1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
5 /* Copyright (c) University of Cambridge 1995 - 2009 */
6 /* See the file NOTICE for conditions of use and distribution. */
8 /* Functions for finding hosts, either by gethostbyname(), gethostbyaddr(), or
9 directly via the DNS. When IPv6 is supported, getipnodebyname() and
10 getipnodebyaddr() may be used instead of gethostbyname() and gethostbyaddr(),
11 if the newer functions are available. This module also contains various other
12 functions concerned with hosts and addresses, and a random number function,
13 used for randomizing hosts with equal MXs but available for use in other parts
20 /* Static variable for preserving the list of interface addresses in case it is
21 used more than once. */
23 static ip_address_item *local_interface_data = NULL;
26 #ifdef USE_INET_NTOA_FIX
27 /*************************************************
28 * Replacement for broken inet_ntoa() *
29 *************************************************/
31 /* On IRIX systems, gcc uses a different structure passing convention to the
32 native libraries. This causes inet_ntoa() to always yield 0.0.0.0 or
33 255.255.255.255. To get round this, we provide a private version of the
34 function here. It is used only if USE_INET_NTOA_FIX is set, which should happen
35 only when gcc is in use on an IRIX system. Code send to me by J.T. Breitner,
39 as seen in comp.sys.sgi.admin
41 August 2005: Apparently this is also needed for AIX systems; USE_INET_NTOA_FIX
42 should now be set for them as well.
44 Arguments: sa an in_addr structure
45 Returns: pointer to static text string
49 inet_ntoa(struct in_addr sa)
51 static uschar addr[20];
52 sprintf(addr, "%d.%d.%d.%d",
63 /*************************************************
64 * Random number generator *
65 *************************************************/
67 /* This is a simple pseudo-random number generator. It does not have to be
68 very good for the uses to which it is put. When running the regression tests,
69 start with a fixed seed.
71 If you need better, see pseudo_random_number() which is potentially stronger,
72 if a crypto library is available, but might end up just calling this instead.
75 limit: one more than the largest number required
77 Returns: a pseudo-random number in the range 0 to limit-1
81 random_number(int limit)
87 if (running_in_test_harness) random_seed = 42; else
89 int p = (int)getpid();
90 random_seed = (int)time(NULL) ^ ((p << 16) | p);
93 random_seed = 1103515245 * random_seed + 12345;
94 return (unsigned int)(random_seed >> 16) % limit;
99 /*************************************************
100 * Replace gethostbyname() when testing *
101 *************************************************/
103 /* This function is called instead of gethostbyname(), gethostbyname2(), or
104 getipnodebyname() when running in the test harness. It recognizes the name
105 "manyhome.test.ex" and generates a humungous number of IP addresses. It also
106 recognizes an unqualified "localhost" and forces it to the appropriate loopback
107 address. IP addresses are treated as literals. For other names, it uses the DNS
108 to find the host name. In the test harness, this means it will access only the
112 name the host name or a textual IP address
113 af AF_INET or AF_INET6
114 error_num where to put an error code:
115 HOST_NOT_FOUND/TRY_AGAIN/NO_RECOVERY/NO_DATA
117 Returns: a hostent structure or NULL for an error
120 static struct hostent *
121 host_fake_gethostbyname(uschar *name, int af, int *error_num)
124 int alen = (af == AF_INET)? sizeof(struct in_addr):sizeof(struct in6_addr);
126 int alen = sizeof(struct in_addr);
130 uschar *lname = name;
133 struct hostent *yield;
139 debug_printf("using host_fake_gethostbyname for %s (%s)\n", name,
140 (af == AF_INET)? "IPv4" : "IPv6");
142 /* Handle the name that needs a vast number of IP addresses */
144 if (Ustrcmp(name, "manyhome.test.ex") == 0 && af == AF_INET)
147 yield = store_get(sizeof(struct hostent));
148 alist = store_get(2049 * sizeof(char *));
149 adds = store_get(2048 * alen);
150 yield->h_name = CS name;
151 yield->h_aliases = NULL;
152 yield->h_addrtype = af;
153 yield->h_length = alen;
154 yield->h_addr_list = CSS alist;
155 for (i = 104; i <= 111; i++)
157 for (j = 0; j <= 255; j++)
170 /* Handle unqualified "localhost" */
172 if (Ustrcmp(name, "localhost") == 0)
173 lname = (af == AF_INET)? US"127.0.0.1" : US"::1";
175 /* Handle a literal IP address */
177 ipa = string_is_ip_address(lname, NULL);
180 if ((ipa == 4 && af == AF_INET) ||
181 (ipa == 6 && af == AF_INET6))
185 yield = store_get(sizeof(struct hostent));
186 alist = store_get(2 * sizeof(char *));
187 adds = store_get(alen);
188 yield->h_name = CS name;
189 yield->h_aliases = NULL;
190 yield->h_addrtype = af;
191 yield->h_length = alen;
192 yield->h_addr_list = CSS alist;
194 n = host_aton(lname, x);
195 for (i = 0; i < n; i++)
198 *adds++ = (y >> 24) & 255;
199 *adds++ = (y >> 16) & 255;
200 *adds++ = (y >> 8) & 255;
206 /* Wrong kind of literal address */
210 *error_num = HOST_NOT_FOUND;
215 /* Handle a host name */
219 int type = (af == AF_INET)? T_A:T_AAAA;
220 int rc = dns_lookup(&dnsa, lname, type, NULL);
225 case DNS_SUCCEED: break;
226 case DNS_NOMATCH: *error_num = HOST_NOT_FOUND; return NULL;
227 case DNS_NODATA: *error_num = NO_DATA; return NULL;
228 case DNS_AGAIN: *error_num = TRY_AGAIN; return NULL;
230 case DNS_FAIL: *error_num = NO_RECOVERY; return NULL;
233 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
235 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
237 if (rr->type == type) count++;
240 yield = store_get(sizeof(struct hostent));
241 alist = store_get((count + 1) * sizeof(char **));
242 adds = store_get(count *alen);
244 yield->h_name = CS name;
245 yield->h_aliases = NULL;
246 yield->h_addrtype = af;
247 yield->h_length = alen;
248 yield->h_addr_list = CSS alist;
250 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
252 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
257 if (rr->type != type) continue;
258 da = dns_address_from_rr(&dnsa, rr);
260 n = host_aton(da->address, x);
261 for (i = 0; i < n; i++)
264 *adds++ = (y >> 24) & 255;
265 *adds++ = (y >> 16) & 255;
266 *adds++ = (y >> 8) & 255;
278 /*************************************************
279 * Build chain of host items from list *
280 *************************************************/
282 /* This function builds a chain of host items from a textual list of host
283 names. It does not do any lookups. If randomize is true, the chain is build in
284 a randomized order. There may be multiple groups of independently randomized
285 hosts; they are delimited by a host name consisting of just "+".
288 anchor anchor for the chain
290 randomize TRUE for randomizing
296 host_build_hostlist(host_item **anchor, uschar *list, BOOL randomize)
299 int fake_mx = MX_NONE; /* This value is actually -1 */
303 if (list == NULL) return;
304 if (randomize) fake_mx--; /* Start at -2 for randomizing */
308 while ((name = string_nextinlist(&list, &sep, buffer, sizeof(buffer))) != NULL)
312 if (name[0] == '+' && name[1] == 0) /* "+" delimits a randomized group */
313 { /* ignore if not randomizing */
314 if (randomize) fake_mx--;
318 h = store_get(sizeof(host_item));
319 h->name = string_copy(name);
323 h->sort_key = randomize? (-fake_mx)*1000 + random_number(1000) : 0;
324 h->status = hstatus_unknown;
325 h->why = hwhy_unknown;
335 host_item *hh = *anchor;
336 if (h->sort_key < hh->sort_key)
343 while (hh->next != NULL && h->sort_key >= (hh->next)->sort_key)
356 /*************************************************
357 * Extract port from address string *
358 *************************************************/
360 /* In the spool file, and in the -oMa and -oMi options, a host plus port is
361 given as an IP address followed by a dot and a port number. This function
364 An alternative format for the -oMa and -oMi options is [ip address]:port which
365 is what Exim 4 uses for output, because it seems to becoming commonly used,
366 whereas the dot form confuses some programs/people. So we recognize that form
370 address points to the string; if there is a port, the '.' in the string
371 is overwritten with zero to terminate the address; if the string
372 is in the [xxx]:ppp format, the address is shifted left and the
375 Returns: 0 if there is no port, else the port number. If there's a syntax
376 error, leave the incoming address alone, and return 0.
380 host_address_extract_port(uschar *address)
385 /* Handle the "bracketed with colon on the end" format */
389 uschar *rb = address + 1;
390 while (*rb != 0 && *rb != ']') rb++;
391 if (*rb++ == 0) return 0; /* Missing ]; leave invalid address */
394 port = Ustrtol(rb + 1, &endptr, 10);
395 if (*endptr != 0) return 0; /* Invalid port; leave invalid address */
397 else if (*rb != 0) return 0; /* Bad syntax; leave invalid address */
398 memmove(address, address + 1, rb - address - 2);
402 /* Handle the "dot on the end" format */
406 int skip = -3; /* Skip 3 dots in IPv4 addresses */
408 while (*(++address) != 0)
411 if (ch == ':') skip = 0; /* Skip 0 dots in IPv6 addresses */
412 else if (ch == '.' && skip++ >= 0) break;
414 if (*address == 0) return 0;
415 port = Ustrtol(address + 1, &endptr, 10);
416 if (*endptr != 0) return 0; /* Invalid port; leave invalid address */
424 /*************************************************
425 * Get port from a host item's name *
426 *************************************************/
428 /* This function is called when finding the IP address for a host that is in a
429 list of hosts explicitly configured, such as in the manualroute router, or in a
430 fallback hosts list. We see if there is a port specification at the end of the
431 host name, and if so, remove it. A minimum length of 3 is required for the
432 original name; nothing shorter is recognized as having a port.
434 We test for a name ending with a sequence of digits; if preceded by colon we
435 have a port if the character before the colon is ] and the name starts with [
436 or if there are no other colons in the name (i.e. it's not an IPv6 address).
438 Arguments: pointer to the host item
439 Returns: a port number or PORT_NONE
443 host_item_get_port(host_item *h)
447 int len = Ustrlen(h->name);
449 if (len < 3 || (p = h->name + len - 1, !isdigit(*p))) return PORT_NONE;
451 /* Extract potential port number */
456 while (p > h->name + 1 && isdigit(*p))
458 port += (*p-- - '0') * x;
462 /* The smallest value of p at this point is h->name + 1. */
464 if (*p != ':') return PORT_NONE;
466 if (p[-1] == ']' && h->name[0] == '[')
467 h->name = string_copyn(h->name + 1, p - h->name - 2);
468 else if (Ustrchr(h->name, ':') == p)
469 h->name = string_copyn(h->name, p - h->name);
470 else return PORT_NONE;
472 DEBUG(D_route|D_host_lookup) debug_printf("host=%s port=%d\n", h->name, port);
478 #ifndef STAND_ALONE /* Omit when standalone testing */
480 /*************************************************
481 * Build sender_fullhost and sender_rcvhost *
482 *************************************************/
484 /* This function is called when sender_host_name and/or sender_helo_name
485 have been set. Or might have been set - for a local message read off the spool
486 they won't be. In that case, do nothing. Otherwise, set up the fullhost string
489 (a) No sender_host_name or sender_helo_name: "[ip address]"
490 (b) Just sender_host_name: "host_name [ip address]"
491 (c) Just sender_helo_name: "(helo_name) [ip address]" unless helo is IP
492 in which case: "[ip address}"
493 (d) The two are identical: "host_name [ip address]" includes helo = IP
494 (e) The two are different: "host_name (helo_name) [ip address]"
496 If log_incoming_port is set, the sending host's port number is added to the IP
499 This function also builds sender_rcvhost for use in Received: lines, whose
500 syntax is a bit different. This value also includes the RFC 1413 identity.
501 There wouldn't be two different variables if I had got all this right in the
504 Because this data may survive over more than one incoming SMTP message, it has
505 to be in permanent store.
512 host_build_sender_fullhost(void)
514 BOOL show_helo = TRUE;
517 int old_pool = store_pool;
519 if (sender_host_address == NULL) return;
521 store_pool = POOL_PERM;
523 /* Set up address, with or without the port. After discussion, it seems that
524 the only format that doesn't cause trouble is [aaaa]:pppp. However, we can't
525 use this directly as the first item for Received: because it ain't an RFC 2822
528 address = string_sprintf("[%s]:%d", sender_host_address, sender_host_port);
529 if ((log_extra_selector & LX_incoming_port) == 0 || sender_host_port <= 0)
530 *(Ustrrchr(address, ':')) = 0;
532 /* If there's no EHLO/HELO data, we can't show it. */
534 if (sender_helo_name == NULL) show_helo = FALSE;
536 /* If HELO/EHLO was followed by an IP literal, it's messy because of two
537 features of IPv6. Firstly, there's the "IPv6:" prefix (Exim is liberal and
538 doesn't require this, for historical reasons). Secondly, IPv6 addresses may not
539 be given in canonical form, so we have to canonicize them before comparing. As
540 it happens, the code works for both IPv4 and IPv6. */
542 else if (sender_helo_name[0] == '[' &&
543 sender_helo_name[(len=Ustrlen(sender_helo_name))-1] == ']')
548 if (strncmpic(sender_helo_name + 1, US"IPv6:", 5) == 0) offset += 5;
549 if (strncmpic(sender_helo_name + 1, US"IPv4:", 5) == 0) offset += 5;
551 helo_ip = string_copyn(sender_helo_name + offset, len - offset - 1);
553 if (string_is_ip_address(helo_ip, NULL) != 0)
557 uschar ipx[48], ipy[48]; /* large enough for full IPv6 */
559 sizex = host_aton(helo_ip, x);
560 sizey = host_aton(sender_host_address, y);
562 (void)host_nmtoa(sizex, x, -1, ipx, ':');
563 (void)host_nmtoa(sizey, y, -1, ipy, ':');
565 if (strcmpic(ipx, ipy) == 0) show_helo = FALSE;
569 /* Host name is not verified */
571 if (sender_host_name == NULL)
573 uschar *portptr = Ustrstr(address, "]:");
576 int adlen; /* Sun compiler doesn't like ++ in initializers */
578 adlen = (portptr == NULL)? Ustrlen(address) : (++portptr - address);
579 sender_fullhost = (sender_helo_name == NULL)? address :
580 string_sprintf("(%s) %s", sender_helo_name, address);
582 sender_rcvhost = string_cat(NULL, &size, &ptr, address, adlen);
584 if (sender_ident != NULL || show_helo || portptr != NULL)
587 sender_rcvhost = string_cat(sender_rcvhost, &size, &ptr, US" (", 2);
591 sender_rcvhost = string_append(sender_rcvhost, &size, &ptr, 2, US"port=",
595 sender_rcvhost = string_append(sender_rcvhost, &size, &ptr, 2,
596 (firstptr == ptr)? US"helo=" : US" helo=", sender_helo_name);
598 if (sender_ident != NULL)
599 sender_rcvhost = string_append(sender_rcvhost, &size, &ptr, 2,
600 (firstptr == ptr)? US"ident=" : US" ident=", sender_ident);
602 sender_rcvhost = string_cat(sender_rcvhost, &size, &ptr, US")", 1);
605 sender_rcvhost[ptr] = 0; /* string_cat() always leaves room */
607 /* Release store, because string_cat allocated a minimum of 100 bytes that
608 are rarely completely used. */
610 store_reset(sender_rcvhost + ptr + 1);
613 /* Host name is known and verified. Unless we've already found that the HELO
614 data matches the IP address, compare it with the name. */
618 if (show_helo && strcmpic(sender_host_name, sender_helo_name) == 0)
623 sender_fullhost = string_sprintf("%s (%s) %s", sender_host_name,
624 sender_helo_name, address);
625 sender_rcvhost = (sender_ident == NULL)?
626 string_sprintf("%s (%s helo=%s)", sender_host_name,
627 address, sender_helo_name) :
628 string_sprintf("%s\n\t(%s helo=%s ident=%s)", sender_host_name,
629 address, sender_helo_name, sender_ident);
633 sender_fullhost = string_sprintf("%s %s", sender_host_name, address);
634 sender_rcvhost = (sender_ident == NULL)?
635 string_sprintf("%s (%s)", sender_host_name, address) :
636 string_sprintf("%s (%s ident=%s)", sender_host_name, address,
641 store_pool = old_pool;
643 DEBUG(D_host_lookup) debug_printf("sender_fullhost = %s\n", sender_fullhost);
644 DEBUG(D_host_lookup) debug_printf("sender_rcvhost = %s\n", sender_rcvhost);
649 /*************************************************
650 * Build host+ident message *
651 *************************************************/
653 /* Used when logging rejections and various ACL and SMTP incidents. The text
654 return depends on whether sender_fullhost and sender_ident are set or not:
656 no ident, no host => U=unknown
657 no ident, host set => H=sender_fullhost
658 ident set, no host => U=ident
659 ident set, host set => H=sender_fullhost U=ident
662 useflag TRUE if first item to be flagged (H= or U=); if there are two
663 items, the second is always flagged
665 Returns: pointer to a string in big_buffer
669 host_and_ident(BOOL useflag)
671 if (sender_fullhost == NULL)
673 (void)string_format(big_buffer, big_buffer_size, "%s%s", useflag? "U=" : "",
674 (sender_ident == NULL)? US"unknown" : sender_ident);
678 uschar *flag = useflag? US"H=" : US"";
679 uschar *iface = US"";
680 if ((log_extra_selector & LX_incoming_interface) != 0 &&
681 interface_address != NULL)
682 iface = string_sprintf(" I=[%s]:%d", interface_address, interface_port);
683 if (sender_ident == NULL)
684 (void)string_format(big_buffer, big_buffer_size, "%s%s%s",
685 flag, sender_fullhost, iface);
687 (void)string_format(big_buffer, big_buffer_size, "%s%s%s U=%s",
688 flag, sender_fullhost, iface, sender_ident);
693 #endif /* STAND_ALONE */
698 /*************************************************
699 * Build list of local interfaces *
700 *************************************************/
702 /* This function interprets the contents of the local_interfaces or
703 extra_local_interfaces options, and creates an ip_address_item block for each
704 item on the list. There is no special interpretation of any IP addresses; in
705 particular, 0.0.0.0 and ::0 are returned without modification. If any address
706 includes a port, it is set in the block. Otherwise the port value is set to
711 name the name of the option being expanded
713 Returns: a chain of ip_address_items, each containing to a textual
714 version of an IP address, and a port number (host order) or
715 zero if no port was given with the address
719 host_build_ifacelist(uschar *list, uschar *name)
724 ip_address_item *yield = NULL;
725 ip_address_item *last = NULL;
726 ip_address_item *next;
728 while ((s = string_nextinlist(&list, &sep, buffer, sizeof(buffer))) != NULL)
731 int port = host_address_extract_port(s); /* Leaves just the IP address */
732 if ((ipv = string_is_ip_address(s, NULL)) == 0)
733 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "Malformed IP address \"%s\" in %s",
736 /* Skip IPv6 addresses if IPv6 is disabled. */
738 if (disable_ipv6 && ipv == 6) continue;
740 /* This use of strcpy() is OK because we have checked that s is a valid IP
741 address above. The field in the ip_address_item is large enough to hold an
744 next = store_get(sizeof(ip_address_item));
746 Ustrcpy(next->address, s);
748 next->v6_include_v4 = FALSE;
750 if (yield == NULL) yield = last = next; else
764 /*************************************************
765 * Find addresses on local interfaces *
766 *************************************************/
768 /* This function finds the addresses of local IP interfaces. These are used
769 when testing for routing to the local host. As the function may be called more
770 than once, the list is preserved in permanent store, pointed to by a static
771 variable, to save doing the work more than once per process.
773 The generic list of interfaces is obtained by calling host_build_ifacelist()
774 for local_interfaces and extra_local_interfaces. This list scanned to remove
775 duplicates (which may exist with different ports - not relevant here). If
776 either of the wildcard IP addresses (0.0.0.0 and ::0) are encountered, they are
777 replaced by the appropriate (IPv4 or IPv6) list of actual local interfaces,
778 obtained from os_find_running_interfaces().
781 Returns: a chain of ip_address_items, each containing to a textual
782 version of an IP address; the port numbers are not relevant
786 /* First, a local subfunction to add an interface to a list in permanent store,
787 but only if there isn't a previous copy of that address on the list. */
789 static ip_address_item *
790 add_unique_interface(ip_address_item *list, ip_address_item *ipa)
792 ip_address_item *ipa2;
793 for (ipa2 = list; ipa2 != NULL; ipa2 = ipa2->next)
794 if (Ustrcmp(ipa2->address, ipa->address) == 0) return list;
795 ipa2 = store_get_perm(sizeof(ip_address_item));
802 /* This is the globally visible function */
805 host_find_interfaces(void)
807 ip_address_item *running_interfaces = NULL;
809 if (local_interface_data == NULL)
811 void *reset_item = store_get(0);
812 ip_address_item *dlist = host_build_ifacelist(local_interfaces,
813 US"local_interfaces");
814 ip_address_item *xlist = host_build_ifacelist(extra_local_interfaces,
815 US"extra_local_interfaces");
816 ip_address_item *ipa;
818 if (dlist == NULL) dlist = xlist; else
820 for (ipa = dlist; ipa->next != NULL; ipa = ipa->next);
824 for (ipa = dlist; ipa != NULL; ipa = ipa->next)
826 if (Ustrcmp(ipa->address, "0.0.0.0") == 0 ||
827 Ustrcmp(ipa->address, "::0") == 0)
829 ip_address_item *ipa2;
830 BOOL ipv6 = ipa->address[0] == ':';
831 if (running_interfaces == NULL)
832 running_interfaces = os_find_running_interfaces();
833 for (ipa2 = running_interfaces; ipa2 != NULL; ipa2 = ipa2->next)
835 if ((Ustrchr(ipa2->address, ':') != NULL) == ipv6)
836 local_interface_data = add_unique_interface(local_interface_data,
842 local_interface_data = add_unique_interface(local_interface_data, ipa);
845 debug_printf("Configured local interface: address=%s", ipa->address);
846 if (ipa->port != 0) debug_printf(" port=%d", ipa->port);
851 store_reset(reset_item);
854 return local_interface_data;
861 /*************************************************
862 * Convert network IP address to text *
863 *************************************************/
865 /* Given an IPv4 or IPv6 address in binary, convert it to a text
866 string and return the result in a piece of new store. The address can
867 either be given directly, or passed over in a sockaddr structure. Note
868 that this isn't the converse of host_aton() because of byte ordering
869 differences. See host_nmtoa() below.
872 type if < 0 then arg points to a sockaddr, else
873 either AF_INET or AF_INET6
874 arg points to a sockaddr if type is < 0, or
875 points to an IPv4 address (32 bits), or
876 points to an IPv6 address (128 bits),
877 in both cases, in network byte order
878 buffer if NULL, the result is returned in gotten store;
879 else points to a buffer to hold the answer
880 portptr points to where to put the port number, if non NULL; only
883 Returns: pointer to character string
887 host_ntoa(int type, const void *arg, uschar *buffer, int *portptr)
891 /* The new world. It is annoying that we have to fish out the address from
892 different places in the block, depending on what kind of address it is. It
893 is also a pain that inet_ntop() returns a const uschar *, whereas the IPv4
894 function inet_ntoa() returns just uschar *, and some picky compilers insist
895 on warning if one assigns a const uschar * to a uschar *. Hence the casts. */
898 uschar addr_buffer[46];
901 int family = ((struct sockaddr *)arg)->sa_family;
902 if (family == AF_INET6)
904 struct sockaddr_in6 *sk = (struct sockaddr_in6 *)arg;
905 yield = (uschar *)inet_ntop(family, &(sk->sin6_addr), CS addr_buffer,
906 sizeof(addr_buffer));
907 if (portptr != NULL) *portptr = ntohs(sk->sin6_port);
911 struct sockaddr_in *sk = (struct sockaddr_in *)arg;
912 yield = (uschar *)inet_ntop(family, &(sk->sin_addr), CS addr_buffer,
913 sizeof(addr_buffer));
914 if (portptr != NULL) *portptr = ntohs(sk->sin_port);
919 yield = (uschar *)inet_ntop(type, arg, CS addr_buffer, sizeof(addr_buffer));
922 /* If the result is a mapped IPv4 address, show it in V4 format. */
924 if (Ustrncmp(yield, "::ffff:", 7) == 0) yield += 7;
926 #else /* HAVE_IPV6 */
932 yield = US inet_ntoa(((struct sockaddr_in *)arg)->sin_addr);
933 if (portptr != NULL) *portptr = ntohs(((struct sockaddr_in *)arg)->sin_port);
936 yield = US inet_ntoa(*((struct in_addr *)arg));
939 /* If there is no buffer, put the string into some new store. */
941 if (buffer == NULL) return string_copy(yield);
943 /* Callers of this function with a non-NULL buffer must ensure that it is
944 large enough to hold an IPv6 address, namely, at least 46 bytes. That's what
945 makes this use of strcpy() OK. */
947 Ustrcpy(buffer, yield);
954 /*************************************************
955 * Convert address text to binary *
956 *************************************************/
958 /* Given the textual form of an IP address, convert it to binary in an
959 array of ints. IPv4 addresses occupy one int; IPv6 addresses occupy 4 ints.
960 The result has the first byte in the most significant byte of the first int. In
961 other words, the result is not in network byte order, but in host byte order.
962 As a result, this is not the converse of host_ntoa(), which expects network
963 byte order. See host_nmtoa() below.
966 address points to the textual address, checked for syntax
967 bin points to an array of 4 ints
969 Returns: the number of ints used
973 host_aton(uschar *address, int *bin)
978 /* Handle IPv6 address, which may end with an IPv4 address. It may also end
979 with a "scope", introduced by a percent sign. This code is NOT enclosed in #if
980 HAVE_IPV6 in order that IPv6 addresses are recognized even if IPv6 is not
983 if (Ustrchr(address, ':') != NULL)
986 uschar *component[8];
987 BOOL ipv4_ends = FALSE;
993 /* If the address starts with a colon, it will start with two colons.
994 Just lose the first one, which will leave a null first component. */
998 /* Split the address into components separated by colons. The input address
999 is supposed to be checked for syntax. There was a case where this was
1000 overlooked; to guard against that happening again, check here and crash if
1001 there are too many components. */
1003 while (*p != 0 && *p != '%')
1005 int len = Ustrcspn(p, ":%");
1006 if (len == 0) nulloffset = ci;
1007 if (ci > 7) log_write(0, LOG_MAIN|LOG_PANIC_DIE,
1008 "Internal error: invalid IPv6 address \"%s\" passed to host_aton()",
1010 component[ci++] = p;
1015 /* If the final component contains a dot, it is a trailing v4 address.
1016 As the syntax is known to be checked, just set up for a trailing
1017 v4 address and restrict the v6 part to 6 components. */
1019 if (Ustrchr(component[ci-1], '.') != NULL)
1021 address = component[--ci];
1027 /* If there are fewer than 6 or 8 components, we have to insert some
1028 more empty ones in the middle. */
1032 int insert_count = v6count - ci;
1033 for (i = v6count-1; i > nulloffset + insert_count; i--)
1034 component[i] = component[i - insert_count];
1035 while (i > nulloffset) component[i--] = US"";
1038 /* Now turn the components into binary in pairs and bung them
1039 into the vector of ints. */
1041 for (i = 0; i < v6count; i += 2)
1042 bin[i/2] = (Ustrtol(component[i], NULL, 16) << 16) +
1043 Ustrtol(component[i+1], NULL, 16);
1045 /* If there was no terminating v4 component, we are done. */
1047 if (!ipv4_ends) return 4;
1050 /* Handle IPv4 address */
1052 (void)sscanf(CS address, "%d.%d.%d.%d", x, x+1, x+2, x+3);
1053 bin[v4offset] = (x[0] << 24) + (x[1] << 16) + (x[2] << 8) + x[3];
1058 /*************************************************
1059 * Apply mask to an IP address *
1060 *************************************************/
1062 /* Mask an address held in 1 or 4 ints, with the ms bit in the ms bit of the
1066 count the number of ints
1067 binary points to the ints to be masked
1068 mask the count of ms bits to leave, or -1 if no masking
1074 host_mask(int count, int *binary, int mask)
1077 if (mask < 0) mask = 99999;
1078 for (i = 0; i < count; i++)
1081 if (mask == 0) wordmask = 0;
1084 wordmask = (-1) << (32 - mask);
1092 binary[i] &= wordmask;
1099 /*************************************************
1100 * Convert masked IP address in ints to text *
1101 *************************************************/
1103 /* We can't use host_ntoa() because it assumes the binary values are in network
1104 byte order, and these are the result of host_aton(), which puts them in ints in
1105 host byte order. Also, we really want IPv6 addresses to be in a canonical
1106 format, so we output them with no abbreviation. In a number of cases we can't
1107 use the normal colon separator in them because it terminates keys in lsearch
1108 files, so we want to use dot instead. There's an argument that specifies what
1109 to use for IPv6 addresses.
1112 count 1 or 4 (number of ints)
1113 binary points to the ints
1114 mask mask value; if < 0 don't add to result
1115 buffer big enough to hold the result
1116 sep component separator character for IPv6 addresses
1118 Returns: the number of characters placed in buffer, not counting
1123 host_nmtoa(int count, int *binary, int mask, uschar *buffer, int sep)
1126 uschar *tt = buffer;
1131 for (i = 24; i >= 0; i -= 8)
1133 sprintf(CS tt, "%d.", (j >> i) & 255);
1139 for (i = 0; i < 4; i++)
1142 sprintf(CS tt, "%04x%c%04x%c", (j >> 16) & 0xffff, sep, j & 0xffff, sep);
1147 tt--; /* lose final separator */
1153 sprintf(CS tt, "/%d", mask);
1162 /*************************************************
1163 * Check port for tls_on_connect *
1164 *************************************************/
1166 /* This function checks whether a given incoming port is configured for tls-
1167 on-connect. It is called from the daemon and from inetd handling. If the global
1168 option tls_on_connect is already set, all ports operate this way. Otherwise, we
1169 check the tls_on_connect_ports option for a list of ports.
1171 Argument: a port number
1172 Returns: TRUE or FALSE
1176 host_is_tls_on_connect_port(int port)
1180 uschar *list = tls_on_connect_ports;
1183 if (tls_on_connect) return TRUE;
1185 while ((s = string_nextinlist(&list, &sep, buffer, sizeof(buffer))) != NULL)
1188 int lport = Ustrtol(s, &end, 10);
1189 if (*end != 0) log_write(0, LOG_MAIN|LOG_PANIC_DIE, "tls_on_connect_ports "
1190 "contains \"%s\", which is not a port number: exim abandoned", s);
1191 if (lport == port) return TRUE;
1199 /*************************************************
1200 * Check whether host is in a network *
1201 *************************************************/
1203 /* This function checks whether a given IP address matches a pattern that
1204 represents either a single host, or a network (using CIDR notation). The caller
1205 of this function must check the syntax of the arguments before calling it.
1208 host string representation of the ip-address to check
1209 net string representation of the network, with optional CIDR mask
1210 maskoffset offset to the / that introduces the mask in the key
1211 zero if there is no mask
1214 TRUE the host is inside the network
1215 FALSE the host is NOT inside the network
1219 host_is_in_net(uschar *host, uschar *net, int maskoffset)
1225 int size = host_aton(net, address);
1228 /* No mask => all bits to be checked */
1230 if (maskoffset == 0) mlen = 99999; /* Big number */
1231 else mlen = Uatoi(net + maskoffset + 1);
1233 /* Convert the incoming address to binary. */
1235 insize = host_aton(host, incoming);
1237 /* Convert IPv4 addresses given in IPv6 compatible mode, which represent
1238 connections from IPv4 hosts to IPv6 hosts, that is, addresses of the form
1239 ::ffff:<v4address>, to IPv4 format. */
1241 if (insize == 4 && incoming[0] == 0 && incoming[1] == 0 &&
1242 incoming[2] == 0xffff)
1245 incoming[0] = incoming[3];
1248 /* No match if the sizes don't agree. */
1250 if (insize != size) return FALSE;
1252 /* Else do the masked comparison. */
1254 for (i = 0; i < size; i++)
1257 if (mlen == 0) mask = 0;
1260 mask = (-1) << (32 - mlen);
1268 if ((incoming[i] & mask) != (address[i] & mask)) return FALSE;
1276 /*************************************************
1277 * Scan host list for local hosts *
1278 *************************************************/
1280 /* Scan through a chain of addresses and check whether any of them is the
1281 address of an interface on the local machine. If so, remove that address and
1282 any previous ones with the same MX value, and all subsequent ones (which will
1283 have greater or equal MX values) from the chain. Note: marking them as unusable
1284 is NOT the right thing to do because it causes the hosts not to be used for
1285 other domains, for which they may well be correct.
1287 The hosts may be part of a longer chain; we only process those between the
1288 initial pointer and the "last" pointer.
1290 There is also a list of "pseudo-local" host names which are checked against the
1291 host names. Any match causes that host item to be treated the same as one which
1292 matches a local IP address.
1294 If the very first host is a local host, then all MX records had a precedence
1295 greater than or equal to that of the local host. Either there's a problem in
1296 the DNS, or an apparently remote name turned out to be an abbreviation for the
1297 local host. Give a specific return code, and let the caller decide what to do.
1298 Otherwise, give a success code if at least one host address has been found.
1301 host pointer to the first host in the chain
1302 lastptr pointer to pointer to the last host in the chain (may be updated)
1303 removed if not NULL, set TRUE if some local addresses were removed
1307 HOST_FOUND if there is at least one host with an IP address on the chain
1308 and an MX value less than any MX value associated with the
1310 HOST_FOUND_LOCAL if a local host is among the lowest-numbered MX hosts; when
1311 the host addresses were obtained from A records or
1312 gethostbyname(), the MX values are set to -1.
1313 HOST_FIND_FAILED if no valid hosts with set IP addresses were found
1317 host_scan_for_local_hosts(host_item *host, host_item **lastptr, BOOL *removed)
1319 int yield = HOST_FIND_FAILED;
1320 host_item *last = *lastptr;
1321 host_item *prev = NULL;
1324 if (removed != NULL) *removed = FALSE;
1326 if (local_interface_data == NULL) local_interface_data = host_find_interfaces();
1328 for (h = host; h != last->next; h = h->next)
1331 if (hosts_treat_as_local != NULL)
1334 uschar *save = deliver_domain;
1335 deliver_domain = h->name; /* set $domain */
1336 rc = match_isinlist(string_copylc(h->name), &hosts_treat_as_local, 0,
1337 &domainlist_anchor, NULL, MCL_DOMAIN, TRUE, NULL);
1338 deliver_domain = save;
1339 if (rc == OK) goto FOUND_LOCAL;
1343 /* It seems that on many operating systems, 0.0.0.0 is treated as a synonym
1344 for 127.0.0.1 and refers to the local host. We therefore force it always to
1345 be treated as local. */
1347 if (h->address != NULL)
1349 ip_address_item *ip;
1350 if (Ustrcmp(h->address, "0.0.0.0") == 0) goto FOUND_LOCAL;
1351 for (ip = local_interface_data; ip != NULL; ip = ip->next)
1352 if (Ustrcmp(h->address, ip->address) == 0) goto FOUND_LOCAL;
1353 yield = HOST_FOUND; /* At least one remote address has been found */
1356 /* Update prev to point to the last host item before any that have
1357 the same MX value as the one we have just considered. */
1359 if (h->next == NULL || h->next->mx != h->mx) prev = h;
1362 return yield; /* No local hosts found: return HOST_FOUND or HOST_FIND_FAILED */
1364 /* A host whose IP address matches a local IP address, or whose name matches
1365 something in hosts_treat_as_local has been found. */
1371 HDEBUG(D_host_lookup) debug_printf((h->mx >= 0)?
1372 "local host has lowest MX\n" :
1373 "local host found for non-MX address\n");
1374 return HOST_FOUND_LOCAL;
1377 HDEBUG(D_host_lookup)
1379 debug_printf("local host in host list - removed hosts:\n");
1380 for (h = prev->next; h != last->next; h = h->next)
1381 debug_printf(" %s %s %d\n", h->name, h->address, h->mx);
1384 if (removed != NULL) *removed = TRUE;
1385 prev->next = last->next;
1393 /*************************************************
1394 * Remove duplicate IPs in host list *
1395 *************************************************/
1397 /* You would think that administrators could set up their DNS records so that
1398 one ended up with a list of unique IP addresses after looking up A or MX
1399 records, but apparently duplication is common. So we scan such lists and
1400 remove the later duplicates. Note that we may get lists in which some host
1401 addresses are not set.
1404 host pointer to the first host in the chain
1405 lastptr pointer to pointer to the last host in the chain (may be updated)
1411 host_remove_duplicates(host_item *host, host_item **lastptr)
1413 while (host != *lastptr)
1415 if (host->address != NULL)
1417 host_item *h = host;
1418 while (h != *lastptr)
1420 if (h->next->address != NULL &&
1421 Ustrcmp(h->next->address, host->address) == 0)
1423 DEBUG(D_host_lookup) debug_printf("duplicate IP address %s (MX=%d) "
1424 "removed\n", host->address, h->next->mx);
1425 if (h->next == *lastptr) *lastptr = h;
1426 h->next = h->next->next;
1431 /* If the last item was removed, host may have become == *lastptr */
1432 if (host != *lastptr) host = host->next;
1439 /*************************************************
1440 * Find sender host name by gethostbyaddr() *
1441 *************************************************/
1443 /* This used to be the only way it was done, but it turns out that not all
1444 systems give aliases for calls to gethostbyaddr() - or one of the modern
1445 equivalents like getipnodebyaddr(). Fortunately, multiple PTR records are rare,
1446 but they can still exist. This function is now used only when a DNS lookup of
1447 the IP address fails, in order to give access to /etc/hosts.
1450 Returns: OK, DEFER, FAIL
1454 host_name_lookup_byaddr(void)
1458 struct hostent *hosts;
1459 struct in_addr addr;
1461 /* Lookup on IPv6 system */
1464 if (Ustrchr(sender_host_address, ':') != NULL)
1466 struct in6_addr addr6;
1467 if (inet_pton(AF_INET6, CS sender_host_address, &addr6) != 1)
1468 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "unable to parse \"%s\" as an "
1469 "IPv6 address", sender_host_address);
1470 #if HAVE_GETIPNODEBYADDR
1471 hosts = getipnodebyaddr(CS &addr6, sizeof(addr6), AF_INET6, &h_errno);
1473 hosts = gethostbyaddr(CS &addr6, sizeof(addr6), AF_INET6);
1478 if (inet_pton(AF_INET, CS sender_host_address, &addr) != 1)
1479 log_write(0, LOG_MAIN|LOG_PANIC_DIE, "unable to parse \"%s\" as an "
1480 "IPv4 address", sender_host_address);
1481 #if HAVE_GETIPNODEBYADDR
1482 hosts = getipnodebyaddr(CS &addr, sizeof(addr), AF_INET, &h_errno);
1484 hosts = gethostbyaddr(CS &addr, sizeof(addr), AF_INET);
1488 /* Do lookup on IPv4 system */
1491 addr.s_addr = (S_ADDR_TYPE)inet_addr(CS sender_host_address);
1492 hosts = gethostbyaddr(CS(&addr), sizeof(addr), AF_INET);
1495 /* Failed to look up the host. */
1499 HDEBUG(D_host_lookup) debug_printf("IP address lookup failed: h_errno=%d\n",
1501 return (h_errno == TRY_AGAIN || h_errno == NO_RECOVERY) ? DEFER : FAIL;
1504 /* It seems there are some records in the DNS that yield an empty name. We
1505 treat this as non-existent. In some operating systems, this is returned as an
1506 empty string; in others as a single dot. */
1508 if (hosts->h_name == NULL || hosts->h_name[0] == 0 || hosts->h_name[0] == '.')
1510 HDEBUG(D_host_lookup) debug_printf("IP address lookup yielded an empty name: "
1511 "treated as non-existent host name\n");
1515 /* Copy and lowercase the name, which is in static storage in many systems.
1516 Put it in permanent memory. */
1518 s = (uschar *)hosts->h_name;
1519 len = Ustrlen(s) + 1;
1520 t = sender_host_name = store_get_perm(len);
1521 while (*s != 0) *t++ = tolower(*s++);
1524 /* If the host has aliases, build a copy of the alias list */
1526 if (hosts->h_aliases != NULL)
1529 uschar **aliases, **ptr;
1530 for (aliases = USS hosts->h_aliases; *aliases != NULL; aliases++) count++;
1531 ptr = sender_host_aliases = store_get_perm(count * sizeof(uschar *));
1532 for (aliases = USS hosts->h_aliases; *aliases != NULL; aliases++)
1534 uschar *s = *aliases;
1535 int len = Ustrlen(s) + 1;
1536 uschar *t = *ptr++ = store_get_perm(len);
1537 while (*s != 0) *t++ = tolower(*s++);
1548 /*************************************************
1549 * Find host name for incoming call *
1550 *************************************************/
1552 /* Put the name in permanent store, pointed to by sender_host_name. We also set
1553 up a list of alias names, pointed to by sender_host_alias. The list is
1554 NULL-terminated. The incoming address is in sender_host_address, either in
1555 dotted-quad form for IPv4 or in colon-separated form for IPv6.
1557 This function does a thorough check that the names it finds point back to the
1558 incoming IP address. Any that do not are discarded. Note that this is relied on
1559 by the ACL reverse_host_lookup check.
1561 On some systems, get{host,ipnode}byaddr() appears to do this internally, but
1562 this it not universally true. Also, for release 4.30, this function was changed
1563 to do a direct DNS lookup first, by default[1], because it turns out that that
1564 is the only guaranteed way to find all the aliases on some systems. My
1565 experiments indicate that Solaris gethostbyaddr() gives the aliases for but
1568 [1] The actual order is controlled by the host_lookup_order option.
1571 Returns: OK on success, the answer being placed in the global variable
1572 sender_host_name, with any aliases in a list hung off
1574 FAIL if no host name can be found
1575 DEFER if a temporary error was encountered
1577 The variable host_lookup_msg is set to an empty string on sucess, or to a
1578 reason for the failure otherwise, in a form suitable for tagging onto an error
1579 message, and also host_lookup_failed is set TRUE if the lookup failed. If there
1580 was a defer, host_lookup_deferred is set TRUE.
1582 Any dynamically constructed string for host_lookup_msg must be in permanent
1583 store, because it might be used for several incoming messages on the same SMTP
1587 host_name_lookup(void)
1591 uschar *hname, *save_hostname;
1595 uschar *list = host_lookup_order;
1600 host_lookup_deferred = host_lookup_failed = FALSE;
1602 HDEBUG(D_host_lookup)
1603 debug_printf("looking up host name for %s\n", sender_host_address);
1605 /* For testing the case when a lookup does not complete, we have a special
1606 reserved IP address. */
1608 if (running_in_test_harness &&
1609 Ustrcmp(sender_host_address, "99.99.99.99") == 0)
1611 HDEBUG(D_host_lookup)
1612 debug_printf("Test harness: host name lookup returns DEFER\n");
1613 host_lookup_deferred = TRUE;
1617 /* Do lookups directly in the DNS or via gethostbyaddr() (or equivalent), in
1618 the order specified by the host_lookup_order option. */
1620 while ((ordername = string_nextinlist(&list, &sep, buffer, sizeof(buffer)))
1623 if (strcmpic(ordername, US"bydns") == 0)
1625 dns_init(FALSE, FALSE);
1626 dns_build_reverse(sender_host_address, buffer);
1627 rc = dns_lookup(&dnsa, buffer, T_PTR, NULL);
1629 /* The first record we come across is used for the name; others are
1630 considered to be aliases. We have to scan twice, in order to find out the
1631 number of aliases. However, if all the names are empty, we will behave as
1632 if failure. (PTR records that yield empty names have been encountered in
1635 if (rc == DNS_SUCCEED)
1637 uschar **aptr = NULL;
1640 int old_pool = store_pool;
1642 store_pool = POOL_PERM; /* Save names in permanent storage */
1644 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
1646 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
1648 if (rr->type == T_PTR) count++;
1651 /* Get store for the list of aliases. For compatibility with
1652 gethostbyaddr, we make an empty list if there are none. */
1654 aptr = sender_host_aliases = store_get(count * sizeof(uschar *));
1656 /* Re-scan and extract the names */
1658 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
1660 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
1663 if (rr->type != T_PTR) continue;
1664 s = store_get(ssize);
1666 /* If an overlong response was received, the data will have been
1667 truncated and dn_expand may fail. */
1669 if (dn_expand(dnsa.answer, dnsa.answer + dnsa.answerlen,
1670 (uschar *)(rr->data), (DN_EXPAND_ARG4_TYPE)(s), ssize) < 0)
1672 log_write(0, LOG_MAIN, "host name alias list truncated for %s",
1673 sender_host_address);
1677 store_reset(s + Ustrlen(s) + 1);
1680 HDEBUG(D_host_lookup) debug_printf("IP address lookup yielded an "
1681 "empty name: treated as non-existent host name\n");
1684 if (sender_host_name == NULL) sender_host_name = s;
1686 while (*s != 0) { *s = tolower(*s); s++; }
1689 *aptr = NULL; /* End of alias list */
1690 store_pool = old_pool; /* Reset store pool */
1692 /* If we've found a names, break out of the "order" loop */
1694 if (sender_host_name != NULL) break;
1697 /* If the DNS lookup deferred, we must also defer. */
1699 if (rc == DNS_AGAIN)
1701 HDEBUG(D_host_lookup)
1702 debug_printf("IP address PTR lookup gave temporary error\n");
1703 host_lookup_deferred = TRUE;
1708 /* Do a lookup using gethostbyaddr() - or equivalent */
1710 else if (strcmpic(ordername, US"byaddr") == 0)
1712 HDEBUG(D_host_lookup)
1713 debug_printf("IP address lookup using gethostbyaddr()\n");
1714 rc = host_name_lookup_byaddr();
1717 host_lookup_deferred = TRUE;
1718 return rc; /* Can't carry on */
1720 if (rc == OK) break; /* Found a name */
1722 } /* Loop for bydns/byaddr scanning */
1724 /* If we have failed to find a name, return FAIL and log when required.
1725 NB host_lookup_msg must be in permanent store. */
1727 if (sender_host_name == NULL)
1729 if (host_checking || !log_testing_mode)
1730 log_write(L_host_lookup_failed, LOG_MAIN, "no host name found for IP "
1731 "address %s", sender_host_address);
1732 host_lookup_msg = US" (failed to find host name from IP address)";
1733 host_lookup_failed = TRUE;
1737 HDEBUG(D_host_lookup)
1739 uschar **aliases = sender_host_aliases;
1740 debug_printf("IP address lookup yielded %s\n", sender_host_name);
1741 while (*aliases != NULL) debug_printf(" alias %s\n", *aliases++);
1744 /* We need to verify that a forward lookup on the name we found does indeed
1745 correspond to the address. This is for security: in principle a malefactor who
1746 happened to own a reverse zone could set it to point to any names at all.
1748 This code was present in versions of Exim before 3.20. At that point I took it
1749 out because I thought that gethostbyaddr() did the check anyway. It turns out
1750 that this isn't always the case, so it's coming back in at 4.01. This version
1751 is actually better, because it also checks aliases.
1753 The code was made more robust at release 4.21. Prior to that, it accepted all
1754 the names if any of them had the correct IP address. Now the code checks all
1755 the names, and accepts only those that have the correct IP address. */
1757 save_hostname = sender_host_name; /* Save for error messages */
1758 aliases = sender_host_aliases;
1759 for (hname = sender_host_name; hname != NULL; hname = *aliases++)
1769 /* When called with the last argument FALSE, host_find_byname() won't return
1770 HOST_FOUND_LOCAL. If the incoming address is an IPv4 address expressed in
1771 IPv6 format, we must compare the IPv4 part to any IPv4 addresses. */
1773 if ((rc = host_find_byname(&h, NULL, 0, NULL, FALSE)) == HOST_FOUND)
1776 HDEBUG(D_host_lookup) debug_printf("checking addresses for %s\n", hname);
1777 for (hh = &h; hh != NULL; hh = hh->next)
1779 if (host_is_in_net(hh->address, sender_host_address, 0))
1781 HDEBUG(D_host_lookup) debug_printf(" %s OK\n", hh->address);
1787 HDEBUG(D_host_lookup) debug_printf(" %s\n", hh->address);
1790 if (!ok) HDEBUG(D_host_lookup)
1791 debug_printf("no IP address for %s matched %s\n", hname,
1792 sender_host_address);
1794 else if (rc == HOST_FIND_AGAIN)
1796 HDEBUG(D_host_lookup) debug_printf("temporary error for host name lookup\n");
1797 host_lookup_deferred = TRUE;
1798 sender_host_name = NULL;
1803 HDEBUG(D_host_lookup) debug_printf("no IP addresses found for %s\n", hname);
1806 /* If this name is no good, and it's the sender name, set it null pro tem;
1807 if it's an alias, just remove it from the list. */
1811 if (hname == sender_host_name) sender_host_name = NULL; else
1813 uschar **a; /* Don't amalgamate - some */
1814 a = --aliases; /* compilers grumble */
1815 while (*a != NULL) { *a = a[1]; a++; }
1820 /* If sender_host_name == NULL, it means we didn't like the name. Replace
1821 it with the first alias, if there is one. */
1823 if (sender_host_name == NULL && *sender_host_aliases != NULL)
1824 sender_host_name = *sender_host_aliases++;
1826 /* If we now have a main name, all is well. */
1828 if (sender_host_name != NULL) return OK;
1830 /* We have failed to find an address that matches. */
1832 HDEBUG(D_host_lookup)
1833 debug_printf("%s does not match any IP address for %s\n",
1834 sender_host_address, save_hostname);
1836 /* This message must be in permanent store */
1838 old_pool = store_pool;
1839 store_pool = POOL_PERM;
1840 host_lookup_msg = string_sprintf(" (%s does not match any IP address for %s)",
1841 sender_host_address, save_hostname);
1842 store_pool = old_pool;
1843 host_lookup_failed = TRUE;
1850 /*************************************************
1851 * Find IP address(es) for host by name *
1852 *************************************************/
1854 /* The input is a host_item structure with the name filled in and the address
1855 field set to NULL. We use gethostbyname() or getipnodebyname() or
1856 gethostbyname2(), as appropriate. Of course, these functions may use the DNS,
1857 but they do not do MX processing. It appears, however, that in some systems the
1858 current setting of resolver options is used when one of these functions calls
1859 the resolver. For this reason, we call dns_init() at the start, with arguments
1860 influenced by bits in "flags", just as we do for host_find_bydns().
1862 The second argument provides a host list (usually an IP list) of hosts to
1863 ignore. This makes it possible to ignore IPv6 link-local addresses or loopback
1864 addresses in unreasonable places.
1866 The lookup may result in a change of name. For compatibility with the dns
1867 lookup, return this via fully_qualified_name as well as updating the host item.
1868 The lookup may also yield more than one IP address, in which case chain on
1869 subsequent host_item structures.
1872 host a host item with the name and MX filled in;
1873 the address is to be filled in;
1874 multiple IP addresses cause other host items to be
1876 ignore_target_hosts a list of hosts to ignore
1877 flags HOST_FIND_QUALIFY_SINGLE ) passed to
1878 HOST_FIND_SEARCH_PARENTS ) dns_init()
1879 fully_qualified_name if not NULL, set to point to host name for
1880 compatibility with host_find_bydns
1881 local_host_check TRUE if a check for the local host is wanted
1883 Returns: HOST_FIND_FAILED Failed to find the host or domain
1884 HOST_FIND_AGAIN Try again later
1885 HOST_FOUND Host found - data filled in
1886 HOST_FOUND_LOCAL Host found and is the local host
1890 host_find_byname(host_item *host, uschar *ignore_target_hosts, int flags,
1891 uschar **fully_qualified_name, BOOL local_host_check)
1893 int i, yield, times;
1895 host_item *last = NULL;
1896 BOOL temp_error = FALSE;
1901 /* If we are in the test harness, a name ending in .test.again.dns always
1902 forces a temporary error response, unless the name is in
1903 dns_again_means_nonexist. */
1905 if (running_in_test_harness)
1907 uschar *endname = host->name + Ustrlen(host->name);
1908 if (Ustrcmp(endname - 14, "test.again.dns") == 0) goto RETURN_AGAIN;
1911 /* Make sure DNS options are set as required. This appears to be necessary in
1912 some circumstances when the get..byname() function actually calls the DNS. */
1914 dns_init((flags & HOST_FIND_QUALIFY_SINGLE) != 0,
1915 (flags & HOST_FIND_SEARCH_PARENTS) != 0);
1917 /* In an IPv6 world, unless IPv6 has been disabled, we need to scan for both
1918 kinds of address, so go round the loop twice. Note that we have ensured that
1919 AF_INET6 is defined even in an IPv4 world, which makes for slightly tidier
1920 code. However, if dns_ipv4_lookup matches the domain, we also just do IPv4
1921 lookups here (except when testing standalone). */
1928 (dns_ipv4_lookup != NULL &&
1929 match_isinlist(host->name, &dns_ipv4_lookup, 0, NULL, NULL, MCL_DOMAIN,
1933 { af = AF_INET; times = 1; }
1935 { af = AF_INET6; times = 2; }
1937 /* No IPv6 support */
1939 #else /* HAVE_IPV6 */
1941 #endif /* HAVE_IPV6 */
1943 /* Initialize the flag that gets set for DNS syntax check errors, so that the
1944 interface to this function can be similar to host_find_bydns. */
1946 host_find_failed_syntax = FALSE;
1948 /* Loop to look up both kinds of address in an IPv6 world */
1950 for (i = 1; i <= times;
1952 af = AF_INET, /* If 2 passes, IPv4 on the second */
1958 struct hostent *hostdata;
1961 printf("Looking up: %s\n", host->name);
1965 if (running_in_test_harness)
1966 hostdata = host_fake_gethostbyname(host->name, af, &error_num);
1969 #if HAVE_GETIPNODEBYNAME
1970 hostdata = getipnodebyname(CS host->name, af, 0, &error_num);
1972 hostdata = gethostbyname2(CS host->name, af);
1973 error_num = h_errno;
1977 #else /* not HAVE_IPV6 */
1978 if (running_in_test_harness)
1979 hostdata = host_fake_gethostbyname(host->name, AF_INET, &error_num);
1982 hostdata = gethostbyname(CS host->name);
1983 error_num = h_errno;
1985 #endif /* HAVE_IPV6 */
1987 if (hostdata == NULL)
1992 case HOST_NOT_FOUND: error = US"HOST_NOT_FOUND"; break;
1993 case TRY_AGAIN: error = US"TRY_AGAIN"; break;
1994 case NO_RECOVERY: error = US"NO_RECOVERY"; break;
1995 case NO_DATA: error = US"NO_DATA"; break;
1996 #if NO_DATA != NO_ADDRESS
1997 case NO_ADDRESS: error = US"NO_ADDRESS"; break;
1999 default: error = US"?"; break;
2002 DEBUG(D_host_lookup) debug_printf("%s returned %d (%s)\n",
2004 #if HAVE_GETIPNODEBYNAME
2005 (af == AF_INET6)? "getipnodebyname(af=inet6)" : "getipnodebyname(af=inet)",
2007 (af == AF_INET6)? "gethostbyname2(af=inet6)" : "gethostbyname2(af=inet)",
2014 if (error_num == TRY_AGAIN || error_num == NO_RECOVERY) temp_error = TRUE;
2017 if ((hostdata->h_addr_list)[0] == NULL) continue;
2019 /* Replace the name with the fully qualified one if necessary, and fill in
2020 the fully_qualified_name pointer. */
2022 if (hostdata->h_name[0] != 0 &&
2023 Ustrcmp(host->name, hostdata->h_name) != 0)
2024 host->name = string_copy_dnsdomain((uschar *)hostdata->h_name);
2025 if (fully_qualified_name != NULL) *fully_qualified_name = host->name;
2027 /* Get the list of addresses. IPv4 and IPv6 addresses can be distinguished
2028 by their different lengths. Scan the list, ignoring any that are to be
2029 ignored, and build a chain from the rest. */
2031 ipv4_addr = hostdata->h_length == sizeof(struct in_addr);
2033 for (addrlist = USS hostdata->h_addr_list; *addrlist != NULL; addrlist++)
2035 uschar *text_address =
2036 host_ntoa(ipv4_addr? AF_INET:AF_INET6, *addrlist, NULL, NULL);
2039 if (ignore_target_hosts != NULL &&
2040 verify_check_this_host(&ignore_target_hosts, NULL, host->name,
2041 text_address, NULL) == OK)
2043 DEBUG(D_host_lookup)
2044 debug_printf("ignored host %s [%s]\n", host->name, text_address);
2049 /* If this is the first address, last == NULL and we put the data in the
2054 host->address = text_address;
2055 host->port = PORT_NONE;
2056 host->status = hstatus_unknown;
2057 host->why = hwhy_unknown;
2061 /* Else add further host item blocks for any other addresses, keeping
2066 host_item *next = store_get(sizeof(host_item));
2067 next->name = host->name;
2068 next->mx = host->mx;
2069 next->address = text_address;
2070 next->port = PORT_NONE;
2071 next->status = hstatus_unknown;
2072 next->why = hwhy_unknown;
2074 next->next = last->next;
2081 /* If no hosts were found, the address field in the original host block will be
2082 NULL. If temp_error is set, at least one of the lookups gave a temporary error,
2083 so we pass that back. */
2085 if (host->address == NULL)
2089 (message_id[0] == 0 && smtp_in != NULL)?
2090 string_sprintf("no IP address found for host %s (during %s)", host->name,
2091 smtp_get_connection_info()) :
2093 string_sprintf("no IP address found for host %s", host->name);
2095 HDEBUG(D_host_lookup) debug_printf("%s\n", msg);
2096 if (temp_error) goto RETURN_AGAIN;
2097 if (host_checking || !log_testing_mode)
2098 log_write(L_host_lookup_failed, LOG_MAIN, "%s", msg);
2099 return HOST_FIND_FAILED;
2102 /* Remove any duplicate IP addresses, then check to see if this is the local
2103 host if required. */
2105 host_remove_duplicates(host, &last);
2106 yield = local_host_check?
2107 host_scan_for_local_hosts(host, &last, NULL) : HOST_FOUND;
2109 HDEBUG(D_host_lookup)
2112 if (fully_qualified_name != NULL)
2113 debug_printf("fully qualified name = %s\n", *fully_qualified_name);
2114 debug_printf("%s looked up these IP addresses:\n",
2116 #if HAVE_GETIPNODEBYNAME
2125 for (h = host; h != last->next; h = h->next)
2126 debug_printf(" name=%s address=%s\n", h->name,
2127 (h->address == NULL)? US"<null>" : h->address);
2130 /* Return the found status. */
2134 /* Handle the case when there is a temporary error. If the name matches
2135 dns_again_means_nonexist, return permanent rather than temporary failure. */
2141 uschar *save = deliver_domain;
2142 deliver_domain = host->name; /* set $domain */
2143 rc = match_isinlist(host->name, &dns_again_means_nonexist, 0, NULL, NULL,
2144 MCL_DOMAIN, TRUE, NULL);
2145 deliver_domain = save;
2148 DEBUG(D_host_lookup) debug_printf("%s is in dns_again_means_nonexist: "
2149 "returning HOST_FIND_FAILED\n", host->name);
2150 return HOST_FIND_FAILED;
2153 return HOST_FIND_AGAIN;
2159 /*************************************************
2160 * Fill in a host address from the DNS *
2161 *************************************************/
2163 /* Given a host item, with its name, port and mx fields set, and its address
2164 field set to NULL, fill in its IP address from the DNS. If it is multi-homed,
2165 create additional host items for the additional addresses, copying all the
2166 other fields, and randomizing the order.
2168 On IPv6 systems, A6 records are sought first (but only if support for A6 is
2169 configured - they may never become mainstream), then AAAA records are sought,
2170 and finally A records are sought as well.
2172 The host name may be changed if the DNS returns a different name - e.g. fully
2173 qualified or changed via CNAME. If fully_qualified_name is not NULL, dns_lookup
2174 ensures that it points to the fully qualified name. However, this is the fully
2175 qualified version of the original name; if a CNAME is involved, the actual
2176 canonical host name may be different again, and so we get it directly from the
2177 relevant RR. Note that we do NOT change the mx field of the host item in this
2178 function as it may be called to set the addresses of hosts taken from MX
2182 host points to the host item we're filling in
2183 lastptr points to pointer to last host item in a chain of
2184 host items (may be updated if host is last and gets
2185 extended because multihomed)
2186 ignore_target_hosts list of hosts to ignore
2187 allow_ip if TRUE, recognize an IP address and return it
2188 fully_qualified_name if not NULL, return fully qualified name here if
2189 the contents are different (i.e. it must be preset
2192 Returns: HOST_FIND_FAILED couldn't find A record
2193 HOST_FIND_AGAIN try again later
2194 HOST_FOUND found AAAA and/or A record(s)
2195 HOST_IGNORED found, but all IPs ignored
2199 set_address_from_dns(host_item *host, host_item **lastptr,
2200 uschar *ignore_target_hosts, BOOL allow_ip, uschar **fully_qualified_name)
2203 host_item *thishostlast = NULL; /* Indicates not yet filled in anything */
2204 BOOL v6_find_again = FALSE;
2207 /* If allow_ip is set, a name which is an IP address returns that value
2208 as its address. This is used for MX records when allow_mx_to_ip is set, for
2209 those sites that feel they have to flaunt the RFC rules. */
2211 if (allow_ip && string_is_ip_address(host->name, NULL) != 0)
2214 if (ignore_target_hosts != NULL &&
2215 verify_check_this_host(&ignore_target_hosts, NULL, host->name,
2216 host->name, NULL) == OK)
2217 return HOST_IGNORED;
2220 host->address = host->name;
2224 /* On an IPv6 system, unless IPv6 is disabled, go round the loop up to three
2225 times, looking for A6 and AAAA records the first two times. However, unless
2226 doing standalone testing, we force an IPv4 lookup if the domain matches
2227 dns_ipv4_lookup is set. Since A6 records look like being abandoned, support
2228 them only if explicitly configured to do so. On an IPv4 system, go round the
2229 loop once only, looking only for A records. */
2233 if (disable_ipv6 || (dns_ipv4_lookup != NULL &&
2234 match_isinlist(host->name, &dns_ipv4_lookup, 0, NULL, NULL, MCL_DOMAIN,
2236 i = 0; /* look up A records only */
2238 #endif /* STAND_ALONE */
2241 i = 2; /* look up A6 and AAAA and A records */
2243 i = 1; /* look up AAAA and A records */
2244 #endif /* SUPPORT_A6 */
2246 /* The IPv4 world */
2248 #else /* HAVE_IPV6 */
2249 i = 0; /* look up A records only */
2250 #endif /* HAVE_IPV6 */
2254 static int types[] = { T_A, T_AAAA, T_A6 };
2255 int type = types[i];
2256 int randoffset = (i == 0)? 500 : 0; /* Ensures v6 sorts before v4 */
2260 int rc = dns_lookup(&dnsa, host->name, type, fully_qualified_name);
2262 /* We want to return HOST_FIND_AGAIN if one of the A, A6, or AAAA lookups
2263 fails or times out, but not if another one succeeds. (In the early
2264 IPv6 days there are name servers that always fail on AAAA, but are happy
2265 to give out an A record. We want to proceed with that A record.) */
2267 if (rc != DNS_SUCCEED)
2269 if (i == 0) /* Just tried for an A record, i.e. end of loop */
2271 if (host->address != NULL) return HOST_FOUND; /* A6 or AAAA was found */
2272 if (rc == DNS_AGAIN || rc == DNS_FAIL || v6_find_again)
2273 return HOST_FIND_AGAIN;
2274 return HOST_FIND_FAILED; /* DNS_NOMATCH or DNS_NODATA */
2277 /* Tried for an A6 or AAAA record: remember if this was a temporary
2278 error, and look for the next record type. */
2280 if (rc != DNS_NOMATCH && rc != DNS_NODATA) v6_find_again = TRUE;
2284 /* Lookup succeeded: fill in the given host item with the first non-ignored
2285 address found; create additional items for any others. A single A6 record
2286 may generate more than one address. */
2288 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
2290 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
2292 if (rr->type == type)
2294 /* dns_address *da = dns_address_from_rr(&dnsa, rr); */
2297 da = dns_address_from_rr(&dnsa, rr);
2299 DEBUG(D_host_lookup)
2302 debug_printf("no addresses extracted from A6 RR for %s\n",
2306 /* This loop runs only once for A and AAAA records, but may run
2307 several times for an A6 record that generated multiple addresses. */
2309 for (; da != NULL; da = da->next)
2312 if (ignore_target_hosts != NULL &&
2313 verify_check_this_host(&ignore_target_hosts, NULL,
2314 host->name, da->address, NULL) == OK)
2316 DEBUG(D_host_lookup)
2317 debug_printf("ignored host %s [%s]\n", host->name, da->address);
2322 /* If this is the first address, stick it in the given host block,
2323 and change the name if the returned RR has a different name. */
2325 if (thishostlast == NULL)
2327 if (strcmpic(host->name, rr->name) != 0)
2328 host->name = string_copy_dnsdomain(rr->name);
2329 host->address = da->address;
2330 host->sort_key = host->mx * 1000 + random_number(500) + randoffset;
2331 host->status = hstatus_unknown;
2332 host->why = hwhy_unknown;
2333 thishostlast = host;
2336 /* Not the first address. Check for, and ignore, duplicates. Then
2337 insert in the chain at a random point. */
2344 /* End of our local chain is specified by "thishostlast". */
2346 for (next = host;; next = next->next)
2348 if (Ustrcmp(CS da->address, next->address) == 0) break;
2349 if (next == thishostlast) { next = NULL; break; }
2351 if (next != NULL) continue; /* With loop for next address */
2353 /* Not a duplicate */
2355 new_sort_key = host->mx * 1000 + random_number(500) + randoffset;
2356 next = store_get(sizeof(host_item));
2358 /* New address goes first: insert the new block after the first one
2359 (so as not to disturb the original pointer) but put the new address
2360 in the original block. */
2362 if (new_sort_key < host->sort_key)
2364 *next = *host; /* Copies port */
2366 host->address = da->address;
2367 host->sort_key = new_sort_key;
2368 if (thishostlast == host) thishostlast = next; /* Local last */
2369 if (*lastptr == host) *lastptr = next; /* Global last */
2372 /* Otherwise scan down the addresses for this host to find the
2373 one to insert after. */
2377 host_item *h = host;
2378 while (h != thishostlast)
2380 if (new_sort_key < h->next->sort_key) break;
2383 *next = *h; /* Copies port */
2385 next->address = da->address;
2386 next->sort_key = new_sort_key;
2387 if (h == thishostlast) thishostlast = next; /* Local last */
2388 if (h == *lastptr) *lastptr = next; /* Global last */
2396 /* Control gets here only if the third lookup (the A record) succeeded.
2397 However, the address may not be filled in if it was ignored. */
2399 return (host->address == NULL)? HOST_IGNORED : HOST_FOUND;
2405 /*************************************************
2406 * Find IP addresses and host names via DNS *
2407 *************************************************/
2409 /* The input is a host_item structure with the name field filled in and the
2410 address field set to NULL. This may be in a chain of other host items. The
2411 lookup may result in more than one IP address, in which case we must created
2412 new host blocks for the additional addresses, and insert them into the chain.
2413 The original name may not be fully qualified. Use the fully_qualified_name
2414 argument to return the official name, as returned by the resolver.
2417 host point to initial host item
2418 ignore_target_hosts a list of hosts to ignore
2419 whichrrs flags indicating which RRs to look for:
2420 HOST_FIND_BY_SRV => look for SRV
2421 HOST_FIND_BY_MX => look for MX
2422 HOST_FIND_BY_A => look for A or AAAA
2423 also flags indicating how the lookup is done
2424 HOST_FIND_QUALIFY_SINGLE ) passed to the
2425 HOST_FIND_SEARCH_PARENTS ) resolver
2426 srv_service when SRV used, the service name
2427 srv_fail_domains DNS errors for these domains => assume nonexist
2428 mx_fail_domains DNS errors for these domains => assume nonexist
2429 fully_qualified_name if not NULL, return fully-qualified name
2430 removed set TRUE if local host was removed from the list
2432 Returns: HOST_FIND_FAILED Failed to find the host or domain;
2433 if there was a syntax error,
2434 host_find_failed_syntax is set.
2435 HOST_FIND_AGAIN Could not resolve at this time
2436 HOST_FOUND Host found
2437 HOST_FOUND_LOCAL The lowest MX record points to this
2438 machine, if MX records were found, or
2439 an A record that was found contains
2440 an address of the local host
2444 host_find_bydns(host_item *host, uschar *ignore_target_hosts, int whichrrs,
2445 uschar *srv_service, uschar *srv_fail_domains, uschar *mx_fail_domains,
2446 uschar **fully_qualified_name, BOOL *removed)
2448 host_item *h, *last;
2456 /* Set the default fully qualified name to the incoming name, initialize the
2457 resolver if necessary, set up the relevant options, and initialize the flag
2458 that gets set for DNS syntax check errors. */
2460 if (fully_qualified_name != NULL) *fully_qualified_name = host->name;
2461 dns_init((whichrrs & HOST_FIND_QUALIFY_SINGLE) != 0,
2462 (whichrrs & HOST_FIND_SEARCH_PARENTS) != 0);
2463 host_find_failed_syntax = FALSE;
2465 /* First, if requested, look for SRV records. The service name is given; we
2466 assume TCP progocol. DNS domain names are constrained to a maximum of 256
2467 characters, so the code below should be safe. */
2469 if ((whichrrs & HOST_FIND_BY_SRV) != 0)
2472 uschar *temp_fully_qualified_name = buffer;
2475 (void)sprintf(CS buffer, "_%s._tcp.%n%.256s", srv_service, &prefix_length,
2479 /* Search for SRV records. If the fully qualified name is different to
2480 the input name, pass back the new original domain, without the prepended
2483 rc = dns_lookup(&dnsa, buffer, ind_type, &temp_fully_qualified_name);
2484 if (temp_fully_qualified_name != buffer && fully_qualified_name != NULL)
2485 *fully_qualified_name = temp_fully_qualified_name + prefix_length;
2487 /* On DNS failures, we give the "try again" error unless the domain is
2488 listed as one for which we continue. */
2490 if (rc == DNS_FAIL || rc == DNS_AGAIN)
2493 if (match_isinlist(host->name, &srv_fail_domains, 0, NULL, NULL, MCL_DOMAIN,
2496 return HOST_FIND_AGAIN;
2497 DEBUG(D_host_lookup) debug_printf("DNS_%s treated as DNS_NODATA "
2498 "(domain in srv_fail_domains)\n", (rc == DNS_FAIL)? "FAIL":"AGAIN");
2502 /* If we did not find any SRV records, search the DNS for MX records, if
2503 requested to do so. If the result is DNS_NOMATCH, it means there is no such
2504 domain, and there's no point in going on to look for address records with the
2505 same domain. The result will be DNS_NODATA if the domain exists but has no MX
2506 records. On DNS failures, we give the "try again" error unless the domain is
2507 listed as one for which we continue. */
2509 if (rc != DNS_SUCCEED && (whichrrs & HOST_FIND_BY_MX) != 0)
2512 rc = dns_lookup(&dnsa, host->name, ind_type, fully_qualified_name);
2513 if (rc == DNS_NOMATCH) return HOST_FIND_FAILED;
2514 if (rc == DNS_FAIL || rc == DNS_AGAIN)
2517 if (match_isinlist(host->name, &mx_fail_domains, 0, NULL, NULL, MCL_DOMAIN,
2520 return HOST_FIND_AGAIN;
2521 DEBUG(D_host_lookup) debug_printf("DNS_%s treated as DNS_NODATA "
2522 "(domain in mx_fail_domains)\n", (rc == DNS_FAIL)? "FAIL":"AGAIN");
2526 /* If we haven't found anything yet, and we are requested to do so, try for an
2527 A or AAAA record. If we find it (or them) check to see that it isn't the local
2530 if (rc != DNS_SUCCEED)
2532 if ((whichrrs & HOST_FIND_BY_A) == 0)
2534 DEBUG(D_host_lookup) debug_printf("Address records are not being sought\n");
2535 return HOST_FIND_FAILED;
2538 last = host; /* End of local chainlet */
2540 host->port = PORT_NONE;
2541 rc = set_address_from_dns(host, &last, ignore_target_hosts, FALSE,
2542 fully_qualified_name);
2544 /* If one or more address records have been found, check that none of them
2545 are local. Since we know the host items all have their IP addresses
2546 inserted, host_scan_for_local_hosts() can only return HOST_FOUND or
2547 HOST_FOUND_LOCAL. We do not need to scan for duplicate IP addresses here,
2548 because set_address_from_dns() removes them. */
2550 if (rc == HOST_FOUND)
2551 rc = host_scan_for_local_hosts(host, &last, removed);
2553 if (rc == HOST_IGNORED) rc = HOST_FIND_FAILED; /* No special action */
2555 DEBUG(D_host_lookup)
2558 if (host->address != NULL)
2560 if (fully_qualified_name != NULL)
2561 debug_printf("fully qualified name = %s\n", *fully_qualified_name);
2562 for (h = host; h != last->next; h = h->next)
2563 debug_printf("%s %s mx=%d sort=%d %s\n", h->name,
2564 (h->address == NULL)? US"<null>" : h->address, h->mx, h->sort_key,
2565 (h->status >= hstatus_unusable)? US"*" : US"");
2572 /* We have found one or more MX or SRV records. Sort them according to
2573 precedence. Put the data for the first one into the existing host block, and
2574 insert new host_item blocks into the chain for the remainder. For equal
2575 precedences one is supposed to randomize the order. To make this happen, the
2576 sorting is actually done on the MX value * 1000 + a random number. This is put
2577 into a host field called sort_key.
2579 In the case of hosts with both IPv6 and IPv4 addresses, we want to choose the
2580 IPv6 address in preference. At this stage, we don't know what kind of address
2581 the host has. We choose a random number < 500; if later we find an A record
2582 first, we add 500 to the random number. Then for any other address records, we
2583 use random numbers in the range 0-499 for AAAA records and 500-999 for A
2586 At this point we remove any duplicates that point to the same host, retaining
2587 only the one with the lowest precedence. We cannot yet check for precedence
2588 greater than that of the local host, because that test cannot be properly done
2589 until the addresses have been found - an MX record may point to a name for this
2590 host which is not the primary hostname. */
2592 last = NULL; /* Indicates that not even the first item is filled yet */
2594 for (rr = dns_next_rr(&dnsa, &dnss, RESET_ANSWERS);
2596 rr = dns_next_rr(&dnsa, &dnss, RESET_NEXT))
2599 int weight = 0; /* For SRV records */
2600 int port = PORT_NONE;
2601 uschar *s; /* MUST be unsigned for GETSHORT */
2604 if (rr->type != ind_type) continue;
2606 GETSHORT(precedence, s); /* Pointer s is advanced */
2608 /* For MX records, we use a random "weight" which causes multiple records of
2609 the same precedence to sort randomly. */
2611 if (ind_type == T_MX)
2613 weight = random_number(500);
2616 /* SRV records are specified with a port and a weight. The weight is used
2617 in a special algorithm. However, to start with, we just use it to order the
2618 records of equal priority (precedence). */
2622 GETSHORT(weight, s);
2626 /* Get the name of the host pointed to. */
2628 (void)dn_expand(dnsa.answer, dnsa.answer + dnsa.answerlen, s,
2629 (DN_EXPAND_ARG4_TYPE)data, sizeof(data));
2631 /* Check that we haven't already got this host on the chain; if we have,
2632 keep only the lower precedence. This situation shouldn't occur, but you
2633 never know what junk might get into the DNS (and this case has been seen on
2634 more than one occasion). */
2636 if (last != NULL) /* This is not the first record */
2638 host_item *prev = NULL;
2640 for (h = host; h != last->next; prev = h, h = h->next)
2642 if (strcmpic(h->name, data) == 0)
2644 DEBUG(D_host_lookup)
2645 debug_printf("discarded duplicate host %s (MX=%d)\n", data,
2646 (precedence > h->mx)? precedence : h->mx);
2647 if (precedence >= h->mx) goto NEXT_MX_RR; /* Skip greater precedence */
2648 if (h == host) /* Override first item */
2651 host->sort_key = precedence * 1000 + weight;
2655 /* Unwanted host item is not the first in the chain, so we can get
2656 get rid of it by cutting it out. */
2658 prev->next = h->next;
2659 if (h == last) last = prev;
2665 /* If this is the first MX or SRV record, put the data into the existing host
2666 block. Otherwise, add a new block in the correct place; if it has to be
2667 before the first block, copy the first block's data to a new second block. */
2671 host->name = string_copy_dnsdomain(data);
2672 host->address = NULL;
2674 host->mx = precedence;
2675 host->sort_key = precedence * 1000 + weight;
2676 host->status = hstatus_unknown;
2677 host->why = hwhy_unknown;
2681 /* Make a new host item and seek the correct insertion place */
2685 int sort_key = precedence * 1000 + weight;
2686 host_item *next = store_get(sizeof(host_item));
2687 next->name = string_copy_dnsdomain(data);
2688 next->address = NULL;
2690 next->mx = precedence;
2691 next->sort_key = sort_key;
2692 next->status = hstatus_unknown;
2693 next->why = hwhy_unknown;
2696 /* Handle the case when we have to insert before the first item. */
2698 if (sort_key < host->sort_key)
2705 if (last == host) last = next;
2708 /* Else scan down the items we have inserted as part of this exercise;
2709 don't go further. */
2713 for (h = host; h != last; h = h->next)
2715 if (sort_key < h->next->sort_key)
2717 next->next = h->next;
2723 /* Join on after the last host item that's part of this
2724 processing if we haven't stopped sooner. */
2728 next->next = last->next;
2735 NEXT_MX_RR: continue;
2738 /* If the list of hosts was obtained from SRV records, there are two things to
2739 do. First, if there is only one host, and it's name is ".", it means there is
2740 no SMTP service at this domain. Otherwise, we have to sort the hosts of equal
2741 priority according to their weights, using an algorithm that is defined in RFC
2742 2782. The hosts are currently sorted by priority and weight. For each priority
2743 group we have to pick off one host and put it first, and then repeat for any
2744 remaining in the same priority group. */
2746 if (ind_type == T_SRV)
2750 if (host == last && host->name[0] == 0)
2752 DEBUG(D_host_lookup) debug_printf("the single SRV record is \".\"\n");
2753 return HOST_FIND_FAILED;
2756 DEBUG(D_host_lookup)
2758 debug_printf("original ordering of hosts from SRV records:\n");
2759 for (h = host; h != last->next; h = h->next)
2760 debug_printf(" %s P=%d W=%d\n", h->name, h->mx, h->sort_key % 1000);
2763 for (pptr = &host, h = host; h != last; pptr = &(h->next), h = h->next)
2768 /* Find the last following host that has the same precedence. At the same
2769 time, compute the sum of the weights and the running totals. These can be
2770 stored in the sort_key field. */
2772 for (hh = h; hh != last; hh = hh->next)
2774 int weight = hh->sort_key % 1000; /* was precedence * 1000 + weight */
2777 if (hh->mx != hh->next->mx) break;
2780 /* If there's more than one host at this precedence (priority), we need to
2781 pick one to go first. */
2787 int randomizer = random_number(sum + 1);
2789 for (ppptr = pptr, hhh = h;
2791 ppptr = &(hhh->next), hhh = hhh->next)
2793 if (hhh->sort_key >= randomizer) break;
2796 /* hhh now points to the host that should go first; ppptr points to the
2797 place that points to it. Unfortunately, if the start of the minilist is
2798 the start of the entire list, we can't just swap the items over, because
2799 we must not change the value of host, since it is passed in from outside.
2800 One day, this could perhaps be changed.
2802 The special case is fudged by putting the new item *second* in the chain,
2803 and then transferring the data between the first and second items. We
2804 can't just swap the first and the chosen item, because that would mean
2805 that an item with zero weight might no longer be first. */
2809 *ppptr = hhh->next; /* Cuts it out of the chain */
2813 host_item temp = *h;
2816 hhh->next = temp.next;
2822 hhh->next = h; /* The rest of the chain follows it */
2823 *pptr = hhh; /* It takes the place of h */
2824 h = hhh; /* It's now the start of this minilist */
2829 /* A host has been chosen to be first at this priority and h now points
2830 to this host. There may be others at the same priority, or others at a
2831 different priority. Before we leave this host, we need to put back a sort
2832 key of the traditional MX kind, in case this host is multihomed, because
2833 the sort key is used for ordering the multiple IP addresses. We do not need
2834 to ensure that these new sort keys actually reflect the order of the hosts,
2837 h->sort_key = h->mx * 1000 + random_number(500);
2838 } /* Move on to the next host */
2841 /* Now we have to find IP addresses for all the hosts. We have ensured above
2842 that the names in all the host items are unique. Before release 4.61 we used to
2843 process records from the additional section in the DNS packet that returned the
2844 MX or SRV records. However, a DNS name server is free to drop any resource
2845 records from the additional section. In theory, this has always been a
2846 potential problem, but it is exacerbated by the advent of IPv6. If a host had
2847 several IPv4 addresses and some were not in the additional section, at least
2848 Exim would try the others. However, if a host had both IPv4 and IPv6 addresses
2849 and all the IPv4 (say) addresses were absent, Exim would try only for a IPv6
2850 connection, and never try an IPv4 address. When there was only IPv4
2851 connectivity, this was a disaster that did in practice occur.
2853 So, from release 4.61 onwards, we always search for A and AAAA records
2854 explicitly. The names shouldn't point to CNAMES, but we use the general lookup
2855 function that handles them, just in case. If any lookup gives a soft error,
2856 change the default yield.
2858 For these DNS lookups, we must disable qualify_single and search_parents;
2859 otherwise invalid host names obtained from MX or SRV records can cause trouble
2860 if they happen to match something local. */
2862 yield = HOST_FIND_FAILED; /* Default yield */
2863 dns_init(FALSE, FALSE); /* Disable qualify_single and search_parents */
2865 for (h = host; h != last->next; h = h->next)
2867 if (h->address != NULL) continue; /* Inserted by a multihomed host */
2868 rc = set_address_from_dns(h, &last, ignore_target_hosts, allow_mx_to_ip, NULL);
2869 if (rc != HOST_FOUND)
2871 h->status = hstatus_unusable;
2872 if (rc == HOST_FIND_AGAIN)
2875 h->why = hwhy_deferred;
2878 h->why = (rc == HOST_IGNORED)? hwhy_ignored : hwhy_failed;
2882 /* Scan the list for any hosts that are marked unusable because they have
2883 been explicitly ignored, and remove them from the list, as if they did not
2884 exist. If we end up with just a single, ignored host, flatten its fields as if
2885 nothing was found. */
2887 if (ignore_target_hosts != NULL)
2889 host_item *prev = NULL;
2890 for (h = host; h != last->next; h = h->next)
2893 if (h->why != hwhy_ignored) /* Non ignored host, just continue */
2895 else if (prev == NULL) /* First host is ignored */
2897 if (h != last) /* First is not last */
2899 if (h->next == last) last = h; /* Overwrite it with next */
2900 *h = *(h->next); /* and reprocess it. */
2901 goto REDO; /* C should have redo, like Perl */
2904 else /* Ignored host is not first - */
2906 prev->next = h->next;
2907 if (h == last) last = prev;
2911 if (host->why == hwhy_ignored) host->address = NULL;
2914 /* There is still one complication in the case of IPv6. Although the code above
2915 arranges that IPv6 addresses take precedence over IPv4 addresses for multihomed
2916 hosts, it doesn't do this for addresses that apply to different hosts with the
2917 same MX precedence, because the sorting on MX precedence happens first. So we
2918 have to make another pass to check for this case. We ensure that, within a
2919 single MX preference value, IPv6 addresses come first. This can separate the
2920 addresses of a multihomed host, but that should not matter. */
2923 if (h != last && !disable_ipv6)
2925 for (h = host; h != last; h = h->next)
2928 host_item *next = h->next;
2929 if (h->mx != next->mx || /* If next is different MX */
2930 h->address == NULL || /* OR this one is unset */
2931 Ustrchr(h->address, ':') != NULL || /* OR this one is IPv6 */
2932 (next->address != NULL &&
2933 Ustrchr(next->address, ':') == NULL)) /* OR next is IPv4 */
2934 continue; /* move on to next */
2935 temp = *h; /* otherwise, swap */
2936 temp.next = next->next;
2944 /* Remove any duplicate IP addresses and then scan the list of hosts for any
2945 whose IP addresses are on the local host. If any are found, all hosts with the
2946 same or higher MX values are removed. However, if the local host has the lowest
2947 numbered MX, then HOST_FOUND_LOCAL is returned. Otherwise, if at least one host
2948 with an IP address is on the list, HOST_FOUND is returned. Otherwise,
2949 HOST_FIND_FAILED is returned, but in this case do not update the yield, as it
2950 might have been set to HOST_FIND_AGAIN just above here. If not, it will already
2951 be HOST_FIND_FAILED. */
2953 host_remove_duplicates(host, &last);
2954 rc = host_scan_for_local_hosts(host, &last, removed);
2955 if (rc != HOST_FIND_FAILED) yield = rc;
2957 DEBUG(D_host_lookup)
2959 if (fully_qualified_name != NULL)
2960 debug_printf("fully qualified name = %s\n", *fully_qualified_name);
2961 debug_printf("host_find_bydns yield = %s (%d); returned hosts:\n",
2962 (yield == HOST_FOUND)? "HOST_FOUND" :
2963 (yield == HOST_FOUND_LOCAL)? "HOST_FOUND_LOCAL" :
2964 (yield == HOST_FIND_AGAIN)? "HOST_FIND_AGAIN" :
2965 (yield == HOST_FIND_FAILED)? "HOST_FIND_FAILED" : "?",
2967 for (h = host; h != last->next; h = h->next)
2969 debug_printf(" %s %s MX=%d ", h->name,
2970 (h->address == NULL)? US"<null>" : h->address, h->mx);
2971 if (h->port != PORT_NONE) debug_printf("port=%d ", h->port);
2972 if (h->status >= hstatus_unusable) debug_printf("*");
2983 /*************************************************
2984 **************************************************
2985 * Stand-alone test program *
2986 **************************************************
2987 *************************************************/
2991 int main(int argc, char **cargv)
2994 int whichrrs = HOST_FIND_BY_MX | HOST_FIND_BY_A;
2995 BOOL byname = FALSE;
2996 BOOL qualify_single = TRUE;
2997 BOOL search_parents = FALSE;
2998 uschar **argv = USS cargv;
3001 disable_ipv6 = FALSE;
3002 primary_hostname = US"";
3003 store_pool = POOL_MAIN;
3004 debug_selector = D_host_lookup|D_interface;
3005 debug_file = stdout;
3006 debug_fd = fileno(debug_file);
3008 printf("Exim stand-alone host functions test\n");
3010 host_find_interfaces();
3011 debug_selector = D_host_lookup | D_dns;
3013 if (argc > 1) primary_hostname = argv[1];
3015 /* So that debug level changes can be done first */
3017 dns_init(qualify_single, search_parents);
3019 printf("Testing host lookup\n");
3021 while (Ufgets(buffer, 256, stdin) != NULL)
3024 int len = Ustrlen(buffer);
3025 uschar *fully_qualified_name;
3027 while (len > 0 && isspace(buffer[len-1])) len--;
3030 if (Ustrcmp(buffer, "q") == 0) break;
3032 if (Ustrcmp(buffer, "byname") == 0) byname = TRUE;
3033 else if (Ustrcmp(buffer, "no_byname") == 0) byname = FALSE;
3034 else if (Ustrcmp(buffer, "a_only") == 0) whichrrs = HOST_FIND_BY_A;
3035 else if (Ustrcmp(buffer, "mx_only") == 0) whichrrs = HOST_FIND_BY_MX;
3036 else if (Ustrcmp(buffer, "srv_only") == 0) whichrrs = HOST_FIND_BY_SRV;
3037 else if (Ustrcmp(buffer, "srv+a") == 0)
3038 whichrrs = HOST_FIND_BY_SRV | HOST_FIND_BY_A;
3039 else if (Ustrcmp(buffer, "srv+mx") == 0)
3040 whichrrs = HOST_FIND_BY_SRV | HOST_FIND_BY_MX;
3041 else if (Ustrcmp(buffer, "srv+mx+a") == 0)
3042 whichrrs = HOST_FIND_BY_SRV | HOST_FIND_BY_MX | HOST_FIND_BY_A;
3043 else if (Ustrcmp(buffer, "qualify_single") == 0) qualify_single = TRUE;
3044 else if (Ustrcmp(buffer, "no_qualify_single") == 0) qualify_single = FALSE;
3045 else if (Ustrcmp(buffer, "search_parents") == 0) search_parents = TRUE;
3046 else if (Ustrcmp(buffer, "no_search_parents") == 0) search_parents = FALSE;
3047 else if (Ustrcmp(buffer, "test_harness") == 0)
3048 running_in_test_harness = !running_in_test_harness;
3049 else if (Ustrcmp(buffer, "ipv6") == 0) disable_ipv6 = !disable_ipv6;
3050 else if (Ustrcmp(buffer, "res_debug") == 0)
3052 _res.options ^= RES_DEBUG;
3054 else if (Ustrncmp(buffer, "retrans", 7) == 0)
3056 (void)sscanf(CS(buffer+8), "%d", &dns_retrans);
3057 _res.retrans = dns_retrans;
3059 else if (Ustrncmp(buffer, "retry", 5) == 0)
3061 (void)sscanf(CS(buffer+6), "%d", &dns_retry);
3062 _res.retry = dns_retry;
3066 int flags = whichrrs;
3072 h.status = hstatus_unknown;
3073 h.why = hwhy_unknown;
3076 if (qualify_single) flags |= HOST_FIND_QUALIFY_SINGLE;
3077 if (search_parents) flags |= HOST_FIND_SEARCH_PARENTS;
3080 host_find_byname(&h, NULL, flags, &fully_qualified_name, TRUE)
3082 host_find_bydns(&h, NULL, flags, US"smtp", NULL, NULL,
3083 &fully_qualified_name, NULL);
3085 if (rc == HOST_FIND_FAILED) printf("Failed\n");
3086 else if (rc == HOST_FIND_AGAIN) printf("Again\n");
3087 else if (rc == HOST_FOUND_LOCAL) printf("Local\n");
3093 printf("Testing host_aton\n");
3095 while (Ufgets(buffer, 256, stdin) != NULL)
3099 int len = Ustrlen(buffer);
3101 while (len > 0 && isspace(buffer[len-1])) len--;
3104 if (Ustrcmp(buffer, "q") == 0) break;
3106 len = host_aton(buffer, x);
3107 printf("length = %d ", len);
3108 for (i = 0; i < len; i++)
3110 printf("%04x ", (x[i] >> 16) & 0xffff);
3111 printf("%04x ", x[i] & 0xffff);
3118 printf("Testing host_name_lookup\n");
3120 while (Ufgets(buffer, 256, stdin) != NULL)
3122 int len = Ustrlen(buffer);
3123 while (len > 0 && isspace(buffer[len-1])) len--;
3125 if (Ustrcmp(buffer, "q") == 0) break;
3126 sender_host_address = buffer;
3127 sender_host_name = NULL;
3128 sender_host_aliases = NULL;
3129 host_lookup_msg = US"";
3130 host_lookup_failed = FALSE;
3131 if (host_name_lookup() == FAIL) /* Debug causes printing */
3132 printf("Lookup failed:%s\n", host_lookup_msg);
3140 #endif /* STAND_ALONE */