
3351 if (rr->type == T_A)
3353 dns_address *da = dns_address_from_rr(&dnsa, rr);
3357 while (da->next != NULL) da = da->next;
3358 addrp = &(da->next);
3363 /* If we didn't find any A records, change the return code. This can
3364 happen when there is a CNAME record but there are no A records for what
3367 if (cb->rhs == NULL) cb->rc = DNS_NODATA;
3370 store_pool = old_pool;
3373 /* Previous lookup was cached */
3377 HDEBUG(D_dnsbl) debug_printf("using result of previous DNS lookup\n");
3381 /* We now have the result of the DNS lookup, either newly done, or cached
3382 from a previous call. If the lookup succeeded, check against the address
3383 list if there is one. This may be a positive equality list (introduced by
3384 "="), a negative equality list (introduced by "!="), a positive bitmask
3385 list (introduced by "&"), or a negative bitmask list (introduced by "!&").*/
3387 if (cb->rc == DNS_SUCCEED)
3389 dns_address *da = NULL;
3390 uschar *addlist = cb->rhs->address;
3392 /* For A and AAAA records, there may be multiple addresses from multiple
3393 records. For A6 records (currently not expected to be used) there may be
3394 multiple addresses from a single record. */
3396 for (da = cb->rhs->next; da != NULL; da = da->next)
3397 addlist = string_sprintf("%s, %s", addlist, da->address);
3399 HDEBUG(D_dnsbl) debug_printf("DNS lookup for %s succeeded (yielding %s)\n",
3402 /* Address list check; this can be either for equality, or via a bitmask.
3403 In the latter case, all the bits must match. */
3407 for (da = cb->rhs; da != NULL; da = da->next)
3411 uschar *ptr = iplist;
3414 /* Handle exact matching */
3418 while ((res = string_nextinlist(&ptr, &ipsep, ip, sizeof(ip))) != NULL)
3420 if (Ustrcmp(CS da->address, ip) == 0) break;
3424 /* Handle bitmask matching */
3431 /* At present, all known DNS blocking lists use A records, with
3432 IPv4 addresses on the RHS encoding the information they return. I
3433 wonder if this will linger on as the last vestige of IPv4 when IPv6
3434 is ubiquitous? Anyway, for now we use paranoia code to completely
3435 ignore IPv6 addresses. The default mask is 0, which always matches.
3436 We change this only for IPv4 addresses in the list. */
3438 if (host_aton(da->address, address) == 1) mask = address[0];
3440 /* Scan the returned addresses, skipping any that are IPv6 */
3442 while ((res = string_nextinlist(&ptr, &ipsep, ip, sizeof(ip))) != NULL)
3444 if (host_aton(ip, address) != 1) continue;
3445 if ((address[0] & mask) == address[0]) break;
3451 (a) An IP address in an any ('=') list matched, or
3452 (b) No IP address in an all ('==') list matched
3454 then we're done searching. */
3456 if (((match_type & MT_ALL) != 0) == (res == NULL)) break;
3459 /* If da == NULL, either
3461 (a) No IP address in an any ('=') list matched, or
3462 (b) An IP address in an all ('==') list didn't match
3464 so behave as if the DNSBL lookup had not succeeded, i.e. the host is not on
3467 if ((match_type == MT_NOT || match_type == MT_ALL) != (da == NULL))
3475 res = US"was no match";
3478 res = US"was an exclude match";
3481 res = US"was an IP address that did not match";
3484 res = US"were no IP addresses that did not match";
3487 debug_printf("=> but we are not accepting this block class because\n");
3488 debug_printf("=> there %s for %s%c%s\n",
3490 ((match_type & MT_ALL) == 0)? "" : "=",
3491 bitmask? '&' : '=', iplist);
3497 /* Either there was no IP list, or the record matched, implying that the
3498 domain is on the list. We now want to find a corresponding TXT record. If an
3499 alternate domain is specified for the TXT record, call this function
3500 recursively to look that up; this has the side effect of re-checking that
3501 there is indeed an A record at the alternate domain. */
3503 if (domain_txt != domain)
3504 return one_check_dnsbl(domain_txt, domain_txt, keydomain, prepend, NULL,
3505 FALSE, match_type, defer_return);
3507 /* If there is no alternate domain, look up a TXT record in the main domain
3508 if it has not previously been cached. */
3512 cb->text_set = TRUE;
3513 if (dns_basic_lookup(&dnsa, query, T_TXT) == DNS_SUCCEED)
3516 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
3518 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
3519 if (rr->type == T_TXT) break;
3522 int len = (rr->data)[0];
3523 if (len > 511) len = 127;
3524 store_pool = POOL_PERM;
3525 cb->text = string_sprintf("%.*s", len, (const uschar *)(rr->data+1));
3526 store_pool = old_pool;
3531 dnslist_value = addlist;
3532 dnslist_text = cb->text;
3536 /* There was a problem with the DNS lookup */
3538 if (cb->rc != DNS_NOMATCH && cb->rc != DNS_NODATA)
3540 log_write(L_dnslist_defer, LOG_MAIN,
3541 "DNS list lookup defer (probably timeout) for %s: %s", query,
3542 (defer_return == OK)? US"assumed in list" :
3543 (defer_return == FAIL)? US"assumed not in list" :
3544 US"returned DEFER");
3545 return defer_return;
3548 /* No entry was found in the DNS; continue for next domain */
3552 debug_printf("DNS lookup for %s failed\n", query);
3553 debug_printf("=> that means %s is not listed at %s\n",
3563 /*************************************************
3564 * Check host against DNS black lists *
3565 *************************************************/
3567 /* This function runs checks against a list of DNS black lists, until one
3568 matches. Each item on the list can be of the form
3570 domain=ip-address/key
3572 The domain is the right-most domain that is used for the query, for example,
3573 blackholes.mail-abuse.org. If the IP address is present, there is a match only
3574 if the DNS lookup returns a matching IP address. Several addresses may be
3575 given, comma-separated, for example: x.y.z=127.0.0.1,127.0.0.2.
3577 If no key is given, what is looked up in the domain is the inverted IP address
3578 of the current client host. If a key is given, it is used to construct the
3579 domain for the lookup. For example:
3581 dsn.rfc-ignorant.org/$sender_address_domain
3583 After finding a match in the DNS, the domain is placed in $dnslist_domain, and
3584 then we check for a TXT record for an error message, and if found, save its
3585 value in $dnslist_text. We also cache everything in a tree, to optimize
3588 The TXT record is normally looked up in the same domain as the A record, but
3589 when many lists are combined in a single DNS domain, this will not be a very
3590 specific message. It is possible to specify a different domain for looking up
3591 TXT records; this is given before the main domain, comma-separated. For
3594 dnslists = http.dnsbl.sorbs.net,dnsbl.sorbs.net=127.0.0.2 : \
3595 socks.dnsbl.sorbs.net,dnsbl.sorbs.net=127.0.0.3
3597 The caching ensures that only one lookup in dnsbl.sorbs.net is done.
3599 Note: an address for testing RBL is 192.203.178.39
3600 Note: an address for testing DUL is 192.203.178.4
3601 Note: a domain for testing RFCI is example.tld.dsn.rfc-ignorant.org
3604 listptr the domain/address/data list
3606 Returns: OK successful lookup (i.e. the address is on the list), or
3607 lookup deferred after +include_unknown
3608 FAIL name not found, or no data found for the given type, or
3609 lookup deferred after +exclude_unknown (default)
3610 DEFER lookup failure, if +defer_unknown was set
3614 verify_check_dnsbl(uschar **listptr)
3617 int defer_return = FAIL;
3618 uschar *list = *listptr;
3621 uschar buffer[1024];
3622 uschar revadd[128]; /* Long enough for IPv6 address */
3624 /* Indicate that the inverted IP address is not yet set up */
3628 /* In case this is the first time the DNS resolver is being used. */
3630 dns_init(FALSE, FALSE, FALSE); /*XXX dnssec? */
3632 /* Loop through all the domains supplied, until something matches */
3634 while ((domain = string_nextinlist(&list, &sep, buffer, sizeof(buffer))) != NULL)
3637 BOOL bitmask = FALSE;
3644 HDEBUG(D_dnsbl) debug_printf("DNS list check: %s\n", domain);
3646 /* Deal with special values that change the behaviour on defer */
3648 if (domain[0] == '+')
3650 if (strcmpic(domain, US"+include_unknown") == 0) defer_return = OK;
3651 else if (strcmpic(domain, US"+exclude_unknown") == 0) defer_return = FAIL;
3652 else if (strcmpic(domain, US"+defer_unknown") == 0) defer_return = DEFER;
3654 log_write(0, LOG_MAIN|LOG_PANIC, "unknown item in dnslist (ignored): %s",
3659 /* See if there's explicit data to be looked up */
3661 key = Ustrchr(domain, '/');
3662 if (key != NULL) *key++ = 0;
3664 /* See if there's a list of addresses supplied after the domain name. This is
3665 introduced by an = or a & character; if preceded by = we require all matches
3666 and if preceded by ! we invert the result. */
3668 iplist = Ustrchr(domain, '=');
3672 iplist = Ustrchr(domain, '&');
3675 if (iplist != NULL) /* Found either = or & */
3677 if (iplist > domain && iplist[-1] == '!') /* Handle preceding ! */
3679 match_type |= MT_NOT;
3683 *iplist++ = 0; /* Terminate domain, move on */
3685 /* If we found = (bitmask == FALSE), check for == or =& */
3687 if (!bitmask && (*iplist == '=' || *iplist == '&'))
3689 bitmask = *iplist++ == '&';
3690 match_type |= MT_ALL;
3694 /* If there is a comma in the domain, it indicates that a second domain for
3695 looking up TXT records is provided, before the main domain. Otherwise we must
3696 set domain_txt == domain. */
3698 domain_txt = domain;
3699 comma = Ustrchr(domain, ',');
3706 /* Check that what we have left is a sensible domain name. There is no reason
3707 why these domains should in fact use the same syntax as hosts and email
3708 domains, but in practice they seem to. However, there is little point in
3709 actually causing an error here, because that would no doubt hold up incoming
3710 mail. Instead, I'll just log it. */
3712 for (s = domain; *s != 0; s++)
3714 if (!isalnum(*s) && *s != '-' && *s != '.' && *s != '_')
3716 log_write(0, LOG_MAIN, "dnslists domain \"%s\" contains "
3717 "strange characters - is this right?", domain);
3722 /* Check the alternate domain if present */
3724 if (domain_txt != domain) for (s = domain_txt; *s != 0; s++)
3726 if (!isalnum(*s) && *s != '-' && *s != '.' && *s != '_')
3728 log_write(0, LOG_MAIN, "dnslists domain \"%s\" contains "
3729 "strange characters - is this right?", domain_txt);
3734 /* If there is no key string, construct the query by adding the domain name
3735 onto the inverted host address, and perform a single DNS lookup. */
3739 if (sender_host_address == NULL) return FAIL; /* can never match */
3740 if (revadd[0] == 0) invert_address(revadd, sender_host_address);
3741 rc = one_check_dnsbl(domain, domain_txt, sender_host_address, revadd,
3742 iplist, bitmask, match_type, defer_return);
3745 dnslist_domain = string_copy(domain_txt);
3746 dnslist_matched = string_copy(sender_host_address);
3747 HDEBUG(D_dnsbl) debug_printf("=> that means %s is listed at %s\n",
3748 sender_host_address, dnslist_domain);
3750 if (rc != FAIL) return rc; /* OK or DEFER */
3753 /* If there is a key string, it can be a list of domains or IP addresses to
3754 be concatenated with the main domain. */
3761 uschar keybuffer[256];
3762 uschar keyrevadd[128];
3764 while ((keydomain = string_nextinlist(&key, &keysep, keybuffer,
3765 sizeof(keybuffer))) != NULL)
3767 uschar *prepend = keydomain;
3769 if (string_is_ip_address(keydomain, NULL) != 0)
3771 invert_address(keyrevadd, keydomain);
3772 prepend = keyrevadd;
3775 rc = one_check_dnsbl(domain, domain_txt, keydomain, prepend, iplist,
3776 bitmask, match_type, defer_return);
3780 dnslist_domain = string_copy(domain_txt);
3781 dnslist_matched = string_copy(keydomain);
3782 HDEBUG(D_dnsbl) debug_printf("=> that means %s is listed at %s\n",
3783 keydomain, dnslist_domain);
3787 /* If the lookup deferred, remember this fact. We keep trying the rest
3788 of the list to see if we get a useful result, and if we don't, we return
3789 DEFER at the end. */
3791 if (rc == DEFER) defer = TRUE;
3792 } /* continue with next keystring domain/address */
3794 if (defer) return DEFER;
3796 } /* continue with next dnsdb outer domain */
3803 /* End of verify.c */