5 #include <openssl/opensslv.h>
6 #include <openssl/err.h>
7 #include <openssl/crypto.h>
8 #include <openssl/safestack.h>
9 #include <openssl/objects.h>
10 #include <openssl/x509.h>
11 #include <openssl/x509v3.h>
12 #include <openssl/evp.h>
14 #if OPENSSL_VERSION_NUMBER < 0x1000000fL
15 # error "OpenSSL 1.0.0 or higher required"
16 #else /* remainder of file */
20 #define DANE_F_ADD_SKID 100
21 #define DANE_F_CHECK_END_ENTITY 101
22 #define DANE_F_GROW_CHAIN 102
23 #define DANE_F_LIST_ALLOC 103
24 #define DANE_F_MATCH 104
25 #define DANE_F_PUSH_EXT 105
26 #define DANE_F_SET_TRUST_ANCHOR 106
27 #define DANE_F_SSL_CTX_DANE_INIT 107
28 #define DANE_F_SSL_DANE_ADD_TLSA 108
29 #define DANE_F_SSL_DANE_INIT 109
30 #define DANE_F_SSL_DANE_LIBRARY_INIT 110
31 #define DANE_F_VERIFY_CERT 111
32 #define DANE_F_WRAP_CERT 112
34 #define DANE_R_BAD_CERT 100
35 #define DANE_R_BAD_CERT_PKEY 101
36 #define DANE_R_BAD_DATA_LENGTH 102
37 #define DANE_R_BAD_DIGEST 103
38 #define DANE_R_BAD_NULL_DATA 104
39 #define DANE_R_BAD_PKEY 105
40 #define DANE_R_BAD_SELECTOR 106
41 #define DANE_R_BAD_USAGE 107
42 #define DANE_R_DANE_INIT 108
43 #define DANE_R_DANE_SUPPORT 109
44 #define DANE_R_LIBRARY_INIT 110
45 #define DANE_R_NOSIGN_KEY 111
46 #define DANE_R_SCTX_INIT 112
48 #ifndef OPENSSL_NO_ERR
49 # define DANE_F_PLACEHOLDER 0 /* FIRST! Value TBD */
50 static ERR_STRING_DATA dane_str_functs[] =
52 {DANE_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */
53 {DANE_F_ADD_SKID, "add_skid"},
54 {DANE_F_CHECK_END_ENTITY, "check_end_entity"},
55 {DANE_F_GROW_CHAIN, "grow_chain"},
56 {DANE_F_LIST_ALLOC, "list_alloc"},
57 {DANE_F_MATCH, "match"},
58 {DANE_F_PUSH_EXT, "push_ext"},
59 {DANE_F_SET_TRUST_ANCHOR, "set_trust_anchor"},
60 {DANE_F_SSL_CTX_DANE_INIT, "SSL_CTX_dane_init"},
61 {DANE_F_SSL_DANE_ADD_TLSA, "SSL_dane_add_tlsa"},
62 {DANE_F_SSL_DANE_INIT, "SSL_dane_init"},
63 {DANE_F_SSL_DANE_LIBRARY_INIT, "SSL_dane_library_init"},
64 {DANE_F_VERIFY_CERT, "verify_cert"},
65 {DANE_F_WRAP_CERT, "wrap_cert"},
68 static ERR_STRING_DATA dane_str_reasons[] =
70 {DANE_R_BAD_CERT, "Bad TLSA record certificate"},
71 {DANE_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"},
72 {DANE_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"},
73 {DANE_R_BAD_DIGEST, "Bad TLSA record digest"},
74 {DANE_R_BAD_NULL_DATA, "Bad TLSA record null data"},
75 {DANE_R_BAD_PKEY, "Bad TLSA record public key"},
76 {DANE_R_BAD_SELECTOR, "Bad TLSA record selector"},
77 {DANE_R_BAD_USAGE, "Bad TLSA record usage"},
78 {DANE_R_DANE_INIT, "SSL_dane_init() required"},
79 {DANE_R_DANE_SUPPORT, "DANE library features not supported"},
80 {DANE_R_LIBRARY_INIT, "SSL_dane_library_init() required"},
81 {DANE_R_SCTX_INIT, "SSL_CTX_dane_init() required"},
82 {DANE_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"},
85 #endif /*OPENSSL_NO_ERR*/
87 #define DANEerr(f, r) ERR_PUT_error(err_lib_dane, (f), (r), __FILE__, __LINE__)
89 static int err_lib_dane = -1;
90 static int dane_idx = -1;
92 #ifdef X509_V_FLAG_PARTIAL_CHAIN /* OpenSSL >= 1.0.2 */
93 static int wrap_to_root = 0;
95 static int wrap_to_root = 1;
98 static void (*cert_free)(void *) = (void (*)(void *)) X509_free;
99 static void (*pkey_free)(void *) = (void (*)(void *)) EVP_PKEY_free;
101 typedef struct dane_list
103 struct dane_list *next;
107 #define LINSERT(h, e) do { (e)->next = (h); (h) = (e); } while (0)
109 typedef struct dane_host_list
111 struct dane_host_list *next;
115 typedef struct dane_data
118 unsigned char data[0];
121 typedef struct dane_data_list
123 struct dane_data_list *next;
127 typedef struct dane_mtype
134 typedef struct dane_mtype_list
136 struct dane_mtype_list *next;
140 typedef struct dane_selector
143 dane_mtype_list mtype;
146 typedef struct dane_selector_list
148 struct dane_selector_list *next;
150 } *dane_selector_list;
152 typedef struct dane_pkey_list
154 struct dane_pkey_list *next;
158 typedef struct dane_cert_list
160 struct dane_cert_list *next;
164 typedef struct ssl_dane
166 int (*verify)(X509_STORE_CTX *);
167 STACK_OF(X509) *roots;
168 STACK_OF(X509) *chain;
169 const char *thost; /* TLSA base domain */
170 char *mhost; /* Matched, peer name */
171 dane_pkey_list pkeys;
172 dane_cert_list certs;
173 dane_host_list hosts;
174 dane_selector_list selectors[SSL_DANE_USAGE_LAST + 1];
176 int multi; /* Multi-label wildcards? */
177 int count; /* Number of TLSA records */
180 #ifndef X509_V_ERR_HOSTNAME_MISMATCH
181 # define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION
185 match(dane_selector_list slist, X509 *cert, int depth)
190 * Note, set_trust_anchor() needs to know whether the match was for a
191 * pkey digest or a certificate digest. We return MATCHED_PKEY or
192 * MATCHED_CERT accordingly.
194 #define MATCHED_CERT (SSL_DANE_SELECTOR_CERT + 1)
195 #define MATCHED_PKEY (SSL_DANE_SELECTOR_SPKI + 1)
198 * Loop over each selector, mtype, and associated data element looking
201 for(matched = 0; !matched && slist; slist = slist->next)
204 unsigned char mdbuf[EVP_MAX_MD_SIZE];
210 * Extract ASN.1 DER form of certificate or public key.
212 switch(slist->value->selector)
214 case SSL_DANE_SELECTOR_CERT:
215 len = i2d_X509(cert, NULL);
216 buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
217 if(buf) i2d_X509(cert, &buf2);
219 case SSL_DANE_SELECTOR_SPKI:
220 len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL);
221 buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
222 if(buf) i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2);
228 DANEerr(DANE_F_MATCH, ERR_R_MALLOC_FAILURE);
231 OPENSSL_assert(buf2 - buf == len);
234 * Loop over each mtype and data element
236 for(m = slist->value->mtype; !matched && m; m = m->next)
239 unsigned char *cmpbuf = buf;
240 unsigned int cmplen = len;
243 * If it is a digest, compute the corresponding digest of the
244 * DER data for comparison, otherwise, use the full object.
249 if(!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0))
252 for(d = m->value->data; !matched && d; d = d->next)
253 if( cmplen == d->value->datalen
254 && memcmp(cmpbuf, d->value->data, cmplen) == 0)
255 matched = slist->value->selector + 1;
265 push_ext(X509 *cert, X509_EXTENSION *ext)
267 X509_EXTENSIONS *exts;
271 if(!(exts = cert->cert_info->extensions))
272 exts = cert->cert_info->extensions = sk_X509_EXTENSION_new_null();
273 if (exts && sk_X509_EXTENSION_push(exts, ext))
275 X509_EXTENSION_free(ext);
277 DANEerr(DANE_F_PUSH_EXT, ERR_R_MALLOC_FAILURE);
282 add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val)
286 X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0);
287 return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val));
291 set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject)
296 if(akid && akid->serial)
297 return (X509_set_serialNumber(cert, akid->serial));
300 * Add one to subject's serial to avoid collisions between TA serial and
301 * serial of signing root.
303 if( (bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
304 && BN_add_word(bn, 1)
305 && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
314 add_akid(X509 *cert, AUTHORITY_KEYID *akid)
316 int nid = NID_authority_key_identifier;
322 * 0 will never be our subject keyid from a SHA-1 hash, but it could be
323 * our subject keyid if forced from child's akid. If so, set our
324 * authority keyid to 1. This way we are never self-signed, and thus
325 * exempt from any potential (off by default for now in OpenSSL)
326 * self-signature checks!
328 id = (ASN1_STRING *) ((akid && akid->keyid) ? akid->keyid : 0);
329 if(id && M_ASN1_STRING_length(id) == 1 && *M_ASN1_STRING_data(id) == c)
332 if( (akid = AUTHORITY_KEYID_new()) != 0
333 && (akid->keyid = ASN1_OCTET_STRING_new()) != 0
334 && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
335 && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND))
338 AUTHORITY_KEYID_free(akid);
343 add_skid(X509 *cert, AUTHORITY_KEYID *akid)
345 int nid = NID_subject_key_identifier;
347 if(!akid || !akid->keyid)
348 return add_ext(0, cert, nid, "hash");
349 return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0;
353 akid_issuer_name(AUTHORITY_KEYID *akid)
355 if(akid && akid->issuer)
358 GENERAL_NAMES *gens = akid->issuer;
360 for(i = 0; i < sk_GENERAL_NAME_num(gens); ++i)
362 GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
364 if(gn->type == GEN_DIRNAME)
372 set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid)
374 X509_NAME *name = akid_issuer_name(akid);
377 * If subject's akid specifies an authority key identifer issuer name, we
380 return X509_set_issuer_name(cert,
381 name ? name : X509_get_subject_name(cert));
385 grow_chain(ssl_dane *dane, int trusted, X509 *cert)
387 STACK_OF(X509) **xs = trusted ? &dane->roots : &dane->chain;
388 static ASN1_OBJECT *serverAuth = 0;
393 if( trusted && !serverAuth
394 && !(serverAuth = OBJ_nid2obj(NID_server_auth)))
396 DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
399 if(!*xs && !(*xs = sk_X509_new_null()))
401 DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
407 if(trusted && !X509_add1_trust_object(cert, serverAuth))
409 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
410 if (!sk_X509_push(*xs, cert))
413 DANEerr(DANE_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
421 wrap_issuer(ssl_dane *dane, EVP_PKEY *key, X509 *subject, int depth, int top)
425 AUTHORITY_KEYID *akid;
426 X509_NAME *name = X509_get_issuer_name(subject);
427 EVP_PKEY *newkey = key ? key : X509_get_pubkey(subject);
429 #define WRAP_MID 0 /* Ensure intermediate. */
430 #define WRAP_TOP 1 /* Ensure self-signed. */
432 if(!name || !newkey || !(cert = X509_new()))
436 * Record the depth of the trust-anchor certificate.
439 dane->depth = depth + 1;
442 * XXX: Uncaught error condition:
444 * The return value is NULL both when the extension is missing, and when
445 * OpenSSL rans out of memory while parsing the extension.
448 akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0);
449 /* XXX: Should we peek at the error stack here??? */
452 * If top is true generate a self-issued root CA, otherwise an
453 * intermediate CA and possibly its self-signed issuer.
455 * CA cert valid for +/- 30 days
457 if( !X509_set_version(cert, 2)
458 || !set_serial(cert, akid, subject)
459 || !X509_set_subject_name(cert, name)
460 || !set_issuer_name(cert, akid)
461 || !X509_gmtime_adj(X509_get_notBefore(cert), -30 * 86400L)
462 || !X509_gmtime_adj(X509_get_notAfter(cert), 30 * 86400L)
463 || !X509_set_pubkey(cert, newkey)
464 || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
465 || (!top && !add_akid(cert, akid))
466 || !add_skid(cert, akid)
467 || ( !top && wrap_to_root
468 && !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP)))
472 AUTHORITY_KEYID_free(akid);
474 EVP_PKEY_free(newkey);
476 ret = grow_chain(dane, !top && wrap_to_root ? UNTRUSTED : TRUSTED, cert);
483 wrap_cert(ssl_dane *dane, X509 *tacert, int depth)
486 dane->depth = depth + 1;
489 * If the TA certificate is self-issued, or need not be, use it directly.
490 * Otherwise, synthesize requisuite ancestors.
493 || X509_check_issued(tacert, tacert) == X509_V_OK)
494 return grow_chain(dane, TRUSTED, tacert);
496 if(wrap_issuer(dane, 0, tacert, depth, WRAP_MID))
497 return grow_chain(dane, UNTRUSTED, tacert);
502 ta_signed(ssl_dane *dane, X509 *cert, int depth)
510 * First check whether issued and signed by a TA cert, this is cheaper
511 * than the bare-public key checks below, since we can determine whether
512 * the candidate TA certificate issued the certificate to be checked
513 * first (name comparisons), before we bother with signature checks
514 * (public key operations).
516 for (x = dane->certs; !done && x; x = x->next)
518 if(X509_check_issued(x->value, cert) == X509_V_OK)
520 if(!(pk = X509_get_pubkey(x->value)))
523 * The cert originally contained a valid pkey, which does
524 * not just vanish, so this is most likely a memory error.
529 /* Check signature, since some other TA may work if not this. */
530 if(X509_verify(cert, pk) > 0)
531 done = wrap_cert(dane, x->value, depth) ? 1 : -1;
537 * With bare TA public keys, we can't check whether the trust chain is
538 * issued by the key, but we can determine whether it is signed by the
539 * key, so we go with that.
541 * Ideally, the corresponding certificate was presented in the chain, and we
542 * matched it by its public key digest one level up. This code is here
543 * to handle adverse conditions imposed by sloppy administrators of
544 * receiving systems with poorly constructed chains.
546 * We'd like to optimize out keys that should not match when the cert's
547 * authority key id does not match the key id of this key computed via
548 * the RFC keyid algorithm (SHA-1 digest of public key bit-string sans
549 * ASN1 tag and length thus also excluding the unused bits field that is
550 * logically part of the length). However, some CAs have a non-standard
551 * authority keyid, so we lose. Too bad.
553 * This may push errors onto the stack when the certificate signature is
554 * not of the right type or length, throw these away,
556 for(k = dane->pkeys; !done && k; k = k->next)
557 if(X509_verify(cert, k->value) > 0)
558 done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1;
566 set_trust_anchor(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
574 STACK_OF(X509) *in = ctx->untrusted; /* XXX: Accessor? */
576 if(!grow_chain(dane, UNTRUSTED, 0))
580 * Accept a degenerate case: depth 0 self-signed trust-anchor.
582 if(X509_check_issued(cert, cert) == X509_V_OK)
585 matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], cert, 0);
586 if(matched > 0 && !grow_chain(dane, TRUSTED, cert))
591 /* Make a shallow copy of the input untrusted chain. */
592 if(!(in = sk_X509_dup(in)))
594 DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
599 * At each iteration we consume the issuer of the current cert. This
600 * reduces the length of the "in" chain by one. If no issuer is found,
601 * we are done. We also stop when a certificate matches a TA in the
604 * Caller ensures that the initial certificate is not self-signed.
606 for(n = sk_X509_num(in); n > 0; --n, ++depth)
608 for(i = 0; i < n; ++i)
609 if(X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
613 * Final untrusted element with no issuer in the peer's chain, it may
614 * however be signed by a pkey or cert obtained via a TLSA RR.
619 /* Peer's chain contains an issuer ca. */
620 ca = sk_X509_delete(in, i);
622 /* If not a trust anchor, record untrusted ca and continue. */
623 if((matched = match(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA], ca, depth+1))
626 if(grow_chain(dane, UNTRUSTED, ca))
628 if(!X509_check_issued(ca, ca) == X509_V_OK)
630 /* Restart with issuer as subject */
634 /* Final self-signed element, skip ta_signed() check. */
640 else if(matched == MATCHED_CERT)
642 if(!wrap_cert(dane, ca, depth))
645 else if(matched == MATCHED_PKEY)
647 if( !(takey = X509_get_pubkey(ca))
648 || !wrap_issuer(dane, takey, cert, depth, WRAP_MID))
651 EVP_PKEY_free(takey);
653 DANEerr(DANE_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
660 /* Shallow free the duplicated input untrusted chain. */
664 * When the loop exits, if "cert" is set, it is not self-signed and has
665 * no issuer in the chain, we check for a possible signature via a DNS
666 * obtained TA cert or public key.
668 if(matched == 0 && cert)
669 matched = ta_signed(dane, cert, depth);
675 check_end_entity(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
679 matched = match(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF], cert, 0);
682 if( (ctx->chain = sk_X509_new_null())
683 && sk_X509_push(ctx->chain, cert))
684 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
687 DANEerr(DANE_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE);
694 match_name(const char *certid, ssl_dane *dane)
696 int multi = dane->multi;
697 dane_host_list hosts;
699 for(hosts = dane->hosts; hosts; hosts = hosts->next)
701 int match_subdomain = 0;
702 const char *domain = hosts->value;
707 if(*domain == '.' && domain[1] != '\0')
714 * Sub-domain match: certid is any sub-domain of hostname.
717 if( (idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
718 && certid[idlen - domlen - 1] == '.'
719 && !strcasecmp(certid + (idlen - domlen), domain))
725 * Exact match and initial "*" match. The initial "*" in a certid
726 * matches one (if multi is false) or more hostname components under
727 * the condition that the certid contains multiple hostname components.
729 if( !strcasecmp(certid, domain)
730 || ( certid[0] == '*' && certid[1] == '.' && certid[2] != 0
731 && (parent = strchr(domain, '.')) != 0
732 && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
733 && strcasecmp(multi ? parent + domlen - idlen : parent, certid+1) == 0))
740 check_name(char *name, int len)
742 char *cp = name + len;
744 while(len > 0 && !*--cp)
745 --len; /* Ignore trailing NULs */
748 for(cp = name; *cp; cp++)
751 if (!((c >= 'a' && c <= 'z') ||
752 (c >= '0' && c <= '9') ||
753 (c >= 'A' && c <= 'Z') ||
754 (c == '.' || c == '-') ||
756 return 0; /* Only LDH, '.' and '*' */
758 if(cp - name != len) /* Guard against internal NULs */
764 parse_dns_name(const GENERAL_NAME *gn)
766 if(gn->type != GEN_DNS)
768 if(ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING)
770 return check_name((char *) ASN1_STRING_data(gn->d.ia5),
771 ASN1_STRING_length(gn->d.ia5));
775 parse_subject_name(X509 *cert)
777 X509_NAME *name = X509_get_subject_name(cert);
778 X509_NAME_ENTRY *entry;
779 ASN1_STRING *entry_str;
780 unsigned char *namebuf;
781 int nid = NID_commonName;
785 if(!name || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0)
787 if(!(entry = X509_NAME_get_entry(name, i)))
789 if(!(entry_str = X509_NAME_ENTRY_get_data(entry)))
792 if((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0)
794 if(len <= 0 || check_name((char *) namebuf, len) == 0)
796 OPENSSL_free(namebuf);
799 return (char *) namebuf;
803 name_check(ssl_dane *dane, X509 *cert)
806 BOOL got_altname = FALSE;
809 gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0);
812 int n = sk_GENERAL_NAME_num(gens);
815 for(i = 0; i < n; ++i)
817 const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
820 if(gn->type != GEN_DNS)
823 certid = parse_dns_name(gn);
824 if(certid && *certid)
826 if((matched = match_name(certid, dane)) == 0)
828 if(!(dane->mhost = OPENSSL_strdup(certid)))
833 GENERAL_NAMES_free(gens);
837 * XXX: Should the subjectName be skipped when *any* altnames are present,
838 * or only when DNS altnames are present?
842 char *certid = parse_subject_name(cert);
843 if(certid != 0 && *certid && (matched = match_name(certid, dane)) != 0)
844 dane->mhost = certid; /* Already a copy */
850 verify_chain(X509_STORE_CTX *ctx)
852 dane_selector_list issuer_rrs;
853 dane_selector_list leaf_rrs;
854 int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
855 int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
856 SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
857 ssl_dane *dane = SSL_get_ex_data(ssl, dane_idx);
858 X509 *cert = ctx->cert; /* XXX: accessor? */
860 int chain_length = sk_X509_num(ctx->chain);
862 issuer_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_ISSUER];
863 leaf_rrs = dane->selectors[SSL_DANE_USAGE_LIMIT_LEAF];
864 ctx->verify = dane->verify;
866 if((matched = name_check(dane, cert)) < 0)
868 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
874 ctx->error_depth = 0;
875 ctx->current_cert = cert;
876 X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH);
883 * Satisfy at least one usage 0 or 1 constraint, unless we've already
884 * matched a usage 2 trust anchor.
886 * XXX: internal_verify() doesn't callback with top certs that are not
887 * self-issued. This should be fixed in a future OpenSSL.
889 if(dane->roots && sk_X509_num(dane->roots))
891 #ifndef NO_CALLBACK_WORKAROUND
892 X509 *top = sk_X509_value(ctx->chain, dane->depth);
894 if(X509_check_issued(top, top) != X509_V_OK)
896 ctx->error_depth = dane->depth;
897 ctx->current_cert = top;
902 /* Pop synthetic trust-anchor ancestors off the chain! */
903 while (--chain_length > dane->depth)
904 X509_free(sk_X509_pop(ctx->chain));
906 else if(issuer_rrs || leaf_rrs)
908 int n = chain_length;
911 * Check for an EE match, then a CA match at depths > 0, and
912 * finally, if the EE cert is self-issued, for a depth 0 CA match.
915 matched = match(leaf_rrs, cert, 0);
916 while(!matched && issuer_rrs && --n >= 0)
918 X509 *xn = sk_X509_value(ctx->chain, n);
920 if(n > 0 || X509_check_issued(xn, xn) == X509_V_OK)
921 matched = match(issuer_rrs, xn, n);
926 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
932 ctx->current_cert = cert;
933 ctx->error_depth = 0;
934 X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED);
940 return ctx->verify(ctx);
944 verify_cert(X509_STORE_CTX *ctx, void *unused_ctx)
946 static int ssl_idx = -1;
949 int (*cb)(int, X509_STORE_CTX *) = ctx->verify_cb;
951 X509 *cert = ctx->cert; /* XXX: accessor? */
954 ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
957 DANEerr(DANE_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
961 ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
962 if(!(dane = SSL_get_ex_data(ssl, dane_idx)) || !cert)
963 return X509_verify_cert(ctx);
965 if(dane->selectors[SSL_DANE_USAGE_FIXED_LEAF])
967 if((matched = check_end_entity(ctx, dane, cert)) > 0)
969 ctx->error_depth = 0;
970 ctx->current_cert = cert;
975 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
980 if(dane->selectors[SSL_DANE_USAGE_TRUSTED_CA])
982 if((matched = set_trust_anchor(ctx, dane, cert)) < 0)
984 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
990 * Check that setting the untrusted chain updates the expected
991 * structure member at the expected offset.
993 X509_STORE_CTX_trusted_stack(ctx, dane->roots);
994 X509_STORE_CTX_set_chain(ctx, dane->chain);
995 OPENSSL_assert(ctx->untrusted == dane->chain);
1000 * Name checks and usage 0/1 constraint enforcement are delayed until
1001 * X509_verify_cert() builds the full chain and calls our verify_chain()
1004 dane->verify = ctx->verify;
1005 ctx->verify = verify_chain;
1007 return X509_verify_cert(ctx);
1011 list_alloc(size_t vsize)
1013 void *value = (void *) OPENSSL_malloc(vsize);
1018 DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
1021 if(!(l = (dane_list) OPENSSL_malloc(sizeof(*l))))
1023 OPENSSL_free(value);
1024 DANEerr(DANE_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
1033 list_free(void *list, void (*f)(void *))
1038 for(head = (dane_list) list; head; head = next)
1041 if (f && head->value)
1048 dane_mtype_free(void *p)
1050 list_free(((dane_mtype) p)->data, OPENSSL_freeFunc);
1055 dane_selector_free(void *p)
1057 list_free(((dane_selector) p)->mtype, dane_mtype_free);
1062 DANESSL_cleanup(SSL *ssl)
1067 if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
1069 (void) SSL_set_ex_data(ssl, dane_idx, 0);
1072 list_free(dane->hosts, OPENSSL_freeFunc);
1074 OPENSSL_free(dane->mhost);
1075 for(u = 0; u <= SSL_DANE_USAGE_LAST; ++u)
1076 if(dane->selectors[u])
1077 list_free(dane->selectors[u], dane_selector_free);
1079 list_free(dane->pkeys, pkey_free);
1081 list_free(dane->certs, cert_free);
1083 sk_X509_pop_free(dane->roots, X509_free);
1085 sk_X509_pop_free(dane->chain, X509_free);
1089 static dane_host_list
1090 host_list_init(const char **src)
1092 dane_host_list head = NULL;
1096 dane_host_list elem = (dane_host_list) OPENSSL_malloc(sizeof(*elem));
1099 list_free(head, OPENSSL_freeFunc);
1102 elem->value = OPENSSL_strdup(*src++);
1103 LINSERT(head, elem);
1109 DANESSL_add_tlsa(SSL *ssl, uint8_t usage, uint8_t selector, const char *mdname,
1110 unsigned const char *data, size_t dlen)
1113 dane_selector_list s = 0;
1114 dane_mtype_list m = 0;
1115 dane_data_list d = 0;
1116 dane_cert_list xlist = 0;
1117 dane_pkey_list klist = 0;
1118 const EVP_MD *md = 0;
1120 if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
1122 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_DANE_INIT);
1126 if(usage > SSL_DANE_USAGE_LAST)
1128 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_USAGE);
1131 if(selector > SSL_DANE_SELECTOR_LAST)
1133 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_SELECTOR);
1136 if(mdname && !(md = EVP_get_digestbyname(mdname)))
1138 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DIGEST);
1143 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_NULL_DATA);
1146 if(mdname && dlen != EVP_MD_size(md))
1148 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_DATA_LENGTH);
1156 const unsigned char *p = data;
1158 #define xklistinit(lvar, ltype, var, freeFunc) do { \
1159 (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \
1161 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, ERR_R_MALLOC_FAILURE); \
1166 lvar->value = var; \
1168 #define xkfreeret(ret) do { \
1169 if (xlist) list_free(xlist, cert_free); \
1170 if (klist) list_free(klist, pkey_free); \
1176 case SSL_DANE_SELECTOR_CERT:
1177 if(!d2i_X509(&x, &p, dlen) || dlen != p - data)
1181 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT);
1184 k = X509_get_pubkey(x);
1189 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_CERT_PKEY);
1192 if(usage == SSL_DANE_USAGE_TRUSTED_CA)
1193 xklistinit(xlist, dane_cert_list, x, X509_free);
1196 case SSL_DANE_SELECTOR_SPKI:
1197 if(!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data)
1201 DANEerr(DANE_F_SSL_DANE_ADD_TLSA, DANE_R_BAD_PKEY);
1204 if(usage == SSL_DANE_USAGE_TRUSTED_CA)
1205 xklistinit(klist, dane_pkey_list, k, EVP_PKEY_free);
1210 /* Find insertion point and don't add duplicate elements. */
1211 for(s = dane->selectors[usage]; s; s = s->next)
1212 if(s->value->selector == selector)
1213 for(m = s->value->mtype; m; m = m->next)
1214 if(m->value->md == md)
1215 for(d = m->value->data; d; d = d->next)
1216 if( d->value->datalen == dlen
1217 && memcmp(d->value->data, data, dlen) == 0)
1220 if(!(d = (dane_data_list) list_alloc(sizeof(*d->value) + dlen)))
1222 d->value->datalen = dlen;
1223 memcpy(d->value->data, data, dlen);
1226 if(!(m = (dane_mtype_list) list_alloc(sizeof(*m->value))))
1228 list_free(d, OPENSSL_freeFunc);
1232 if((m->value->md = md) != 0)
1233 m->value->mdlen = dlen;
1236 if(!(s = (dane_selector_list) list_alloc(sizeof(*s->value))))
1238 list_free(m, dane_mtype_free);
1241 s->value->mtype = 0;
1242 s->value->selector = selector;
1243 LINSERT(dane->selectors[usage], s);
1245 LINSERT(s->value->mtype, m);
1247 LINSERT(m->value->data, d);
1250 LINSERT(dane->certs, xlist);
1252 LINSERT(dane->pkeys, klist);
1258 DANESSL_init(SSL *ssl, const char *sni_domain, const char **hostnames)
1262 #ifdef OPENSSL_INTERNAL
1263 SSL_CTX *sctx = SSL_get_SSL_CTX(ssl);
1265 if(sctx->app_verify_callback != verify_cert)
1267 DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_SCTX_INIT);
1273 DANEerr(DANE_F_SSL_DANE_INIT, DANE_R_LIBRARY_INIT);
1278 if(sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain))
1281 if(!(dane = (ssl_dane *) OPENSSL_malloc(sizeof(ssl_dane))))
1283 DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
1286 if(!SSL_set_ex_data(ssl, dane_idx, dane))
1288 DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
1298 dane->mhost = 0; /* Future SSL control interface */
1299 dane->multi = 0; /* Future SSL control interface */
1302 for(i = 0; i <= SSL_DANE_USAGE_LAST; ++i)
1303 dane->selectors[i] = 0;
1305 if(hostnames && !(dane->hosts = host_list_init(hostnames)))
1307 DANEerr(DANE_F_SSL_DANE_INIT, ERR_R_MALLOC_FAILURE);
1308 DANESSL_cleanup(ssl);
1316 DANESSL_CTX_init(SSL_CTX *ctx)
1320 SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0);
1323 DANEerr(DANE_F_SSL_CTX_DANE_INIT, DANE_R_LIBRARY_INIT);
1328 init_once(volatile int *value, int (*init)(void), void (*postinit)(void))
1332 CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
1335 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
1336 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
1346 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
1348 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
1356 * Store library id in zeroth function slot, used to locate the library
1357 * name. This must be done before we load the error strings.
1359 #ifndef OPENSSL_NO_ERR
1360 dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0);
1361 ERR_load_strings(err_lib_dane, dane_str_functs);
1362 ERR_load_strings(err_lib_dane, dane_str_reasons);
1366 * Register SHA-2 digests, if implemented and not already registered.
1368 #if defined(LN_sha256) && defined(NID_sha256) && !defined(OPENSSL_NO_SHA256)
1369 if(!EVP_get_digestbyname(LN_sha224)) EVP_add_digest(EVP_sha224());
1370 if(!EVP_get_digestbyname(LN_sha256)) EVP_add_digest(EVP_sha256());
1372 #if defined(LN_sha512) && defined(NID_sha512) && !defined(OPENSSL_NO_SHA512)
1373 if(!EVP_get_digestbyname(LN_sha384)) EVP_add_digest(EVP_sha384());
1374 if(!EVP_get_digestbyname(LN_sha512)) EVP_add_digest(EVP_sha512());
1378 * Register an SSL index for the connection-specific ssl_dane structure.
1379 * Using a separate index makes it possible to add DANE support to
1380 * existing OpenSSL releases that don't have a suitable pointer in the
1383 dane_idx = SSL_get_ex_new_index(0, 0, 0, 0, 0);
1387 DANESSL_library_init(void)
1389 if(err_lib_dane < 0)
1390 init_once(&err_lib_dane, ERR_get_next_error_library, dane_init);
1392 #if defined(LN_sha256)
1393 /* No DANE without SHA256 support */
1394 if(dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0)
1398 DANEerr(DANE_F_SSL_DANE_LIBRARY_INIT, DANE_R_DANE_SUPPORT);
1402 #endif /* OPENSSL_VERSION_NUMBER */